
Vrije Universiteit Brussel
Faculteit Wetenschappen

SREVINU

ITEIT

EJI
R

V

BRUS
S

E
L

ECNIV
RE T EN

E
B

R
A

S

AI

T
N

EI
C

S

The Zypher Meta Object Protocol

Serge Demeyer - Koen De Hondt - Patrick Steyaert
- Wim Codenie - Roel Wuyts - Theo D'Hondt

Presented at the second workshop on open hypermedia systems (Washington DC, US — 1996)
Published in Wiil, U. K. / Demeyer, S. (Ed) "Proceedings of the 2nd Workshop on Open Hypermedia
Systems - Hypertext'96"; UCI-ICS Technical Report 96-10. Department of Information and Computer

Science, University of California, Irvine, CA 92717-3425.

Techreport vub-prog-tr-96-04

Programming Technology Lab
PROG(WE)

VUB
Pleinlaan 2

1050 Brussel
BELGIUM

Fax: (+32) 2-629-3525
Tel: (+32) 2-629-3308

Anon. FTP: progftp.vub.ac.be
WWW: progwww.vub.ac.be

The Zypher Meta Object Protocol

2 / 9

The Zypher Meta Object Protocol
POSITION STATEMENT SUBMITTED TO

THE 2ND WORKSHOP ON OPEN HYPERMEDIA SYSTEMS
Hypertext '96 Conference - March '96 - Washington (US)

http://www.iesd.auc.dk/~kock/OHS-HT96/ - http://www.acm.org/siglink/ht96/

Serge Demeyer
Patrick Steyaert - Koen De Hondt - Wim Codenie - Roel Wuyts - Theo D'Hondt

Vrije Universiteit Brussel / Faculty of Sciences
Programming Technology Lab (PROG) Pleinlaan 2

B-1050 Brussels (Belgium)
phone: (+32) 2 629 34 91

{sademeye | prsteyae | kdehondt | wcodenie | tjdhondt}@vnet3.vub.ac.be; rwuyts@is1.vub.ac.be
http://progwww.vub.ac.be/

Abstract
This paper discusses the necessity of a meta object protocol in the design of an open hypermedia system. It
shows that a meta object protocol enables to tailor the behaviour and configuration of the hypermedia system,
independent of its constituting elements.

The approach is demonstrated by means of the Zypher Open Hypermedia Framework, where the meta object
protocol eases the incorporation of system services (i.e. caching, logging, authority control and integrity
control) and flexible reconfiguration (i.e. run-time extensibility and cross-platform portability).

1. Introduction
To understand the argumentation unfolded in the main body of the paper, it is necessary to emphasise that
Zypher1 was explicitly designed as an open hypermedia system with three levels of tailorability. Each level
provides different facilities to suit the behaviour of the system to the needs of particular hypermedia
applications.

Domain Level

Domain level tailorability aims to deliver hypermedia systems for a specific problem domain by
extending the basic hypermedia framework with domain specific modules. Creating such domain
specific modules requires a great deal of technical expertise about the software systems applied in the
problem domain but has little to do with the hypermedia system as such. One doesn't need to
understand the inner details of the hypermedia system to tailor the system. Note that some modules, if
written 'good', can be reused for different problem domains.

Typical usage of domain level tailorability is the incorporation of modules for special viewer
applications (i.e. Microsoft Word, a HTML browser), extra storage devices (i.e. the local file system, a
HTTP-server) and designated navigation facilities (i.e. special URL resolution algorithms).

System Level

System level tailorability aims to deliver services that affect the global behaviour of the hypermedia
system itself and requires some knowledge about the internal architecture of the hypermedia system.
Services attained trough system level tailorability can be applied on different incarnations of the
hypermedia framework: once we have implemented the technique in one framework incarnation, it
requires little effort to reuse the code in other incarnations.

Typical examples of services that can be accomplished with system level tailorability are things like
logging (maintaining a log of certain activities in order to provide backtracking features), authority
control (check whether the user of the system has the privileges to perform certain operations), caching
(predict future behaviour on the basis of registered activities) and integrity control (control operations
in order to preserve the consistency of the system's data structures).

