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a b s t r a c t

In rapidly evolving domains such as Computer Assisted Orthopaedic Surgery (CAOS) emphasis is often
put first on innovation and new functionality, rather than in developing the common infrastructure
needed to support integration and reuse of these innovations. In fact, developing such an infrastructure
is often considered to be a high-risk venture given the volatility of such a domain. We present CompAS, a
method that exploits the very evolution of innovations in the domain to carry out the necessary quanti-
tative and qualitative commonality and variability analysis, especially in the case of scarce system doc-
umentation. We show how our technique applies to the CAOS domain by using conference proceedings as
a key source of information about the evolution of features in CAOS systems over a period of several
years. We detect and classify evolution patterns to determine functional commonality and variability.
We also identify non-functional requirements to help capture domain variability. We have validated
our approach by evaluating the degree to which representative test systems can be covered by the com-
mon and variable features produced by our analysis.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Computer-assisted orthopaedic surgery (CAOS) is a technologi-
cal domain that arose in the early 1990s from the combination of
several other mature sciences such as image processing, biome-
chanics, computer graphics, and robotics. Orthopaedic surgical
procedures follow the common basic principle of ‘‘placing an ob-
ject (guide wire, screw, tube or scope) at a specific site, via a trajec-
tory which is planned from medical images and governed by three-
dimensional anatomical constraints” [1]. In order to provide sur-
geons with a means to perform these procedures with higher accu-
racy, CAOS systems have been progressively introduced into the
operating room. Using virtual representations of the surgical
instruments and of the operated anatomy, CAOS systems replay
in real time the surgeon’s actions on a computer screen (Fig. 1).
Although many technical approaches have been taken to develop
these systems their conceptual designs remain similar: CAOS sys-
tems typically consist of a planning subsystem to help the surgeon
define the optimal surgical strategy and a navigation subsystem to
support him or her in achieving the planned strategy [2,3].

Because of the commonality in surgical gestures the variety of
CAOS systems developed to assist in diverse orthopaedic surgeries
offer common features such as loading/acquisition of medical data,
data visualization in 2D and/or 3D, and selection of the best fitting
implant. However, up to now each application is considered as an
individual system strictly bound to a specific surgical procedure
and pathology. Such a system engineering approach results in
monolithic systems that do not have the flexibility required to al-
low one to take advantage of the functional similarities of these
systems through software reuse.

The basic idea underlying software reuse is simple: rather than
building software systems from scratch we assemble them from
common reusable assets such as modules, objects and classes.
Component-based programming is a recently-established para-
digm for software reuse. According to Szyperski [4] ‘‘a software
component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software com-
ponent can be deployed independently and is subject to composi-
tion by third parties”’. In other words components are the building
blocks from which an application can be composed in a ‘‘plug and
play” manner. Adopting such a software development approach
implies a move from single systems engineering to families of sys-
tems. A system family is a set of software applications sharing a
large number of common properties [5]. Domain engineering refers
to methods for defining, designing and implementing the neces-
sary assets to support software reuse in system families. The initial
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and crucial step of these software engineering methodologies is
called domain analysis. It aims at identifying commonalities, vari-
abilities and dependencies in the selected family and at integrating
them in a coherent model [6].

In order to take advantage of the functional similarities present
in the CAOS family of applications, we propose to apply compo-
nent-based programming to the development of CAOS systems.
Because it is the necessary prerequisite to enable efficient compo-
nent-based software reuse we focused first on domain analysis. We
have designed CompAS, a new approach to commonality and
variability analysis to support component-based architectural
modeling. The key novelty of our approach is to analyze the evolu-
tion of the domain to effectively determine which features should
be included as common or variable.

2. Challenges in performing domain analysis in CAOS

A domain model is the set of artifacts resulting from the domain
analysis. The appropriate domain model is the one that provides
the most sensible system decomposition in terms of common
and variation points. Its achievement requires a careful balance be-
tween current and future needs. This information can usually be
extracted from interviews with domain experts, existing systems,
and literature. Yet the software development context considered
here is a research environment where, contrarily to the usual
industrial approach, the most common practice is to implement
prototype applications more or less from scratch, in order to allow
the clinical validation of the investigated concepts, which usually
implies inconsistent system implementation documentation.
Moreover, among the potential candidates for the investigated
family of applications only a restricted number of them were
implemented at our institute. This means that we had access to
the code of only few of our application family’s members. How-
ever, CAOS has the particularity to be a domain for which research
and industry are still not only continuously innovating but as well
publishing these innovations. We propose a method that takes
advantage of this extended and publicly available literature to pal-
liate our lack of systems documentation.

The identification of commonalities and variabilities mainly re-
lies on the capabilities of the domain analyst to abstract from and
refine the collected data and knowledge. We propose to strengthen
the process of commonalities and variabilities identification with a
quantitative evaluation of functional evolutionary trends. Several
methodologies have been proposed to evaluate software evolution,
one of the main differences between them being the type of data
they require as input. Some methods extract evolution trends from
version control data such as that provided by the Concurrent Ver-
sion System CVS [7,8]. This information (e.g. modification reports),

can be combined with problem reports extracted from a bug track-
ing system and with feature information derived from the execut-
able itself to visualize feature evolution [9]. In our case where only
scarce source code data are available we were inspired by the tele-
phony feature evolution study performed by Anton et al based on
publicly available information about telephony [10] to consider lit-
erature as our data source. We suggest using evolution matrices,
which track the evolution of features over time, to expose implicit
patterns in natural lifecycle of features [11].

