
Class Composition
for Specifying Framework Design1

Serge Demeyer, Matthias Rieger, Theo Dirk Meijler, Edzard Gelsema

Abstract: Object-oriented frameworks are a particularly appealing approach towards
software reuse. An object-oriented framework represents a design for a family of
applications, where variations in the application domain are tackled by filling in the
so-called hot spots. However, experience has shown that the current object-oriented
mechanisms (class inheritance and object composition) are not able to elegantly
support the "fill in the hot spot" idea. This paper introduces class composition as a
more productive approach towards hot spots, offering all of the advantages of both
class inheritance and object composition but involving extra work for the framework
designer.

Introduction

Current software technology has to cope with many challenges. Software is more and more
becoming a crucial part of vital business processes, thus must be correct and robust.
Applications get more complex (i.e., GUI, inter- and intranets), but the development effort
has to be kept minimal to maintain low prices. Finally, software is used in ever changing
circumstances, thus has to be easily adaptable.

These challenges are not new and have motivated the search for reusable software. Indeed,
reuse has the potential to improve software correctness (reused software is better tested) and
robustness (reuse in different contexts ameliorates stability), while shortening the
development time (software does not need to be developed again). Indirectly, reuse may also
help in coping with complexity (complex entities can be composed from reusable assets) and
ease the adaptability (designing adaptable items pays off when they are reused).

With respect to software reuse, both research and industry pay a lot of attention to object-
oriented application frameworks [JohnsonFoote'88], [FayadSchmidt'97]. A framework is then
defined as an artefact that represents a design to be reused in a family of applications.
Framework designers specify variations within the framework design by means of hot spots;
application developers refine the framework design to the needs of their application by filling
in those hot spots.

Object-oriented languages provide two mechanisms for defining and filling in hot spots: class
inheritance and object composition [GammaEtAl'95]. The former mechanism applies
subclassing and overriding to refine the framework design and is often referred to as being
"white box" since subclasses have access to the internals of their parent classes. The latter
mechanism relies on late binding polymorphism to vary the actual method invoked on another
object. Object composition is often called "black box", since objects can only use the external

1 Theory and Practice of Object Systems (TAPOS), vol. 5, no. 2, April 1999, pp. 73-81.

Class Composition for Specifying Framework Design

- 2 / 14 -

interfaces declared by the other objects. Experience has shown that both mechanisms have
their benefits and drawbacks; we listed them in the following table (benefits are marked with a
'+', while drawbacks are marked with a '-').

Class inheritance
(white box hot spot)

Object composition
(black box hot spot)

+ Discernible. Class inheritance hot
spots are defined via abstract method
invocations, which are easy to
recognise in class diagrams and in
source code.

- Concealed. Object composition hot
spots are defined via polymorphic
method invocations, difficult to
distinguish in source code and class
diagrams without proper documenta-
tion.

+ Elementary. Creating a new subclass
and overriding a method is close to an
atomic operation within any object-
oriented modelling language.

- Complicated. Plugging in a new object
involves a series of steps. Without
proper tool support, a framework
becomes vulnerable to configuration
mistakes.

- Jeopardised. Inheritance exposes a
subclass to implementation details of
its parent classes, which easily leads
to undesirable implementation depen-
dencies.

+ Encapsulated. Object composition
requires objects to respect each others
interfaces which makes it easier to hide
the object's internal implementation
details.

- Rigid. Creating a new subclass
involves some form of recompilation.
Run-time system extensions require
dynamic linking.

+ Run-time Extensible. Plugging in a new
object can be done while the system is
running without any recompiliation or
re-linking..

The benefits of one mechanism seem to complement the drawbacks of the other, thus
framework designers are free to choose how to define a hot spot. However, run-time
extensibility is becoming a stringent requirement in today's software systems (see for instance
[LaddagaVeitch'97]) and this is better supported through object composition. Nevertheless,
this extra capability is quite expensive since filling in an object composition hot spot is a
complicated procedure which puts the burden on the application developer. This is
counterproductive: as one framework is supposed to be reused in many applications, the
work load should be on the framework designer and not on the application developer.