1 The name Zypher stems from the Louis Zypher character performed by Robert De Niro in the movie
"Angel Heart".

The Zypher Meta Object Protocol

3 / 9

Configuration Level

Configuration level tailorability aims to provide a 'plug and play' hypermedia system, where the
system configuration is adapted without modifying the constituting modules. This accommodates for a
flexible system set-up, where new modules can be installed easily. Configuration level tailorability
requires a deep knowledge about the internal architecture of the hypermedia system; however technical
details about individual modules do not matter.

Typical examples of configuration level achievements are flexible configuration (i.e. run-time
extensions to the system) and portability (i.e. cross-platform reconfiguration).

Figure 1: Puppet Master
Metaphor

These levels of tailorability are quite important and hypermedia system designers
will often need to switch between these levels in order to develop a particular
hypermedia application. That is why we have devised special icons that are
employed in the framework documentation and throughout the remainder of this
text2. The icons are based on the puppet master metaphor (see [figure 1]).
• When preparing a story, the puppet designer will conceive a number of puppets

playing different characters. To distinguish these characters the puppets will be
dressed with different costumes and their faces will be painted. Typical puppet
characters are the harlequin and the pierrot, the former wearing a costume with
lots of coloured patchwork and a smiling face, the latter is dressed in white with
a tear under the eye. This kind of tailorability corresponds with the domain
level tailorability and is visualised using an icon presenting a puppet.

• However, for certain kinds of stories, some puppets require special abilities that
demand for extra strings to manipulate the special behaviour. Some scene in the
play might benefit from a horse with a swinging tail, in which case the puppet
designer will take an existing horse puppet and attach a new string to the tail.
A puppet designer that attaches new strings to puppets is a designer that
operates on the system level of tailorability, which is denoted by means of a hand-with-string icon.

• Finally, the way the strings work together is implemented in the wooden cross manipulated by the
puppet player. A puppet designer creating a knight on a horse fighting with a spear will adapt the
branches of the wooden cross to operate the puppet and works on the configuration level of tailorability.
This is symbolised with a cross icon.

(remark: Note that the users of the hypermedia system correspond with the audience watching the puppet:
they are not supposed to know how the puppet is manipulated to produce the desired scenes in the
performance. However, just like the audience can influence the play by applauding and shouting, users can
influence the behaviour of the system by setting preferences. Actually, the puppet master —i.e. the
hypermedia system designer— will use the appropriate level of tailorability to satisfy the audience).

Document Organisation
The remainder of this paper will be used to demonstrate how techniques from the object-oriented software
engineering community may help to develop and maintain a hypermedia system with the three levels of
tailorability. More precisely, the aim of the paper is to show that the introduction of a meta object protocol
delivers the desired system level and configuration level tailorability (see sections 3 and 4). Before discussing
the notion of a meta object protocol, we will discuss the issue of domain level tailorability (see section 2),
where we will define an object-oriented framework for the domain of Open Hypermedia Systems.

2. The Base Level
This section will settle the scope of the rest of the paper, with a design specification for the Zypher Open
Hypermedia Framework. It is important to note that this specification is not complete and this for three
reasons. First of all, the design will be gradually improved (by adding meta objects) when we introduce the
notions of system level and configuration level tailorability. Secondly, because the design of the base level is
not crucially important for the real issue: the necessity of a meta object protocol). All that really matters is
that there exists a base level design, and that it is formalised in a set of contracts specifying relations between
objects (we refer the interested reader to [Demeyer'96] for a full specification in design pattern form). Thirdly
—and this follows from the previous motive— because it is possible to introduce a meta object protocol on
any system with a base level design based on an object-oriented framework. The third point is extremely
important, as it makes the technique of a meta object protocol applicable in many other hypermedia systems.