Software family engineering not only focuses on currently exist-
ing systems but it anticipates future needs and variations as well.
The results of the domain analysis must then appropriately model
variations so that it provides:

� the software user with an explicit and concise representation of
available variabilities;

� the developer of reusable software with the knowledge why a
certain variation point is included in the software;

� the software architect with the basis to design an architecture
flexible enough to support the family diversification and
evolution.

Apart from the desire of continuously proposing more appropri-
ate and useful functionalities, CAOS research also aims at providing
innovative methods and technology to implement these function-
alities. In order to model CAOS variability at the functional and
technological level we propose a taxonomy of change scenarios.
By taxonomy we simply mean the dictionary definition of ‘‘a sys-
tem for naming and organizing things . . . into groups, which share
similar qualities” [12]. By change scenarios we refer to situations,
where only a particular functional or technological aspect of an
existing system is modified.

3. Domain analysis

Domain analysis is the step of domain engineering during
which the domain analyst selects a family of applications (or do-
main) to study, collects the domain knowledge, organizes it into
a set or artifacts (domain models) describing the common and var-
iable properties of the system family, and defines the semantics of
these properties and the dependencies between them. A large
number of domain analysis methods exist and all of them agree
that the appropriate source of information should mainly come
from [6,13,14]:

� human sources: domain experts, system users, developers, etc.;
� existing systems: source code, design documentation, user man-

uals, etc.;

Fig. 1. Computer-assisted orthopaedic navigation.
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� literature: books, articles, standards, etc.

Assimilating information coming from such diverse sources to
create a coherent domain model is a difficult task. This is why
the choice of the sources of data that will most efficiently lead to
the appropriate domain model is nevertheless left to the domain
analyst’s discretion. The foundation of software reuse is the discov-
ery and exploitation of commonality across related software sys-
tems; commonality and variability identification is the central
component of a domain analysis, which is therefore a key to suc-
cessful software reuse.

Most of the time the proposed commonality and variability dif-
ferentiation method consists of identifying aggregation/decompo-
sition and generalization/specialization relationships among the
identified reusable assets [15–21]. These relationships are also re-
ferred to as ‘‘is a”, ‘‘consist of”, ‘‘kind of” or ‘‘whole-part” relation-
ships. This approach results in a set of hierarchical diagrams, the
most popular one being the feature diagram (Fig. 2) proposed by
the FODA method [15]. One other alternative is to use lexical anal-
ysis. ODM [16], for example, suggests that the domain analyst
should identify terms that play the same semantic role in the do-
main, and that he or she should define semantic relationships
among these terms so that features correspond to sentences or
statements in this defined language. As for DARE [22], it offers a
tool suite that includes support to automatically extract and clus-
ter words according to their conceptual similarity using the pro-
vided textual domain data.

Since the previously mentioned diagrams also implicitly model
variability, not all methods have a specific means to capture vari-
ability. However, the domain analysis component of PuLSE [18]
mentions the design of a decision hierarchy where each type of
variation in the domain will match a decision type. For FODA
[15] and RAPID [21], variability can be characterized using tem-
plates and parameterization to capture variation context. Finally,
Gomaa [20] in his approach to domain analysis uses change sce-
nario impact analysis, where one can trace the necessary variants
to support a defined change scenario.

Certain domain analysis methods propose an algebraic ap-
proach [23–25] where the main idea is to formalize domain knowl-
edge in the form of a network of related algebraic specifications.

However, these methods do not contain an explicit commonality
and variability identification phase.

4. The CompAS approach

In certain domains such as CAOS, data coming from existing
systems are not consistent enough to be exploited for domain anal-
ysis. Moreover, as already noted for other domains [14], CAOS can
also be seen as a business area. ‘‘Such a domain not only contains
applications, it is constrained by external forces that motivate the
domain”. We therefore designed an approach relying on an inten-
sive literature review and regular domain expert interviews and
exploiting the business area characteristic of a domain to capture
variation. What we term CompAS (commonality and variability
analysis to support component based architectural modeling) is
an approach based on the two following hypotheses:

� There is a correlation between the functional system evolution
and functional commonality and variability properties.

� In order to understand and capture variation, it is also necessary
for the non-functional requirements that constrain the domain
to be identified.

Consequently, the presented method is divided into two phases.
First, we compute evolution matrices to identify functional evolu-
tionary trends and exploit evolution patterns to differentiate com-
mon and variable features. Second, we identify the domain’s non-
functional requirements and use them to support the capture of
the domain variability. The two parts of the method are indepen-
dent; the domain analyst is free to choose to apply either or both
of them. The remaining of this section gives an overview of Com-
pAS method that we illustrate later in section 5 with the CAOS case
study.

4.1. The data source

The data source for CompAS is an extensive set of descriptions
that is representative of the various types of system implementa-
tions and/or evolutions for the considered application family dur-
ing the evaluated period of time. The data source should contain
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Fig. 2. Feature diagram for computed tomography based planning applications.
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functional system descriptions to support the first part of the ap-
proach and/or textual justification of specific system evolutions
to support the second part. The system descriptions have to be de-
tailed enough to allow one to perform correct, consistent and com-
plete functional decomposition. In order to ensure these qualities
CompAS suggests to the domain analyst to regularly consult do-
main experts. The role of experts here should be to ensure a perti-
nent feature selection and relevant non-functional constraint
identification for the domain. They should as well provide the do-
main analyst with sufficient domain knowledge to allow him or
her to deduce the presence or not of features in a system based
on the most likely types of system descriptions.