This paper introduces class composition as a mechanism that sits in between class inheritance
and object composition. Class composition involves a meta-modelling step to produce a
parameterisable class model. This way a framework designer can offer an application
developer the combined benefits of class inheritance and object composition (i.e., discernible,
elementary, encapsulated and run-time extensible). The combined benefits involve extra work
for the framework designer — a productive way to achieve those benefits if a framework is
reused in many applications.

Class Composition for Specifying Framework Design

- 3 / 14 -

We start the paper with an example which illustrates the benefits and drawbacks of class
inheritance and object composition. Then, class composition is applied on the same example,
showing that class composition indeed offers all of the claimed benefits in a productive way.
Afterwards, the paper provides an overview of other occasions where we have employed the
notion of class composition and tells about our plans for the future. Before coming to a
conclusion, the paper reports on related work within the object-oriented community.

Hot Spots with Class Inheritance

To contrast class composition with former techniques for framework design, we use an
experimental framework for on-the-fly generation of HTML pages. The framework is
intended to support the maintenance of a world-wide web site for a corporate intranet. The
purpose of such a web site is to provide up to date information, thus the pages must be
generated based on information maintained in a number of existing databases. A typical
element of such a web site is for instance the corporate telephone directory, which might be
maintained in some legacy database system able to dump a tab-separated text file every week.
Another part of the web site is a page for asking which employees work for a given project;
that volatile information is presumably available from a relational database maintained by the
accounting department. Databases are therefore an important variation in our application
domain, and thus our framework should cope with this variation.

Frameworks tackle variation in the application domain via a hot spot, thus our framework
should at least include one for "Database". Figure 1 shows a class diagram for a class
inheritance hot spot, realised via a template method [GammaEtAl'95]. The hot spot is
specified in the template method generateHTML defined on the class Database, which
invokes first the abstract method fetchTable, and afterwards enumerates the records in the
returned table to render the corresponding HTML. To fill in the hot spot, application
developers must subclass Database, providing an implementation for the hook method
fetchTable. In our example, we provide a first subclass PhoneDatabase which
implements the fetchTable method by filtering information out of a text file; the filename
and some wildcard operator is passed via the tableSpec argument. The second subclass
ProjectDatabase, implements the fetchTable method by opening a database
connection, sending an SQL query based on the tableSpec argument, translating the result
of the query into an instance of Table and closing the database connection.

Class Composition for Specifying Framework Design

- 4 / 14 -

Database

generateHTML (tableSpec: String,
outStream: Stream)

fetchTable (tableSpec: String)
: Table {abstract}

PhoneDatabase

fetchTable (tableSpec:
String): Table

ProjectDatabase

fetchTable (tableSpec:
String): Table

Framework Designer

Application Developer

TemplateMethod

Template

Method

Hook Method

Figure 1: Framework class diagram with the "Database" hot spot defined via a
template method. The hot spot is filled in by the subclasses PhoneDatabase and
ProjectDatabase, which override the abstract method fetchTable.

To incorporate the various databases into the web site, the application developer creates a
CGI-script that invokes the generateHTML method on an instance of PhoneDatabase
and ProjectDatabase with the appropriate parameters. This way, the application
developer reuses the application logic of the framework, defined in the template method
generateHTML.

So far, the example has illustrated the basic roles and steps applied in all frameworks:

Framework Designer
1. Identify a variation in the application domain. In the example, the database maintaining

the information.
2. Define a corresponding hot spot via a template method. In the example method

generateHTML invoking the abstract method fetchTable.
Application Developer

1. Fill in the hot spot by providing a hook method. In the example by providing a
subclass overriding the method fetchTable.

2. Reuse the framework logic defined in a template method. In the example, the sequence
of method invocations as is defined in the method generateHTML.