2 The idea of visualising the levels of the system by means of icons is adapted from
[Kiczalis,Rivières,Bobrow'91].

The Zypher Meta Object Protocol

4 / 9

A Design Specification
The design of the Zypher framework was based on the Dexter model [Halasz,Schwartz'90], well known in the
Hypermedia community. Zypher retained the separation between the storage layer and the run-time layer
(called presentation layer in Zypher) and the main elements of the Dexter factorisation (i.e. component,
anchor, instantiation and marker). To handle the specific problems of an 'Open' hypermedia model3, we
extended the model with elements that represent a viewer application (i.e. editor), an information repository
(i.e. loader) and a link resolution algorithm (i.e. a resolver) . This resulted in the object model (using OMT
notation; see [Blaha,Premerlandi,Rumbaugh'88] and [RumbaugEtAl'91]) depicted in [figure 2].

Marker

activateOn (instantiation)

highlightOn (instantiation)
selectOn (instantiation)

Instantiation

edit ()

PresentationLayerObject

Anchor

activateOn (component)

valueOn (component)

Component

contents ()

StorageLayerObject

Editor

editInstantiation (instantiation)
higlightMarkerOn (marker, inst)
selectMarkerOn (marker, inst)

Resolver

resolveAnchorComponent
 (anchor, component)

Loader

setContentsOf
 (component, newContents)
setValueOf
 (anchor, newValue)

Figure 2: The Design of the Base Level

Instead of presenting an explicit enumeration of all contracts, that exist between the objects defined in [figure
2], we will give a brief description of the message flow that implements the navigation operation (the heart
of all hypermedia models).

Step 1: Selection of navigation source

An instantiation represents a document as it is displayed by some viewer application (the viewer
application is represented by the editor object). An instantiation contains a number of markers
(representations for the visible sources or targets for navigation operations) which explains the
aggregation relation between instantiation and marker.

To start a navigation action, the editor will send an #activateOn message to a marker with the
associated instantiation as parameter. The marker is allowed to produce some visual effects before
proceeding with the next step.

Step 2: Identification of navigation source

The 1-to-many associations between instantiation/component and marker/anchor will be used to find
the associated anchor-component pair. This pair identifies the source of the navigation operation and
the marker must send the #activateOn message on to the associated anchor supplying as parameter the
component associated with the instantiation.

3 See [Demeyer'96] for a motivation of these extensions.

The Zypher Meta Object Protocol

5 / 9

Step 3: Resolution Process

The 1-to-many association between anchor/resolver will be used to retrieve the resolver object
containing the algorithm that produces the target of the navigation action. The
#resolveAnchorComponent message must be send to this resolver to obtain a collection of quadruples
where each quadruple represents one target of a navigation action. Inspired by the Dexter model, each
quadruple contains a component specifier, a component presentation specifier, an anchor specifier and
an anchor presentation specifier; such quadruple will be turned into a new component, anchor,
instantiation and marker that will serve as the target of the navigation operation.

Step 4: Target Presentation

For each target the message #edit will be sent to the instantiation; the instantiation must pass this
message on the associated editor (by means of the #editInstantiation message) to instruct the viewer
application to open a view. Afterwards, all associated markers will be sent the #highlightOn message
which must be passed on to the associated editor (by means of the #highlightMarkerOn message) to
instruct the viewer application to highlight them as candidate sources or targets for future navigation
actions. Finally, the actual target of the navigation action will be selected by sending the #selectOn
message to the target marker, which must be passed on to the associated editor (by means of the
#selectMarkerOn message). During this process, it is always possible to request a component for its
contents (an anchor for its value) by sending the #contents (#valueOn) message. For un-initialised
components (or anchors) the associated loader will supply the actual contents (value) using the
#setContentsOf (#setValueOf) message.

To verify the notion of domain level tailorability, we extended Zypher with several modules for the so-called
"framework browser" problem domain. In order to explain the framework browser concept, we must clarify
some related concepts. Object-oriented frameworks are the state of the art in object-oriented software
engineering and consist of a tight co-operation of the analysis, design and implementation concepts modelling
a particular application domain. A framework consists of different design patterns (see [Johnson'92],
[Beck,Johnson'94], [GammaEtAl'93], [Pree'94]) that focus on a single analysis, design and implementation
aspect of the overall framework structure. A framework browser is then an integrated set of tools to
manipulate the design patterns inside a framework. Currently, these tools are
• a home cooked HTML browser (used to read design pattern documentation),
• the Microsoft Word third party application (used to produce design pattern documentation),
• several code browsers (used to modify the implementation of the framework) and
• several pattern browsers (used to match the implementation expressed in concrete classes with the design

specified in contracts between abstract classes).
The Zypher link engine seamlessly integrates all these tools by providing navigation facilities from one tool
to another. For example, it is possible to follow hypermedia links from the design pattern documentation
(i.e. a HTML or Microsoft Word document) to the implementation (i.e. a code or pattern browser). Also, one
can make hyper jumps from the implementation to the design pattern documentation describing that part of
the framework.