4.2. Evolution matrix

The concept of software evolution matrices has been introduced
by Lanza in 2001. We briefly describe here the conceptual princi-
ple, and for further details the readers should refer to the related
publications [11,26]. An evolution matrix combines software visu-
alization and software metrics in order to reduce the complexity of
the comprehension of a large amount of data and to provide
quantitative evaluation of software evolution. It is an organized
disposition of rectangular shapes, where each rectangle is the visu-
alization of up to five metrics: the rectangle’s position represents
two metrics, the width and height can encode two others metrics,
and finally the rectangle’s color can be used to render a fifth metric.
For CompAS each element of the matrix depicts the computed met-
rics for a given year (on the abscissa) and a defined functionality
(on the ordinate). The width reflects the cumulative percentage
of systems including the evaluated feature while the height repre-
sents the distribution over years of systems containing this feature.
We use a variation of gray to represent the percentage of system
descriptions that belong to the considered family of applications
for a given year (Fig. 3). When the analyzed family can be divided
in sub-families, which are subsets of instances that share more
functional characteristics than with the remaining of the family,
one matrix per sub-family should be designed.

If we call M the number of sub-families, I the length in years of
the evaluation period, bim the number of systems that belong to the
sub-family m in the year yi, and am

ij the number of systems in the
sub-family that contain the feature fj in the year yi then:

The rectangle width W is proportional to wij ¼
Pi

k¼0
am

kjPi

k¼0
bkm

which

evaluates the proportion of systems in the sub-family m that con-
tain the feature j up to the year i.

The rectangle height H is proportional to hij ¼
am

ijPI

k¼0
am

kj

which

evaluates among all the systems having the feature j in the sub-
family m, the proportion that belong to the year i.

The rectangle color C is relative to cij ¼ bimPM

k¼0
bik

which evaluates

the proportion of systems that belong the sub-family m in the year
i, relative to the other sub-families

Evolution matrices are defined along with a terminology to
characterize evolution. For the terminology to be usable in com-
monality and variability analysis we have adapted it to functional
evolution as presented in Table 1.

4.3. Capturing domain variation by identifying ‘‘evolution factors”

In order to model variation CompAS proposes using a taxonomy
whose definition is based on the data part that contains descrip-
tions and justifications of system evolutions. During this phase,
the domain analyst needs to identify what we call ‘‘evolution
factors”, namely the non-functional requirements that constrain
the domain and therefore drive innovation. The taxonomy result-
ing from CompAS has two levels of categorization. The first level
of categorization is the list of features that the gathered data pro-
pose to modify and improve. To define the second level of catego-
rization the domain analyst needs to use his or her personal
domain knowledge and the one he or she can obtain from domain
experts, to identify the non-functional requirements that regularly
motivate the implementation of new functional variations. For
each first level category he or she should then estimate which of
the identified evolution factors are the more influential. CompAS
suggests here to evaluate the percentage of the data whose contri-
bution influences the domain evolution with regard to a given evo-
lution factor. Finally the domain analyst should divide each first
level category into subcategories that correspond to the type of

H

Year

Functionality

fj

yi

W

C

Fig. 3. Evolution matrix principle.

Table 1
Correlation between evolution patterns and commonality and variability

Evolution pattern Common and variable properties

Presence-based pattern: defined by the evolution of the rectangle height
Dayfly: A feature that has a very short lifetime (one or two consecutive years) A variation that did not yet make a breakthrough or that has been

abandoned
Persistent across sub-families: A feature that is present during the entire evaluation period and in

all sub-families
Common core of the domain

Persistent in a given sub-family: A feature that is present during the entire evaluation period of a
given sub-family

Common feature of the sub-family

Shape-based pattern: defined by the evolution of the rectangle width
Red Giant: A feature that keeps on being very wide over time A common feature
White Dwarf: A feature that used to be of a certain width but slowly decreases A common feature, which decreases in popularity to become variable
Supernova: A feature that suddenly explodes in width, and eventually becomes a Red Giant A variation, which grows in popularity and eventually becomes a

common feature
Idle: A feature that remains relatively small over time A variation rarely used or specific to a certain type of application in the

sub-family
Pulsar: A feature that grows and shrinks repeatedly during its lifetime A variation with ‘‘unstable” popularity

G. Douta et al. / Information and Software Technology 51 (2009) 448–459 451
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functional or technological changes that result from a wish to fulfill
the identified most influential evolution factors.

4.4. The CompAS process

Applying CompAS consists then in the following activities.