With the above example, the approach works pretty well, because the class diagram makes
the hot spot immediately visible (the abstract declaration) and because application developers
can readily fill in the hot spot (create a subclass + override the abstract method). However,
the fact that subclasses have access to the implementation details of their parent classes
introduces the potential problem that a subclass may inadvertently break the design of the
framework (e.g., override generateHTML without invoking fetchTable). Also, because
of the compile-time nature of inheritance relationships, we cannot extend the system at run-
time (e.g., add a new database subclass). Especially the latter may be quite cumbersome, and
the next section shows how object composition hot spots circumvent that problem.

Class Composition for Specifying Framework Design

- 5 / 14 -

Hot Spots with Object Composition

In a geographically distributed corporation, it is unlikely that all desktop machines will run
the same web browser. For optimal page layouts, one must tune the HTML generation
towards the requesting browser. For instance, when the requesting browser accepts HTML
3.0, the web page should use the <table> tags to render tabular information. However, for
all browsers understanding a lower version of HTML, web pages must mimic tables via a
<pre> tag and align the columns via spaces (see Figure 2). Thus, rendering HTML is another
variation in the application domain.

Figure 2: Screen dump of a web-browser displaying a table in HTML 2.0 (with space
padding) and HTML 3.0 (with table tags)

Applying the framework principle for variations in the application domain, the framework
designer must define a hot spot by means of a template method. An instinctive attempt
would be to extend the generateHTML method, having it invoke another abstract method
named renderHTML, also defined on the class Database. By subclassing and overriding
this renderHTML method, an application developer would then provide the appropriate
algorithm for generating HTML. However, there are two reasons why this solution is not
satisfactory. First, the Database class violates the "separation of concerns" principle as it
implements two variations of our application domain. One variation for database extraction
and another for generating HTML. To mix both implementations, an application developer is
obliged to apply multiple inheritance; quite disputable and in some object-oriented languages
not always possible. Second, for each new renderHTML operation, one must create a new
subclass, which involves recompiling/re-linking the system and thus implies a temporary shut
down of the web server or dynamic linking technology. Since web standards and browsers
evolve quite rapidly, there will be a frequent need for new HTML renderings and thus system
extensions should be much easier. Current applications —especially on the web— often
demand for run-time extensions [LaddagaVeitch'97] in frameworks achieved by means of
object composition hot spots.

To define an object composition hot spot a framework designer does basically the same as in
the case of class inheritance, i.e. define a template method. The only difference is that the

Class Composition for Specifying Framework Design

- 6 / 14 -

template method now invokes a hook method defined on a class which is different from the
one defining the template method. This way, the varying behaviour is factored out into a
separate class allowing the hot spot to benefit from late binding polymorphism. Figure 3
applies this to our HTML generation example; it shows how the refactored generateHTML
template method now also invokes the hook method renderHTML defined on a new class
called HTMLRenderer.

HTMLRenderer

htmlVersion: String
tablePrefix, tablePostfix: String
rowPrefix, rowPostfix: String
columnPrefix, columnPostfix: String
padWithSpaces: Boolean

renderHTML (table: Table, outStream: Stream)

Database

generateHTML (tableSpec: String,
outStream: Stream)

Framework Designer

TemplateMethod
Template

Method

Hook Method

Figure 3: Framework class diagram defining the "renderHTML" hot spot. The hot
spot must be filled in by creating instances of the HTMLRenderer class.