3. The Meta Level
To verify the notion of system level tailorability, we decided to experiment with a backtrack function for all
the navigation actions performed by the hypermedia system. A backtrack function is often helpful in
hypermedia systems, as it is one of the techniques to handle the well known 'lost in hyper space'
phenomenon (i.e. [Zellweger'89] and [Conklin'87]).

Keeping track of all navigation actions boils down to the maintenance of a log: for all navigation actions we
must save the internal state of the participating agents to be able to restore them later. From this insight
follows that an implementation must solve two problems in order to provide a working backtracking service.
There is the problem how to ensure that all navigation actions are witnessed and there is the problem how to
save the internal state of the participants. The former problem will be discussed in the following section; the
latter is beyond the scope of this paper. Briefly we can say that the introduction of special state objects
memorising the internal state of an object solves the problem. The technique is based on the 'Memento'
design pattern, as described in [GammaEtAl'93]; we refer the interested reader to [Demeyer'96] for a more
detailed description.

Funnel Navigation Actions
Re-examining the base level design of the Zypher system (see [figure 2]), we find that the navigation
operation is modelled with a few key messages defined on the participating agents (i.e. the #activateOn
message defined on marker, the #activateOn message defined on anchor, or the #resolveAnchorComponent
defined on resolver). If we want to log all navigation actions, this would imply a patch of all
implementations of at least one of these key messages. From a software engineering perspective, this is an
unfavourable situation as it causes redundancy: the implementation of the logging algorithm is duplicated

The Zypher Meta Object Protocol

6 / 9

over all implementations of the patched key message. From an open hypermedia perspective the situation is
even worse, because in an extensible set-up, the objects participating in the navigation action may be
supplied by external sources. This means that there is no secure way to incorporate the log algorithm in all
implementations, which implies that we can not ensure the integrity of the log.

To ensure that all navigation operations are witnessed by the log algorithm we must adapt the design of the
hypermedia system by providing a funnelling point for all navigation actions. In the Zypher design, such
funnelling point is accomplished in the so-called 'path'4, an object with the explicit responsibility to control
all navigation operations. The adapted model is depicted in [figure 3] (to avoid a cluttered figure, we left out
some of the objects and most of the messages).

Marker

activateOn (instantiation)

highlightOn (instantiation)
selectOn (instantiation)

Instantiation

edit ()

Anchor

activateOn (component)

valueOn (component)

Component

contents ()

Resolver

resolveAnchorComponent
 (anchor, component)

Path

activateMarkerOn (marker, instantiation)
activateAnchorOn (anchor, component)

Figure 3: The Path Meta Object

The semantics of the adapted model (see [figure 3]) is as follows. There is exactly one path object for each
hypermedia system. The implementation of the #activateOn message on all marker objects must delegate to
the global path object implements by means of the #activateMarkerOn message; the implementation will
perform the four steps involved in the navigation operation (i.e. selection of navigation source - identification
of navigation source - resolution process - target presentation) by sending the appropriate messages to the
participating objects.

Funnel Storage & Presentation Layer operations
Services like authority control, caching and integrity control have much in common with the logging
example from above. They all depend on the ability to control all occurrences of particular messages being
sent, regardless of the objects involved. For example, to implement authority control one wants to adapt all
implementations of all #edit messages on all instantiations to check whether the user has the appropriate
privileges; to maintain a cache of visited information one wants to patch all implementations of all
#contents, #setContents, #valueOn and #setValueOf messages on all components and anchors; to ensure the
integrity of the system's data structures one will control all operations that change the associations between
the objects.