A. Functional evolution based commonality and variability
identification:
1. Gather a set of system functional descriptions
2. Extract from the data a set of features, i.e. a set of user-

visible system functionalities
3. Compute and build the family (or sub-families) evolu-

tion matrix(es)
4. Identify the evolution pattern followed by each feature

and deduce from it their commonality and variability
property

B. Business-oriented variation capture:
1. Gather a set of functional evolution descriptions
2. List the features concerned by the gathered descriptions
3. For each feature define the most influential evolution

factors and the resulting functional and technological
variation

4. Use the results of 2 and 3 to build the taxonomy

5. Applying CompAS to CAOS

5.1. Data source

The annual meeting of the International Society for Computer
Assisted Orthopaedic Surgery is the main conference in our domain
of interest. This meeting is a practice- and clinically-oriented con-
ference where technologists and surgeons gather to exchange
information of an investigative and clinical nature. This conference
started in 2001 as the result of the fusion of two former events: the
CAOS symposia held in Switzerland from 1995 to 2000 and CAOS/
USA, the North American program held annually from 1997 to
2001. We thoroughly reviewed proceedings of this conference in
order to extract useful information for our domain analysis.
However, because the CAOS Symposia only published short ab-
stracts that did not contain enough details to support our analysis,
we excluded these proceedings. Consequently, we had available to
us a total of 1076 abstracts covering the years 1998–2005 (CAOS/
USA proceedings for 1997 was missing in our collection).

5.2. Commmonality and variability identification

5.2.1. System functional descriptions
In our collection of proceedings we selected all the abstracts con-

taining a functional description of a system and decomposed each of
them into a set of features. CAOS systems are usually described by
listing the different assisting elements they provide. Such a charac-
teristic implies easy feature decomposition where a feature is a set
of functionalities provided to assist the user in performing one step
of the computer-assisted surgical procedure (trajectory definition,
image segmentation, etc.). CAOS system users (i.e. surgeons) and
CAOS systems developers within and outside our institute were
consulted to evaluate the pertinence of our set of features. The col-
lected system descriptions have been divided into four sub-families.
Three of them are defined by the anatomical area operated by the
assisted surgery (spine, hip-pelvis, and knee). The fourth one is de-
fined by the type of surgery assisted (traumatology).

We identified 137 system descriptions with a major percentage
of them (40%) belonging to the knee family. Their distribution over
our four identified families is presented in Fig. 4.

5.2.2. Features and evolutions matrices
For the spine, hip-pelvis, knee and traumatology sub-families

we identified respectively a set of 13, 16, 21 and 14 features, the
identified feature list for the hip-pelvis and knee family can be
visualize on the ordinate of the matrices presented in Figs. 5 and
6 while the complete feature set appears in Table 2. We computed
the necessary metrics and implemented, using Qt (Trolltech AS,
Oslo, Norway) [27] a prototype support tool to visualize the result-
ing evolution matrices. This tool takes as input the computed met-
rics, and displays the resulting matrices as shown in Figs. 5 and 6
for the hip-pelvis and knee families.

The previously given metrics definitions imply that for a given
column all the rectangles have the same color. As a consequence
this allows a straightforward visualization of how prevalent each
family has been for CAOS research over time. We can see that
1999/2005 and 2001/2004 were years when research was more
involved in the development of hip-pelvis and knee applications,
respectively. Deducing the year in which a new technology has
been introduced is as well obvious since functionalities are grad-
ually added at the bottom of the matrix. We can therefore state
that the introduction of 2D fluoroscopy, which was a major con-
tribution to CAOS development, took place between 2001 and
2002 for both families. We can as well notice that the knee family
has been in constant evolution from 1998 to 2003: each year,
new functionalities have been introduced. While the hip-pelvis
family had a more moderate evolution, indeed only a very small
number of features had been introduced and in a shorter period
of time.

5.2.3. Evolution patterns
Table 2 summarizes the evolution patterns identified for each

feature; we used a dark gray to mark the features identified as
common and a light gray for the variations.

Except for the ‘‘fracture fragment identification” feature of the
trauma family, which we found has an evolution pattern between
Idle and Red Giant we could match each feature evolution to one or
two of the previously defined evolution patterns. However, no pul-
sar pattern was detected. We realized that if a feature is Persistent
it is as well a Red Giant and that similarly Dayflies are as well Idle.

Without being Persistent in all families ‘‘Computed Tomogra-
phy” is the only feature apart from ‘‘Tracking” and ‘‘Free hand nav-
igation” that is a common feature in all families. We then deduced
that these three functionalities constitute the common core of the
CAOS domain. Sixteen features show only Idle evolution pattern in
the families where they are present, and we considered such fea-
tures as being either variations that did not yet make a break-
through in the domain or that they have been proposed and
abandoned.

Seven of the eight features that are present in more than one
family have different evolution patterns from one family to the
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Fig. 4. System description distribution.
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other, including at least one Red Giant pattern. We use here the
particular case where only two sub-families are concerned to ex-
plain the conclusions that can be derived. When Red Giant evo-
lution is combined with a Super Nova evolution we can say
that the feature was commonly used in a family and was adapted
with success to the other. When Red Giant is combined with Idle,
either the adaptation failed or did not yet succeed to prove its
usability to the related community. Finally, when Red Giant is
combined with White Dwarf the feature is commonly used in
both families but with a progressively decreasing popularity in
the family where the White Dwarf appeared. The last combina-
tion of evolution patterns observed is the one of White Dwarf
and Idle, which is characteristic of a feature that used to be com-
mon in a family and that was adapted with minor success to
other families.

Moreover, a reader familiar with CAOS technology could expect
the evolution of tracking and free-hand navigation to be tightly
coupled. Indeed, we can see that they have almost identical evolu-
tion patterns in the case of the two presented matrices. We ob-
served the same phenomenon for the ‘‘ACL graft position
definition” and ‘‘Graft impingement simulation” functionalities.
Unexpectedly, we realized here that evolution matrices could as
well reveal feature dependency.