Filling in an object composition hot spot is entirely different from filling in a class inheritance
hot spot however. Rather than creating a subclass and overriding a method, an application
developer (1) creates an object; (2) sets the appropriate state; and finally (3) links the object
with the appropriate data structures. Figure 4 fills in the hot spot for our example, by (1)
creating two instances of the HTMLRenderer class (htmlRenderer20 and
htmlRenderer30); (2) storing the parameters of the generation process in the attributes of
these objects (i.e., set the tablePrefix to'<PRE>' or '<TABLE>' and tablePostfix
to '</PRE>' or '</TABLE>'); (3) installing the object into the global table
ApplicableRendering (a table that maps a HTML version number on an instance of
HTMLRenderer). When the hot spot is filled in correctly —especially linking the objects
with the appropriate data structures can be quite error prone when not supported by tools—
the application developer reuses the framework logic as specified in the template method. In
our example, this includes the consultation of the global ApplicableRenderings table to
look up the best htmlRenderer for the given version of HTML.

Class Composition for Specifying Framework Design

- 7 / 14 -

htmlVersion: '2.0'
tablePrefix: '<PRE>'
tablePostFix: '</PRE>'
...

htmlVersion: '3.0'
tablePrefix: '<TABLE>'
tablePostFix: '</TABLE>'
...

<= 2.0 htmlRenderer20
> 2.0 htmlRenderer30

Application Developer

ApplicableRenderings

htmlRenderer20: HTMLRenderer htmlRenderer30: HTMLRenderer

Figure 4: Framework object diagram filling in the "renderHTML" hot spot. The
instances htmlRenderer20 and htmlRenderer30 are stored in the global table
ApplicableRenderings, which maps a HTML version number on the
appropriate object.

Note that filling in an object composition hot spot does not necessarily imply compilation
—creating objects, setting state and linking with other objects can for instance be performed
via a script or via a composition environment— and thus allow run-time extensions of the
system. Also, since a hook method and a template method are defined on distinct classes,
both methods can rely on each other's public interfaces only, resulting in better encapsulation.
However, object composition hot spots manifest some notable drawbacks compared to class
inheritance hot spots as well. First of all, the hot spot itself is not as visible in the class
diagram (or in source code) because the hook method is not different from any other method
(for instance, it's not declared abstractly). This explains why object composition hot spots
must be documented more thoroughly, i.e. by means of cookbooks and design patterns
[Johnson'92]. Second, filling in the hot spot is a more elaborate procedure. In particular,
linking the object in the appropriate data structures can easily lead to erroneous software if
not backed up by the appropriate composition tools, i.e. by means of composition
environments [deMey'95] and typing. Since an object composition hot spot is less discernible
and since filling in a hot spot is more complicated, object composition is somehow a
counterproductive extension mechanism: it puts the burden on the application developer and
not on the framework designer.

Thus object composition hot spots can eliminate the drawbacks of class inheritance hot spots
(jeopardised, rigid), but consequently also prohibit the immediate benefits (discernible and
elementary) and involve extra work for the application developer. The next section introduces
class composition as a technique that offers the advantages of both class inheritance and
object composition in a productive way.

Hot spots with Class Composition

Reconsidering the diagram in Figure 3, we see that the class model does not express the core
design of the framework. Especially the framework specific relationship between the class
Database and the class HTMLRenderer is entirely lost — this relationship is represented
by means of the ApplicableRenderings table, a global variable not represented in the

Class Composition for Specifying Framework Design

- 8 / 14 -

class diagram. Yet, this special relationship is the heart of the renderHTML hot spot, and the
class diagram should be adapted to include that framework specific relation.

However, incorporating dynamic object relationships into static class diagrams is not evident;
special techniques are necessary to perform such a task. In the case of class composition, we
apply meta-level modelling [KiczalesEtAl'91], [Rao'91]. That is, we extend the primitive
modelling constructs provided by our underlying modelling language to specify
parameterisable class models defining the specific relationships needed by the framework.
The stepwise procedure below clarifies how this works in practice.

