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Abstract

Many reverse engineering approaches have been devel-
oped to analyze software systems written in different lan-
guages like C/C++ or Java. These approaches typically
rely on a meta-model, that is either specific for the language
at hand or language independent (e.g. UML). However, one
language that was hardly addressed is Lisp. While at first
sight it can be accommodated by current language inde-
pendent meta-models, Lisp has some unique features (e.g.
macros, CLOS entities) that are crucial for reverse engi-
neering Lisp systems. In this paper we propose a suite of
new visualizations that reveal the special traits of the Lisp
language and thus help in understanding complex Lisp sys-
tems. To validate our approach we apply them on several
large Lisp case studies, and summarize our experience in
terms of a series of recurring visual patterns that we have
detected.
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1. Introduction

Software reverse engineering is about creating high level
views of a target system [2]. While in theory reverse engi-
neering techniques might be language independent, in prac-
tice the special traits of the various programming languages
must be take into account. This usually implies creating a
model of the source code, and then performing analyses on
it the resulted model. The model must be rich enough to
capture the most important facts about the analyzed system.
Over the last decades, various approaches have been de-
veloped for systems written in various languages like Java,
C++ or COBOL. One language that was little addressed in
the reverse engineering community is Lisp [22].

The need to address the understanding and maintenance
of Lisp systems is emphasized by the fact that Lisp is cur-
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rently used in a variety of domains, like bio-informatics
(BioBike), data mining (PEPITe), knowledge-based en-
gineering (Cycorp or Genworks), video games (Naughty
Dog), flight scheduling (ITA Software), natural language
processing (SRI International), CAD (ICAD or OneSpace),
financial applications (American Express), web program-
ming (Yahoo! Store or reddit.com), telecom (AT&T, British
Telecom Labs or France Telecom R&D), electronic design
automation (AMD or American Microsystems) or planning
systems (NASA’s Mars Pathfinder spacecraft mission) [16].

Why Lisp is Different. In spite of its almost fifty-year
history, and of the fact that other programming languages
borrowed concepts from it, Lisp still presents some unique
traits, that are decisive for understanding Lisp systems.

Multi-Paradigm. Started as a functional language, to-
day Lisp is truly a multi-paradigm programming language.
It incorporates all major programming paradigms: func-
tional, procedural, logic, object-oriented, and even newer
paradigms like aspect-oriented.

Multiple-Dispatch. Even in the context of object-
oriented languages, Lisp sets itself apart from other lan-
guages with different language entities and new ways of
combining those entities. CLOS (Common Lisp Object
System) [4] offers a multiple dispatch system which means
that methods can be specialized upon the types of all of their
arguments. Consequently CLOS methods do not belong to
classes. Having multiple dispatch, methods conceptually
belong to each class they dispatch on, but they do not syn-
tactically belong to one class or another.

Special Entities. Methods in CLOS are grouped into
generic functions, i.e., collections of methods with the same
name and argument structure, but with differently-typed ar-
guments. The methods associated with the generic function
define the class-specific operations of the generic function.
CLOS also introduces a new type of classes, mixin classes
[19], behavioral classes that are used additively through
multiple inheritance.

Macros. Another unique Lisp feature consists of its



macros. Macros are a powerful means to write custom
programming language constructs beyond mere functions.
While apparently similar to C macros, they are different.
While C macros are specifications of simple string substi-
tutions, Lisp macros are Lisp programs that generate other
Lisp programs [12].

Visualizing Lisp Systems. In this paper, we argue that
to effectively understand Lisp systems, we need dedicated
analyses that take into account Lisp specific constructs.
However, because not much work has been dedicated to an-
alyzing Lisp systems, we propose to explore them through
a set of visualizations that capture these particularities and
that provide an insight into how Lisp systems look different
from those written in other languages. Based on the visu-
alizations we report on patterns we encountered in several
case studies. We see this work as a first step towards more
detailed dedicated analyses.