5.3. Capturing variation

5.3.1. Functional evolution descriptions
In a second run abstracts were collected that do not necessarily

contain a system description but rather focus on proposing
improvements to a given aspect of already existing systems.

Fig. 6. Evolution matrix of the knee family.

Fig. 5. Evolution matrix of the hip-pelvis family.
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Abstracts usually contain motivation for the design and/or use of
the described contribution as well as a discussion of its benefits
and drawbacks. Because this information usually justifies a change
or a novelty in the system we used it to identify the factors of soft-
ware evolution in the CAOS domain, that is to say the non-func-
tional reasons why CAOS sytems were and will be modified and
evolved. This second selection of abstracts contained a total of
212 papers describing situations in which only a particular func-
tional aspect of an existing system was modified.

5.3.2. Evolution factors
Reviewing the underlying motivations and claimed benefits of

the selected abstracts, we identified the following nine factors as
the main factors of CAOS evolution.

I. Visualization: CAOS aims at providing surgeons with contin-
uously improving patient specific visualization before and
during surgery. For this it provides 3D where initially only
2D visualization was present and provides access to an
always increasing amount of anatomical information.

II. Accuracy and safety: One of the main goals of CAOS technology
is to improve the accuracy with which a surgical procedure
can be performed compared to the conventional approach.
There are many potential sources of inaccuracy in a CAOS
system (image acquisition noise, model generation errors,
tracking errors, etc.), and different scenarios are proposed to
reduce each type of error. Because undetected computational
errors could in the worst case endanger human life, safety and
accuracy are tightly coupled in CAOS; consequently, we
considered them as being a common evolution factor.

III. Planning and outcome optimization: Using computer technol-
ogy, CAOS helps in defining the optimal planning in order to
improve surgery outcome and to reduce long term failures
and consequent revision surgeries. To do so CAOS proposes
computing various anatomical parameters and performing
simulations.

IV. System handling: CAOS systems preserve the descriptive and
procedural surgical knowledge, but imply a deep change in
the operational and interaction aspects of surgeries. To
attenuate the resulting steep learning curve and to ease
CAOS system handling, research proposes, for example,
automating certain tasks or providing more intuitive user
interfaces.

V. Invasiveness: The invasiveness of a surgical procedure refers
to the amount of damage generated to the soft tissue (i.e.,
skin and muscles) in order to access the surgical site.
Because minimal invasiveness results in less pain, scarring,
and recovery time for the patient, it is nowadays the ten-
dency to adopt less invasive approaches to perform surgery
whenever possible. CAOS follows the same path and pro-
poses various functionalities that support minimally inva-
sive surgical procedures.

VI. Radiation: The use of certain imaging modalities implies a
consequent radiation exposure for the patient and medical
staff. CAOS proposes scenarios where image-based assis-
tance is provided with less radiation.

VII. Time: When using CAOS systems additional time is often
spent in the operating room and is requested for computa-
tional needs (image capture, processing, etc.). The evolution
trend is to reduce both burdens.

VIII. Robustness: As in the algorithmic and computational
domains it is preferable for CAOS to provide functional-
ities, which are insensitive to the possible variations that
occur in clinical conditions. Depending on the considered
CAOS functionality this can mean insensitivity to the
image quality, to the surgical material used, to the system
user, to patient motion or to the individual characteristics
of a given pathology (e.g. arthrosis) on the targeted
anatomy.

IX. Cost: Up to now prices of CAOS systems remain quite high.
The aim is to reduce the costs and consequently contribute
to improve their acceptance in the surgical field.

Table 2
Identified common and variable features
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5.3.3. Most influential factors estimation
We partitioned our collection of abstracts into seven first level

categories. Fig. 7 shows the results of the computation of the evo-
lution factor influence, for each category we colored in red the
most influential factors. During this estimation we found only
eight abstracts that contained no references to any of the identified
evolution factors.

5.3.4. Change scenario taxonomy
We describe here each of the seven taxonomy first level catego-

ries highlighting how each of the estimated most influential evolu-
tion factors contributes to the functional and technological
variations introduced in the related CAOS functionality (the evolu-
tion factors are underlined and the resulting subcategories are in
bold). The obtained taxonomy is presented in Fig. 8.
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Fig. 7. CAOS most influential evolution factors.
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A. Imaging: CAOS aims at enabling minimal radiation exposure of
the patient and medical staff, which implies a permanent investi-
gation on how to use and combine diverse imaging modalities.
The accurate and precise use of a given imaging modality requires
a well defined acquisition protocol and/or calibration procedure
for the means of acquisition. Moreover, to improve the quality and
accuracy of the information provided by the acquired images, they
sometimes need to be additionally processed.

B. 3D modeling: While performing the diagnostics the surgeon
has to rely on his or her understanding of the 3D space to interpret
the 2D information he or she has access to. One of the claims of
CAOS is to ease this challenging task by providing a three-dimen-
sional model of the patient’s anatomy that will enhance the
surgeon’s visualization of the case. Several methods were proposed
to obtain these models (e.g., segmentation or statistical shape
modeling) each of them trying to be always more accurate. What
usually vary from one method to another are the type of informa-
tion it takes as input and the nature of the information provided by
the output model.