Like argued above, the best way to control all occurrences of a particular message is to provide a funnelling
point. The design of the Zypher framework includes the 'session' object to funnel all presentation layer
operations and the 'hypertext' object to funnel all storage layer operations5. The result is depicted in [figure
4].

4 The name stems from the work of Zellweger [Zellweger'89].
5 The Dexter model [Halasz,Schwartz'90] furnished the names 'hypertext' and 'session' because these

objects are responsible for the management of the storage and presentation layer respectively.

The Zypher Meta Object Protocol

7 / 9

MarkerInstantiation

Editor

AnchorComponent

Loader

Resolver

Hypertext

Session

Path

Figure 4: The Path, Hypertext and Session Meta Objects

Why Meta ?
In the previous sections, we have motivated the introduction of 'funnel' objects to provide system level
tailorability. Now, we will argue why such funnel objects may be called meta objects. The argumentation
relies on the fact that a meta objects is an explicit representation of contracts defined between objects in the
base level design.

The term meta is generally connoted with the notion of reflection, i.e. the ability of a system to inspect and
modify representations of it's own activities. Reflection is an intriguing idea —certainly within computer
science— but is mostly considered an academic issue. Reflection has been studied in the area of artificial
intelligence and the design of computer languages for quite a long time now (i.e. [Maes'87],
[Kiczalis,Rivières,Bobrow'91], [Steyaert'94]). There, it has been shown that reflection eases extensibility (i.e.
define a small and fixed kernel language and use that kernel to extend the language expressiveness), backward
compatibility (i.e. compatibility with older definitions of the language) and efficiency (i.e. differ the
implementation strategy to optimise behaviour). Moreover, since a reflective system is able to monitor its
own activities, powerful tools like debuggers and code optimisers can be constructed more comfortably.

Recently the idea has been applied on the design of systems other than programming languages (i.e.
[Rao'91]), leading to what has been called implementational reflection (or sometimes open implementations).
A system with implementational reflection has the ability to inspect and/or change the implementational
structures of its subsystems. Implementational reflection does not directly provide solutions for the problem
domain the system has been designed for, but it does contribute to the internal organisation and the external
interface of that system. This suggests that what we have been calling system level tailorability is indeed a
feature that can be attained with implementational reflection.

To explain why the funnel objects make the hypermedia system a reflective one, we turn to the definitions
found in [Maes'87]. There, a reflective system is defined as a system which is about itself in a causally
connected way. We elaborate on the three main ideas in this definition (i.e. system, about-ness and causal
connection) to make things more precise. A 'system' is software running on a computer with the intention to
answer questions about and/or support actions in some domain. A system will incorporate internal structures
representing it's domain, that is why a system is said to be 'about' it's domain. A system is said to be
'causally connected' to its domain if the internal structures and the domain they represent are linked in such a
way that if one of them changes, this leads to a corresponding effect on the other. In an object-oriented
implementation of a system, the parts of the system that represent causally connected internal structures are
called meta objects.

The definition of causal connection implies that a causally connected system may actually cause changes in
the problem domain by a mere change in the internal representation of that problem domain. As a
consequence (since a reflective system incorporates structures that are causally connected to itself) a reflective
system can actually modify itself by changing its internal representation.

To argue why the funnel objects (i.e. path, session, hypertext; see [figure 3] and [figure 4]) defined in the
previous sections are meta objects, we must prove that these objects are (a) about the hypermedia system in
(b) a causally connected way. The proof follows from the insight that the funnel objects are explicit
representations of the contracts defined between the objects on the base level. Indeed, the important messages
are specified in the static part of the contracts (i.e. the interface of the different objects as shown in [figure 2]),

The Zypher Meta Object Protocol

8 / 9

thus part of the design. However, without the funnel objects, the dynamic part of the contracts (i.e. the
decision when a certain message is sent) is delegated to the implementation and it is precisely the dynamic
part of the contracts that determines the system's behaviour. If the design is extended with the specially
created path, session and hypertext objects (see [figure 3] and [figure 4]) the dynamic parts of the contracts are
explicitly available, since all occurrences of all important messages arrive at, or originate from such funnel
objects. Knowing that the specially created path, session and hypertext are representations of the dynamic
parts of the contracts between the base level objects —specifying how the system should behave under certain
conditions— , they are by definition 'about' the system. Moreover, they are an explicit representation of the
contracts: changing the implementation of a funnel object will have immediate effect on the subsequent
behaviour of the system so we conclude that they are 'causally connected' to the system.