To define class composition hot spots for the HTML generation framework, the framework
designer first specifies two special meta-classes (ConceptualType and
ConceptualOperation) parameterised by one meta-relationship
(ApplicableOperation). ConceptualType and ConceptualOperation are meta-
classes serving as placeholders for a list of properties (i.e., the state) and a list of operations
(i.e., the behaviour). However, ConceptualType defines all that belongs to the core of the
framework and can never be changed by the application developer, while
ConceptualOperation defines all that is application specific and must be supplied by
the application developer. ApplicableOperation is then the relationship between those
two meta-classes, telling which ConceptualOperation can be applied on which
ConceptualClass.2

In a second step, the framework designer instantiates the above meta-model to derive a class
model where the class composition hot spots are defined by means of framework specific
class relationships. Database, HTMLRenderer and FetchTable are all classes because
they are instances of the meta-classes ConceptualType or ConceptualOperation.
However, Database defines the framework specific operation generateHTML to be
invoked by the application developer. Its implementation is provided by the framework
designer and can never be changed by the application developer. On the other hand,
FetchTable and HTMLRenderer define the application specific database extraction and
HTML generation operations including the necessary attributes. An application developer
must provide the values of the attributes and the implementation of the operations. Figure 5
shows how this looks like in UML, using stereo-types as the meta-level extension
mechanism.3

2 Note that all meta-level extensions are expressed by means of the primitive constructs provided by the
underlying host language. In the experiment described here we use C++ and UML, but we have experiences
with Self as a host language as well.

3 Stereotypes are depicted by means of guillemets (<<>>) and represent a built-in extension mechanism of
UML [BoochEtAl'96].

Class Composition for Specifying Framework Design

- 9 / 14 -

<<ConceptualType>>
Database

<<framework-responsability>>
generateHTML (tableSpec:
 String, outStream: Stream)

Framework Designer

<<ConceptualOperation>>
HTMLRenderer

htmlVersion: String
tablePrefix, tablePostfix: String
rowPrefix, rowPostfix: String
columnPrefix, columnPostfix: String
padWithSpaces: Boolean

<<application-responsability>>

renderHTML (table: Table,outStream: Stream)

<<ApplicableOperation>>

<<ConceptualOperation>>
FetchTable

<<application-responsability>>

fetchTable (tableSpec:
String): Table

<<ApplicableOperation>>

Figure 5: Framework class diagram with the "renderHTML" and "fetchTable" class
composition hot spot. The hot spots are qualified with the parameterised relation
ApplicableOperation.

To fill in class composition hot spots, an application developer creates instances of the
appropriate classes (i.e. instances of the meta-classes) and links them together via the
appropriate relationships (i.e., instances of the meta-relations). In our example, an application
developer will create one instance of Database, two instances of FetchTable (once for
the PhoneDatabase and once for the ProjectDatabase) and two instances of
HTMLRenderer (one for HTML version 2.0 and one for HTML version 3.0). Afterwards,
the ApplicableOperations relationship has to be instantiated, i.e. an application
developer must associate the created instances in the appropriate way.

With a class composition hot spot, we achieve the combined benefits of class inheritance and
object composition hot spots. Firstly, a class composition hot spot is almost as discernible as
a class inheritance hot spot. In a class diagram it is immediately visible via the stereotyped
classes and associations; in source code it will show up as an instance of a meta-class.
Secondly, the meta-level support turns the filling in of a class composition hot spot into an
elementary step for the application developer. Filling in a class composition hot spot
corresponds to instantiating the classes and defining the proper associations. Thirdly, a class
composition hot spot preserves encapsulation, because the framework designer can shield the
core design of the framework so that it is never modifiable by the application developer.
Finally, class composition is as run-time extensible as object composition, because
instantiating meta-classes is no different than instantiating normal classes — it can be done
from a scripting language or composition environment.

Class Composition for Specifying Framework Design

- 10 / 14 -

However, class composition changes the basic roles and steps in frameworks:

Framework Designer
1. Identify a variation in the application domain. This is the same as before.
2. Define meta-level extensions. In the example, the meta-classes ConceptualType,

ConceptualOperation plus the meta-relationship ApplicableOperation.
3. Define a corresponding hot spot via instantiating the meta-level. In the example the

classes Database, HTMLRenderer and FetchTable with the
ApplicableOperation relationship between them.