C. Biomechanics: The desire to always obtain better and opti-
mized surgical outcomes led the CAOS community to integrate find-
ings of biomechanics into CAOS. Over the years biomechanical
methods such as kinematic analysis and finite element modeling
(FEM) have been used to provide surgeons with the possibility to
simulate the post-operative outcome of the currently planned
surgery. Biomechanics contributed as well to one of the major evo-
lutions in CAOS: the idea to no longer rely solely on the patient’s
skeletal structure but to introduce soft tissue consideration in
the computer-assisted surgical process. This results, for example,
in different ligament balancing functionalities in the knee applica-
tion family.

D. Anatomical constraints: An orthopaedic surgical procedure is
governed by anatomical constraints (mechanical axis, antever-
sion, acetabular wall thickness, etc.). In order to allow more accu-
rate surgical procedures CAOS systems propose to automatically
compute these parameters whenever possible. A constant feedback

on these constraint values improves the guidance offered to
surgeons.

E. Surgical strategy: CAOS planning sub-systems help the sur-
geon in defining the optimal surgical strategy. For this they provide
support in trajectory definition, best implant selection or virtual
bone alignment in the case of fracture treatment. For a long period
these tasks were possible only through user interaction but recent
research proposed automating these tasks in order to optimize
them.

F. Registration: In order to be able to guide the surgeon during
surgery it is required that CAOS systems establish the mathemati-
cal relationship between the local coordinate system of the virtual
patient anatomy (generated 3D model) and the one of the surgical
object (targeted anatomy to be operated on). This process is called
registration or matching. One of the major motivations for the
various proposed methods to perform this process, apart from
their diverse algorithmic approaches, is to reduce the invasiveness
required to obtain the data they use as input. The second major
drawback of registration is that it is a difficult task to perform
and understand for the surgeon. Consequently, some effort has
been made in order to ease registration handling, e.g., requiring less
user interaction or providing intuitive accuracy feedback.

G. Navigation: To help the surgeon achieve his or her surgical
plan various guidance methods have been proposed such as, for
example, individual templates or augmented reality. Although
CAOS always tries to be as close as possible to the traditional
surgical approach, it sometimes requires modifying or adapting
the usual surgical tools. Certain navigation approaches need to
use positional information about the surgical instruments and ana-
tomical structures. For this there are different tracking methods.
The goal is obviously to allow the surgeons to achieve the best
accuracy and at the same time to provide systems that only require
interaction that easily fits into the clinical routine.

5.4. General CAOS evolution

If we compare the percentages per year of abstracts that contain
a system description and of those that can be identified as change
scenarios (Fig. 9), we can see that the percentage of system
descriptions constantly decreased over the years to reach less than
5% in 2005, while the percentage of change scenarios rapidly grew
between 1998 and 2002 and stabilized around 20% afterwards.

The evolution curves are characteristic of the general evolution
of CAOS research. Indeed, rather than investigating the develop-
ment of a completely new system that will be used for a new sur-
gical procedure, many research groups had focused on improving
only a particular aspect of existing CAOS systems. This tendency
is as well confirmed by the fact that after 2003 the height of all
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Fig. 8. Taxonomy of change scenarios.
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obtained evolution matrices did not grow, that is to say that after
this date the system descriptions no longer contained new
features.

6. Efficiency of evolution matrices to support commonality and
variability analysis

6.1. Evaluation approach

In order to evaluate how good a given domain analysis method
is, the common practice is to evaluate the domain model resulting
from the use of this method. To do so, one has to check if it possible
to specify pre-existing or proposed systems using the domain anal-
ysis outputs. Systems used as inputs in the domain modeling pro-
cess may be used for validation; but preferably the domain analyst
will test using systems not used to develop the model. This last
point led us to use an approach borrowed from mathematical mod-
eling, namely holdout validation, to evaluate the effectiveness of
evolution matrices in commonality and variability analysis. The
principle is the following: observations are randomly selected from
the initial data set to form the test data and the remaining data are
retained to be used as input to the tested modeling method. Usu-
ally up to one third of the initial data is used as test data. After
applying the tested method to the training data set one must then
estimate the error occurring with the test data [28].

In our particular situation we wanted to evaluate how well the
use of evolution matrices could allow us to differentiate common
and variable features. Unfortunately, to the best of our knowledge,
there is not up to now a measure that could enable the quantitative
estimation of our model. We consequently used a qualitative ap-
proach to estimate the quality of the obtained domain model.
Our evaluation was based on the following assumptions:

� Assumption 1: A system description fits well to the domain
model if it is composed of a majority of common features plus
some variation features.

� Assumption 2: After a successful modeling, the number of sys-
tems composed only of common features should be minimal.

� Assumption 3: A good commonality and variability analysis
should not lead to systems composed only of variable features.

� Assumption 4: If a feature is missing from the resulting model, it
should be included in a minimum of systems descriptions.

� Assumption 5: Each common feature should be included in more
than 40% of the tested system descriptions. Conversely, variation
features should occur in no more than 40% of the tested system
descriptions.