4. The Meta Meta Level
In the previous section we have introduced meta objects (i.e. path, session and hypertext) as the explicit
representations of the contracts defined between base level objects (i.e. component, anchor, instantiation,
marker, resolver, editor and loader). However, the introduction of meta objects leads to supplementary
contracts, which raises the question whether it is worthwhile to make these supplementary contracts explicit
as well.

To show that it is worthwhile, this section will start with a summary of the contracts introduced by the meta
level objects, followed by a description of two experiments with configuration level tailorability and ending
with a discussion on the connection between meta meta objects and configuration level tailorability.

Meta Object Contracts
The meta objects are defined as objects controlling all operations concerning a particular layer (i.e. path for
the navigation layer, session for the presentation layer and hypertext for the storage layer). As we can expect
from this definition, there are more operations defined on meta objects, as the ones that follow from
funnelling base level operations. A quick look at the design with the meta level objects (see [figure 4]) learns
that the introduction of the meta objects adds operations for the aggregation relationships path-resolver,
session-editor and hypertext-loader. The role of these aggregation relationships is to specify what kind of
resolvers, loaders and editors are installed in the hypermedia system, which corresponds to the management of
the available peripheral systems of the hypermedia system. Likewise (not visible in [figure 4]) the meta
objects participate in aggregation relationships specifying the available classes (i.e. hypertext - component
class; hypertext - anchor class; session - instantiation class; session marker class), which corresponds to the
supervision of the potential elements constituting the running hypermedia system. Finally, (not depicted in
[figure 4]), the meta objects introduce operations to create, query and release associations between objects
(storage layer object - presentation layer object in session; instantiation - marker and component - anchor in
path) plus relations between normal objects and peripheral objects (presentation layer object - editor in
session; storage layer object - loader in hypertext; anchor - resolver in path). The role of these operations is to
govern the connections between the internal elements of the hypermedia system and the link with the outside
world.

The previous paragraph is a very short description of the contracts introduced by the meta level objects (for a
detailed description we refer to [Demeyer'96]) which shows that —besides funnelling the navigation,
presentation and storage layer operations— the meta objects do implement the configuration of the
hypermedia system. This suggests that an explicit representation of the contracts defined on meta level
objects may lead to the required configuration level tailorability.

Configuration Level Tailorability Experiments
To explore the notion of configuration level tailorability, we conducted two experiments. The first one is
based on an interpretation of the URL (universal resource locator) format for anchors as defined in the HTML
specification (see [Berners-LeeEtAl'94]). HTML documents embed their anchors in their documents using the
URL format and we applied the same technique for the Microsoft Word documents. The URL format is open
in the sense that it is prefixed by a keyword identifying the target address space, followed by an address in a
format depending on the keyword prefix. The list of possible keywords is in principle unlimited, so the
linking potential is only bounded by the list of interpretable keywords. In the Zypher hypermedia framework,
the link engine consists of the list of resolvers installed in a path, so the mapping of the keyword-prefix on
the appropriate resolver is the crucial process in the configuration of the hypermedia system. This mapping
process is available by means of the #determineResolverFor message on the path meta object.