Application Developer
1. Fill in the hot spot by creating instances of classes and creating the appropriate

associations.
2. Reuse the framework logic defined in a framework specific method. In our example,

the sequence of method invocations like it is defined in the method generateHTML.

Compared to framework design with normal hot spots, this implies considerable extra work
for the framework designer. If one framework design is reused in enough applications, this
extra cost surely outweighs the benefits. Moreover, it is possible to reuse the same meta-level
extensions across different frameworks. For instance, we have reused the ConceptualType
and ConceptualOperation meta-classes in a framework for generating web-pages (the
experiment described in this paper) and for integrating software [Meijler'93]. Also, we have
done work on defining a library of meta-level extensions for expressing design patterns to be
reused across frameworks [MeijlerEtAl'97b].

Past, Present and Future

The initial ideas on class composition were developed during the Ph.D. work on the Yanus
system [Meijler'93]. Yanus was a design for an integration system running in a medical
environment where patient data coming from various sources were to be analysed by diverse
statistical packages. Yanus modelled this in a generic way via an open set of databases
supplying data to be manipulated by an open set of applications. Traditional object-oriented
techniques were not sufficient to adequately model the required genericity, which explains the
search for a reflective data model.

Achieving genericity via meta-modelling is not easy: the constant transition between the meta-
level, framework level and application level requires a suitable composition environment. This
has inspired the work on FACE (Framework Adaptive Composition Environment)
[MeijlerEtAl'97a], [MeijlerEtAl'97b] which implemented the Yanus model in Self and
provided a complete visual composition environment nicely embedded within Kansas-Self
[SmithUngar'95]. To validate class composition as a way to produce parameterisable class
models, FACE was targeted towards a library of design patterns [GammaEtAl'95]. Indeed,
since each framework incorporates its own variations of the standard design pattern catalogue,
one needs parameterisable class models to reuse the same model across different frameworks.
FACE showed that class composition was able to offer the required adaptability. Other work
on parameterisations, frameworks and hot spots has been reported in [DemeyerEtAl'97b],
where we presented how objects representing framework contracts can provide tailorable
frameworks.

Class Composition for Specifying Framework Design

- 11 / 14 -

To show how class composition can be achieved with "normal" object-oriented means, we
implemented the FACE model in C++ [Rieger'97]. It is this implementation that was used to
set up the experimental web-site described in this paper. In order to implement FACE with
C++, we created our own object system by means of generic STL containers. On top of that
we implemented the FACE type system including inheritance- and instantiation mechanisms.
To hook a normal C++ class into the FACE system it suffices to subclass the abstract
superclass that implements the necessary FACE type behaviour and link the C++ class to a
special purpose FACE type. A FACE object is then instantiated by the FACE type which
delegates part of the instantiation to the corresponding C++ class. In this way the FACE
object system is mapped onto the C++ object system.

Currently, the notion of class composition is used within a generic work flow system within
Baan Labs. Preliminary results lead again to the conclusion that class composition is a an
adequate mechanism to define parameterisable class models.

Finally, we plan to apply our FACE experience with libraries of design patterns to the
problem of object-oriented re-engineering [DemeyerEtAl'97a]. Using a library of anti-
patterns/patterns, we would detect well-known object-oriented anomalies and transform them
into the more appropriate programming constructs.

Related Work

Several authors have reported parameterisations of class models for better support of
reusability and frameworks, sharing ideas and intuitions with our work.

First of all, the object-oriented community has extensively studied reflective programming
languages to support extensibility. CLOS [KiczalesEtAl'91] is one of the more eye-catching
examples of that line of work. Reflective programming languages have proven their usefulness,
but their customisation capabilities are targeted towards programming language semantics,
which makes them too technical for expressing reusable framework designs. This explains
why researchers have tried to find more generic and less controlled way for tailoring the
expressiveness of the programming language. Adaptive programming [Lieberherr'94],
composition filters [AksitEtAl'92], aspect-oriented programming [KiczalesEtAl'97] and
executable connectors [DucasseRichner'97] belong to that category, as does our own work on
class composition.