6.2. Evaluation results

6.2.1. General comments
The evaluation was performed once for each sub-family using

one third of each sub-family as hold out samples. After applying
CompAS we compared the results obtained with and without the
complete data set. We noticed that, because of the missing descrip-
tions, in two cases features that were identified as ‘‘Persis-
tent + Red Giant” lost their Persistence characteristic but
remained Red Giant. The opposite phenomenon was observed as
well in one case, that is to say a feature that was initially identified
as an Idle only became a ‘‘Dayfly + Idle”. Two others complemen-
tary effects linked to the hold out sampling were observed. In
two cases features that were initially identified as Idle became
White Dwarf and in another situation a feature that was a initially
Red Giant became a Super Nova. However in these six cases (9.5%
of the evaluated features), the observed modifications did not af-
fect the conclusions that were derived concerning the commonal-

ity and variability characteristic of these features. Four features
that were initially identified as ‘‘Dayfly + Idle” and one that was
only Idle disappeared from the resulting models. In other words
in these five cases (8%) the concerned features were part only of
the retrieved systems descriptions. The non detection of such un-
ique features is however not critical; when facing such a situation
the domain analyst has to further investigate and find out if it is
worthwhile to consider such functionality as a missing reusable
variation or to keep it as a truly application specific functionality.
Only one feature that we initially identified as Idle became a Red
Giant that is to say changed from a variable to a common feature.
Finally the only feature which we could not decide whether to clas-
sify as a Red Giant or Idle appeared to be a Idle in this evaluation
phase.

6.2.2. Domain model evaluation
In this section we present the qualitative evaluation of the ob-

tained model based on the previously mentioned assumptions:

Assumption 1: Across the four sub-families’ evaluation, we
found only one system composed mainly of variation features
for a small number of common ones.
Assumption 2: For the four sub-families we evaluated, between
20% and 40% of the test set were systems composed only of
common features.
Assumption 3: For the four sub-families, no systems were found
composed only of variable features.
Assumption 4: Four of the five missing features were required
for only one system description and in each case for a different
one. The last one was missing for two system descriptions.
Assumption 5: In two cases we found common features present
in less than 40% of the test set and in two other cases we found
variable feature that was present in more than 40% of the test
set. We give below more details on each of the cases:

Case 1 concerns the feature for which we initially had doubt in
classifying the followed evolution pattern and which we classified
as Idle during our evaluation. This feature appeared to be a variable
feature present in 66.7% of the test set. Consequently no decision
on whether this feature is common or variable can be taken using
CompAS.

Case 2 concerns a feature that we identified with and without
the complete set as a White Dwarf. This feature appeared during
our evaluation as a variation contained in 44.4% of the test set. Gi-
ven the fact that we considered a White Dwarf to be a common fea-
ture which decreased in popularity to become variable, we can
hypothesize that the random sampling retrieved system descrip-
tions that mainly belong to the time period where this feature
was considered as common.

Case 3 concerns the previously mentioned feature that was iden-
tified as a Red Giant with the complete data set but as a Super Nova
during evaluation. It then appeared to be a common feature that be-
longs to 33.3% of the test set. Although the percentage is below the
hypothesized 40%, it still remains rather high (one third of the test
set). However in this case the assumption has to be rejected.

Finally case 4 concerns a feature identified as a Red Giant with
and without the complete set but which appeared as a common
feature present in only 22.2% of the test set. To justify this situation
one has to use domain knowledge. Indeed, the considered feature,
namely computed tomography, is linked to the 2D fluoroscopy fea-
ture through an ‘‘OR” dependency. In other words, in the trauma
sub-family, systems contain either computed tomography feature
or the 2D fluoroscopy one. This is actually confirmed by the fact
that 2D fluoroscopy feature was evaluated as a common feature
that belongs to 88.9% of the test set. In conclusion when two or
more common features are dependent they can be contained in a
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rather small percentage of the considered systems, provided that
their respective percentages are complementary (the sum is equal
to 100%). Table 3 summarizes the result of the evaluation of
CompAS.

Because our evaluation assumptions were rejected in a minor
number of cases we concluded that evolution matrices are appro-
priate and efficient tools to support commonality and variability
analysis.

7. Discussion

Although software development in research is not constrained
by any system documentation process, we demonstrated in this
article that relevant information could be extracted from confer-
ence proceedings in order to identify commonality and variability
based on a quantitative evaluation of software functional evolu-
tion. An interesting aspect of the presented results is that they
combined users’ and developers’ perspectives. Indeed, the annual
meeting of the International Society for Computer Assisted Ortho-
paedic Surgery presents research results submitted by surgeons as
well as software developers. We actually observed that system
functional descriptions could often be found in clinical study re-
ports and reflect the users’ perspective at that time. In other cases
they were used to describe the current state of the art in articles
presenting new developments, thus providing a software devel-
oper’s perspective. Change scenarios were more often found in
technologists’ publications. We showed as well that based on an or-
ganized review of selected conference abstracts we could identify
domain evolution factors. Based on the computation of the domi-
nant evolution factors we could then gain insights into the domain
evolution and thereby more easily identify variation points.

The gathering and analysis of our set of data was pretty time
consuming, however this is a known aspect of domain analysis
[29,30]. And we believe, as is usually advocated in the domain, that
the obtained results are worth the time invested since they will
save time in the future.

Our interpretation of the relation between the obtained evolu-
tion matrices and the commonality, variability, and dependency
of the features could not have been possible without our a priori
knowledge of the domain. In other words such an approach re-
quires good knowledge of the investigated domain and/or a close
collaboration with domain experts. The proposed approach pre-
sents, moreover, a limitation related to the data collection. The sys-
tem descriptions used to compute the evolution matrices do not
follow any template or format and are therefore subjective. Some
descriptions might therefore be incomplete, simply because the
omitted functionalities were not relevant to the treated subject;
they were implicit for the audience, or became standard and there-
fore were not mentioned anymore. Based on our knowledge of
CAOS systems, we have actually sometimes extrapolated the pres-
ence of certain functionalities in order to keep the system descrip-
tions coherent.