The second experiment has to do with the system's configuration across platforms. The Zypher framework
documentation is organised as a collection of design patterns containing embedded anchors referring to related
design patterns. The referencing is done by name, i.e. there is a special URL format starting with the keyword
'pattern' and followed by the name of the particular design pattern. The pattern resolver will turn this name
into a file-name containing the design pattern document. However, the design pattern may come in a HTML
and Microsoft Word version. The Microsoft Word version is richer (i.e. can be edited, contains pictures) but is

The Zypher Meta Object Protocol

9 / 9

only available on the Windows platform. On other platforms software engineers must use the HTML version.
Moreover, some design patterns documents are 'read-only' and may only be opened with a HTML browser.
The above conditions influence the decision on what configuration of component, instantiation, anchor and
marker objects to use for the representation of the target document. In the Zypher hypermedia framework,
such decisions are implemented in the processes that interpret the specifier-quadruples returned by the resolver
and turn them into actual component, anchor, instantiation and marker objects. These processes correspond
with the #interpretComponentSpec, #interpretAnchorSpec, #interpretComponentAndPSpec,
#interpretAnchorAndPSpec messages defined on the path object.

Configuration and Meta Meta objects
The messages #determineResolverFor, #interpretComponentSpec, #interpretAnchorSpec,
#interpretComponentAndPSpec, #interpretAnchorAndPSpec defined on the path meta object are part of the
navigation layer contract defined on the meta level. As argued in the case of the base level objects ([figure 2]),
the mere presence of these messages in the design means that only the static part of the contracts is explicitly
available which is not enough to control the execution of the contracts. To attain configuration level
tailorability, we must make the dynamic parts of the contracts explicit, which is precisely the role of the
hypermedia context object ([figure 5]).

Hypertext

Session

Path

HypermediaContext

Figure 5: The Hypermedia Context

The implementation of the #determineResolverFor message on the path object must request the
HypermediaContext object to return the name of the resolver that must be used (by means of the
#determineResolverFor message defined on HypermediaContext). Likewise, the implementation of the
#interpretComponentSpec, #interpretAnchorSpec, #interpretComponentAndPSpec,
#interpretAnchorAndPSpec must request the HypermediaContext for the name of the classes that should be
instantiated (by means of the #determineComponentClassFor, #determineAnchorClassFor,
#determineInstantiationClassFor, #determineMarkerClassFor messages).

Just like the meta objects (session, hypertext and path) funnelled all operations dealing with one aspect of the
hypermedia system (i.e. presentation, storage and navigation), the HypermediaContext meta meta object
funnels all operations controlling the configuration of the hypermedia system. To change the subsequent
configuration of base level objects, only one object must be modified.

Note that the parameters passed to, and the results returned from, the messages sent to the
HypermediaContext object are always (collections of) strings. This ensures that the system's configuration
never depends on particularities of base level objects, which accounts for the 'plug and play' requirement in
system level tailorability. Moreover, it allows to implement the configuration messages as look-up tables
which are very easy to maintain, even by end users (i.e. compare with the table of 'helper applications'
maintained by most World-Wide-Web browsers).

5. Conclusion
One of the ideas that came up during the previous open hypermedia workshop (i.e. [Wiil,Østerbye'94]) was to
develop some kind of an 'open hypermedia reference model', similar to what the Dexter model
[Halasz,Schwartz'90] did for the generation of monolithic hypermedia systems. The idea behind this paper is
to show that, if such an attempt is to succeed, the reference model should embody the notion of system level
tailorability (i.e. the incorporation of system services like caching, logging, authority control and integrity
control) and configuration level tailorability (i.e. flexible configuration of the system to support run-time
extensibility and cross-platform portability). This paper confirms that —although the notions of system and
configuration level tailorability may seem quite complex to implement— the technique of a meta object
protocol brings it within range of today's software engineering.

The introduction of a meta object protocol has been defined as a process with the following steps. (a) Develop
a design specification of an object-oriented framework for an open hypermedia system. Such a specification

The Zypher Meta Object Protocol

10 / 9

defines contracts between objects representing the main elements in the design. (b) Define meta objects as an
explicit representation of contracts between objects in the base level design. Define a meta object protocol as
the protocol specifying how base level objects exchange messages with meta objects. (c) Define a meta meta
object as the explicit representation of contracts between objects in the meta level and classes in the base
level. Define a meta meta object protocol to establish associations between objects in the base level.

The three levels of tailorability match nicely with the stepwise introduction of the meta object protocol. I.e.
step (a) corresponds with domain level tailorability, step (b) accounts for system level tailorability, and step
(c) enables configuration level tailorability. What is particularly appealing in the light of an 'Open
Hypermedia Reference Model' is the fact that —since steps (b) and (c) are quite independent from the particular
design resulting from step (a)— the meta object approach is also applicable to other open hypermedia
systems implemented with an object-oriented framework.