In the area of object-oriented databases, research has been conducted to experiment with
parameterisable class models. Indeed, the schema of a database is quite similar to our notion
of class composition, i.e. a declarative description of the objects and relationships that may
occur at instance level. VODAK [KlasEtAl'90] is an example of an object-oriented database
which uses meta-classes to specify parameterisable database schemas. Filling in those
parameters produces an application specific schema which is in turn instantiated to populate
the database. Composition environments have also tackled the problem of parameterisable
class models. Vista [deMey'95] is a composition environment where the rules for
composition as well as what can be composed is variable. ApplFLab [SteyaertEtAl'96]
showed that reflection can be used to parameterise visual user interface builders.

Class Composition for Specifying Framework Design

- 12 / 14 -

Conclusion

We have introduced class composition as a new mechanism for defining and filling in hot
spots. Class composition sits in between the two mechanisms currently known within object-
oriented frameworks: class inheritance and object composition. Class composition offers an
application developer all of the advantages of class inheritance and object composition at the
cost of extra work for the framework designer. If a framework design is reused in quite a large
number of applications, class composition is a cost effective mechanism.

We have applied class composition in a number of framework related experiments, using
implementation languages like C++ and Self. From those experiments, we conclude that class
composition is possible with today's object-oriented technology. However, we are working
on tool support to enhance class composition, especially in the area of visual composition
environments and design patterns. With the appropriate tool support, we are optimistic that
class composition can bring a substantial improvement for today's framework industry.

Acknowledgements
This work has been funded by the Swiss Government under Project no. NFS-2000-46947.96
and BBW-96.0015 as well as by the European Union under the ESPRIT programme Project
no. 21975.

References

[AksitEtAl'92] Aksit, M., Bergmans, L., and Vural, S, An Object-Oriented Language-
Database Integration Model: The Composition-Filters Approach. In Proceedings ECOOP'92,
O. Lehrmann Madsen (Ed.), LNCS 615, Springer-Verlag, Utrecht, The Netherlands, June/July
1992, pp. 372-39

[BoochEtAl'96] Booch, G., Jacobson, I. and Rumbaugh, J, The Unified Modelling
Language for Object-Oriented Development. See http://www.rational.com/.

[deMey'95] de Mey, V., Visual Composition of Software Applications. In Nierstrasz, O.,
Tsichritzis, D. (Ed.), Object-Oriented Software Composition, Prentice Hall, 1995.

[DemeyerEtAl'97a] Demeyer, S., Meijler, T. D. and Rieger, M. Towards Design Pattern
Transformations. FAMOOS Workshop on Object-Oriented Software Evolution and Re-
Engineering, organised with ECOOP'97 Conference. To appear in ECOOP'97 workshop
reader.

[DemeyerEtAl'97b] Demeyer, S., Meijler, T. D., Nierstrasz, O. and Steyaert, P., Design
Guidelines for Tailorable Frameworks. Communications of the ACM 40, 10 (October 1997),
pp. 60-64

[DucasseRichner'97] Ducasse, S. and Richner, T., Executable Connectors: Towards Reusable
Design Elements. In Proceedings of ESEC/FSE'97, LNCS 1301, 1997, pp. 483-500.

Class Composition for Specifying Framework Design

- 13 / 14 -

[FayadSchmidt'97] Fayad, M. and Schmidt, D. C., Object-Oriented Application
Frameworks. Introduction to a special issue of the Communications of the ACM 40, 10
(October 1997), pp. 32-38.

[GammaEtAl'95] Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns.
Addison-Wesley, 1995.

[Johnson'92] Johnson, R, Documenting Frameworks Using Patterns. In Proceedings
OOPSLA'92, ACM Press, October 1992.