Because of the previously mentioned general evolution of
CAOS research, we had only a very small number of system
descriptions for the years 2004 and 2005. This evolution tendency
can bias the interpretation for the evolution matrix. If we con-
sider, for example, the ‘‘3D fluoroscopy” feature which is inter-
preted as a feature with relatively low popularity (Idle pattern),
the matrix does not allow one to detect that this functionality
was indeed investigated intensively as a stand-alone feature. This
growing popularity is indeed confirmed by the numerous change
scenarios (17) related to ‘‘3D fluoroscopy” that we collected be-
tween the years 2001 and 2004.

We have seen that feature dependencies, such as constraints
describing which features require the presence of one or more fea-
tures, imply identical evolution patterns for the respective fea-
tures. Other feature dependencies exist but could neither be
detected nor integrated with our approach. If we consider, for
example, introducing a new imaging modality, we know that it
may require a new 3D modeling approach to be defined. For these
reasons we insist here on the fact that the presented work, in its
current status, can only be used as a tool to support and strengthen
one part of domain analysis (i.e. commonality and variability anal-
ysis). The lack of the critical dimension that constitutes depen-
dency handling prevents this approach from being considered as
a complete domain analysis method. We therefore envision evolv-
ing our taxonomy into an ontology so that we can model these
dependencies. Ontologies enable the definition of concepts (change
scenario, surgical procedure, medical image, etc.), their attributes
and the relationships among them [31]. An ontology of CAOS
change scenarios would permit one to define a human and com-
puter readable consensual description of CAOS system variability
that could be shared and reused.

The high number of identified Idle patterns demonstrates that
CAOS is a highly evolving domain where numerous functionalities
are still investigated and proposed. We have seen as well that func-
tionalities are frequently adapted from one sub-family to the other.
Moreover, there is a tendency in the CAOS to community focus on
developing new functionalities rather than taking a systems imple-
mentation approach to consolidate and integrate existing results.
All these characteristics reinforce our initial intuition that a soft-
ware reuse philosophy could be of interest for the domain. In a
component-based environment one could test, integrate, and
adapt a specific contribution without having to implement a com-
pletely new system but rather by combining the newly provided
features with others to develop a more functional system.

As demonstrated by some of our results, until now, CAOS re-
search has largely addressed major issues such as safety and
accuracy. Other issues like cost reduction have not yet been satis-
factorily investigated. Initial studies in industrial settings suggest
that component-based application engineering results in an
improvement of programmer productivity, a reduction of time-
to-market, and a decrease of maintenance costs. Consequently,
we believe that an academic investigation of the use of compo-

Table 3
Results of CompAS efficiency evaluation

Spine Hip Knee Trauma

Size of the test set 5 12 18 9
Size of the feature set 13 16 14 21
Number of systems composed mainly of variation features 1 0 0 0
Number of systems composed only of common features 2 4 4 2
Number of systems composed only of variable features 0 0 0 0
How many feature miss in the model 1 0 3 1
What is the number of systems requiring these missing features 1 NA 2 1
How many common features are included in less than 40% of the test system descriptions 0 0 1 1
How many variable features are included in more than 40% of the test system descriptions 0 0 1 1
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nent-based development for CAOS systems could open the door to
less costly industrial production of CAOS systems.

8. Future work

The presented overview of commonality and variability in CAOS
provides an abstract representation of the domain. The previously
mentioned lacking information about feature dependencies as well
as other information such as illegal feature combinations and de-
fault settings constitutes what is called the knowledge configura-
tion of the domain. Combining our domain model with
configuration knowledge would enable one to configure any con-
crete CAOS applications. This transition from a high level domain
model to a concrete system description can nowadays be per-
formed either manually or automatically. In the manual approach
the developer, based on his or her understanding of the domain
model, matches a system description expressed in common lan-
guage to a computer readable description of the system. In gener-
ative programming, which proposes methods to automate the
process, the developer uses a domain specific language (DSL) to de-
scribe applications and the transition to concrete implementations
is performed automatically [6].

We will investigate if the use of an ontology as a means for do-
main modeling could allow us to encode the knowledge configura-
tion. We could then provide a means to ease and automate not all
the transition process but only the transition from the high level
domain representation to a computer readable system description.
Indeed concept of relationships, axioms, and rules that are part of
ontological engineering could be used to define the knowledge
configuration. Moreover, the consensual aspect of the definition
of ontology terminology could lead to an application descriptor
whose vocabulary would be accessible to all the actors of the do-
main. The dynamic aspect of ontology that is to say the fact that
they are made to be extended and modified could ensure an always
up-to-date representation of the domain. Finally, ontologies are
not only human readable but as well computer readable, so we
could then investigate the development of an ontology based tool
that will allow us to provide computer support in application
description.

We could imagine that ultimately the functional aspect of our
domain model could be used to provide users with a computer-
based catalog of the available features that could help in configur-
ing applications but as well in informing about the possible func-
tional improvements of a given application. While the
technological aspect could be used as a source of information on
how to improve the non-functional aspect of a system based on
the different existing technological approaches for a given feature.
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