6. References
[Beck,Johnson'94] Beck, K. / Johnson, R. "Patterns Generate Architecture"; ECOOP'94 Proceedings,

Lecture Notes in Computer Science nr. 821, Springer-Verlag, 1994. Check http://st-www.cs.uiuc.edu
/users /patterns /patterns.html for anonymous ftp.

[Berners-LeeEtAl'94] Berners-Lee / Cailliau, R. / Luotonen, A. / Nielsen, H. F. / Secret, A. "The
World-Wide Web"; Communications of the ACM - Vol. 37(8) - August '94.

[Blaha,Premerlandi,Rumbaugh'88] Blaha, M. R. / Premerlandi, W. J. / Rumbaugh, J. E. "Relational
Database Design Using an Object-Oriented Methodology"; Communications of the ACM - Vol. 31(4) -
April '88.

[Conklin'87] Conklin, J. "Hypertext: An Introduction and Survey"; IEEE Computer - Vol. 20 (9) -
September 1987.

[Demeyer'96] Demeyer, S. "Zypher: A Hypermedia System Incarnated In a Framework Browser"; Phd.
dissertation, forthcoming. Check http://progwww.vub.ac.be/zypher/.

[GammaEtAl'93] Gamma, E. / Helm R. / Johnson R. / Vlissides, J. "Design Patterns: Abstraction
and Reuse in Object-Oriented Designs"; ECOOP'93 Proceedings, Lecture Notes in Computer Science nr.
707, Springer-Verlag, 1993. The same people have written the book "Design Patterns"; Addisson-
Wesley, 1995.

[Halasz,Schwartz'90] Halasz, F. / Schwartz, M. "The Dexter Hypertext Reference Model"; Proceedings
of the 1990 NIST Hypertext Standardisation Workshop (January 16-18, Gaithersburg, MD). Republished
in Communications of the ACM - Vol. 37(2) - February '94.

[Johnson'92] Johnson, R. "Documenting Frameworks Using Patterns"; OOPSLA'92 Proceedings, ACM
Press, 1992. Check http://st-www.cs.uiuc.edu /users /patterns /patterns.html for anonymous ftp.

[Kiczalis,Rivières,Bobrow'91] Kiczalis, G. / Rivières, J. / Bobrow, D. G. "The Art of the Metaobject
Protocol"; MIT Press, 1991.

[Maes'87] Maes, Pattie "Concepts and Experiments in Computational Reflection"; OOPSLA'87
Proceedings, ACM Press, 1987.

[Pree'94] Pree, W. "Design Patterns for Object-Oriented Software Development"; Addisson-Wesley
1994.

[Rao'91] Rao, R. "Implementational Reflection in Silica"; ECOOP'91 Proceedings, Lecture Notes in
Computer Science, P. America (Ed.), Springer-Verlag, 1991.

[RumbaugEtAl'91] Rumbaugh, J. Blaha, M. / Premerlandi, W. / Eddy, F. / Lorenson, W. "Object-
Oriented Modeling and Design"; Prentice Hall, 1991.

[Steyaert'94] Steyaert, P. "Open Design of Object-Oriented Languages"; Phd. dissertation, Vrije
Universiteit Brussel, 1994. Check http://progwww.vub.ac.be/prog/papers/paperquery.

[Wiil,Østerbye'94] Wiil, U. K. / Østerbye, K (editors) "Proceedings of the ECHT'94 Workshop on
Open Hypermedia Systems"; Technical report R-94-2038 / Institute for Electronic Systems Department
of Mathematics and Computer Science - Fredrik bajers Vej 7 - DK 9220 Aalborg - Denmark. Check
ftp://ftp.iesd.auc.dk/pub/packages/hypertext/ECHT94-workshop/.

[Zellweger'89] Zellweger, P. T. "Scripted Documents: A Hypermedia Path Mechanism"; Hypertext'89
Proceedings, ACM Press, 1992.