[JohnsonFoote'88] Johnson, R. E. and Foote, B., Designing Reusable Classes. Journal of
Object-Oriented Programming 1, 2 (February 1988), 22-35.

[KiczalesEtAl'97] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.,
Loingtier, J.-M. and Irwin, J. Aspect-Oriented Programming. Proceedings ECOOP'97, Aksit,
M. and Matsuoka, S. (Ed.), LNCS 1241, Springer-Verlag, July 1997, pp. 220-242.

[KiczalesEtAl'91] Kiczales, G., des Rivières, J. and Bobrow, D. G., The Art of the
Metaobject Protocol, MIT Press, 1991.

[KlasEtAl'90] Klas, W., Neuhold, E.J., Schrefl, M., Metaclasses in VODAK and their
Application in Database Integration, Arbeitpapiere der GMD, no. 462, 1990.

[LaddagaVeitch'97] Laddaga, R. and Veitch, J., Dynamic Object Technology. In
Communications of the ACM 40, 5 (May 1997).

[Lieberherr'94]Lieberherr, K. J., Silva-Lepe, I., Xaio, C. Adaptive Object-Oriented
Programming Using Graph-Based Customizations. Communications of the ACM, 1994,
37(5), pp. 94-101.

[Meijler'93] Meijler, T.D. User-level Integration of Data and Operation Resources by
means of a Self-descriptive Data Model. Ph.D. thesis, Erasmus University Rotterdam, Sept.
1993.

[MeijlerEtAl'97a] Meijler, T.D., Demeyer, S. and Engel, R., Class Composition in FACE,
a Framework Adaptive Composition Environment. In Special Issues in Object-Oriented
Programming, Max Muehlhauser (Ed.), Heidelberg: dpunkt, verl. fur digitale Technologie,
1997.

[MeijlerEtAl'97b] Meijler, T.D., Demeyer, S. and Engel, R, Making Design Patterns
Explicit in FACE, a Framework Adaptive Composition Environment. In Proceedings
ESEC/FSE '97, M. Jazayeri and H. Schauer (Ed.), LNCS 1301, Springer-Verlag, September,
1997, pp. 94-110.

[Rao'91] Rao, R. Implementational Reflection in Silica. In Proceedings ECOOP'91, P.
America (Ed.), LNCS 512, Springer-Verlag, July 1991, pp. 251-267.

[Rieger'97] Rieger, M., Implementing the FACE Object Model in C++, Diploma thesis,
University of Berne, June 1997.

Class Composition for Specifying Framework Design

- 14 / 14 -

[SmithUngar'95] Smith, R.B., Ungar, D., Programming as an Experience: The inspiration
for Self. In Proceedings ECOOP'95, W. Olthoff (Ed.), LNCS 952, Springer-Verlag, August
1995, pp. 303-330.

[SteyaertEtAl'96] Steyaert, P., De Hondt, K., Demeyer,S. and Boyen, N., Reflective User
Interface Builders. In Advances in Object-Oriented Metalevel Architectures and Reflection,
Chris Zimmerman (Ed.), CRC Press - Boca Raton - Florida, 1996, pp. 291-309.

Authors

Serge Demeyer and Matthias Rieger both work for the University of Berne in Switzerland.
They can be reached at demeyer@iam.unibe.ch or rieger@iam.unibe.ch and they have their
web pages at http://www.iam.unibe.ch/~demeyer/ or http://www.iam.unibe.ch/~rieger/.

Theo Dirk Meijler works for the Research Department of the Baan development Co. in Ede,
The Netherlands. His e-mail is tdmeijler@research.baan.nl.

Edzard Gelsema works for the department of medical informatics the Erasmus University in
Rotterdam, The Netherlands. His e-mail is gelsema@mi.fgg.eur.nl and he has a web page at
http://www.eur.nl/FGG/MI/people/esg.html.