With the help of the visualizations presented in this pa-
per, we can see how Lisp systems make use of multiple pro-
gramming paradigms, we can understand the relation be-
tween classes and methods, as defined in CLOS, we can see
how studying generic functions can help us identify cross-
cutting concerns, and we can also identify different types of
classes found in object-oriented Lisp systems.

Paper structure. In the next section (Section 2) we define
four visualizations that address the aforementioned Lisp
specificities. For each visualization we describe a set of pat-
terns that support the interpretation. In Section 3 we present
an overview of an extensive case-study, and discuss in detail
the findings in the largest Lisp system that we analyzed. The
paper is finalized with a discussion on related work (Sec-
tion 4) and the paper’s conclusions and future work (Sec-
tion 5).

2. Lisp Visualizations

As not many reverse engineering works tackled Lisp sys-
tems, we aimed to provide a set of initial visualizations 2
that capture the specifics of Lisp, and we use these visual-
izations as an initial instrument to explore the unique fea-
tures of Lisp. We regard this work as an initial step towards
more detailed analyses.

Starting from the traits that make Lisp different, identi-
fied in Section 1 (i.e., multi-paradigm language, multiple
dispatch, generic functions, mixin classes), we have cre-
ated 4 visualizations dedicated to reveal each of this dif-
ferences respectively: (1) PROGRAMMING STYLE DISTRI-
BUTION VIEW, (2) CLASS-METHODS RELATION VIEW,

2 All our visualizations were developed using Mondrian [18], an engine
for scripting interactive visualizations.

(3) GENERIC CONCERNS VIEW, and (4) CLASS TYPES
VIEW. The rest of this section provides details for each of
these visualizations.

2.1. The Programming Style Distribution View

The PROGRAMMING STYLE DISTRIBUTION VIEW, see
Figure 1, is a visual way of identifying the paradigms used
throughout the packages of a system.

Description. The PROGRAMMING STYLE DISTRIBU-
TION VIEW visualizes the main entities of the program
(functions, macros, global variable, classes and methods),
encoded with different colors, and placed on a program
package map. This view represents a variation of a Dis-
tribution Map [5] and it illustrates the correlation between a
chosen concept and the structural modularization of a sys-
tem.

For each package there is a large rectangle and within the
rectangle, for each contained software artifact (i.e., func-
tions, classes, methods, global variables, macros) there is a
square. The color of the squares refers to the paradigm used
by these artifacts as shown in the table below:

Entities Color Style
Functions yellow functional
Global variables red imperative
Classes and methods blue object-oriented
Macros green macro-style

The order of the large rectangles in a Distribution Map is
based on a hierarchical clustering algorithm (average link-
age) [23], that groups similar elements together. The goal is
to group together the rectangles that are visually similar.
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Figure 1. Programming Style Distribution
View from the Lisa project



Reverse engineering goals. The PROGRAMMING STYLE
DISTRIBUTION VIEW helps to identify the programming
style(s) used in each package. This view is also useful in
determining the size and complexity of the packages and
the balance between the program’s packages.

We applied this view on several Lisp systems (see Sec-
tion 3) and by studying the outcome we have extracted a se-
ries of visual patterns, that can be grouped in the following
categories: size-based, structure-based and distribution-
based visual patterns:

Distribution-based patterns. These patterns are based on
the distribution of the programming styles over the
program’s packages. We can distinguish two types of
patterns. First we can have distributed styles, when
the programming paradigms are more or less evenly
distributed over all the packages in the system. Then
we can have encapsulated styles, where each style of
programming is encapsulated in one or a set of pack-
ages. The most common case is the distributed style.
The separation of each programming style in different
packages is rarely encountered. One style of program-
ming style that makes an exception is the macro-based
programming, that can be often found grouped in a
set of packages. Usually, when a project makes heavy
use of macros, it tends to group all the macros in one,
or several packages. This contained group of macros
will define a domain specific language, that then can
be used in the project, for a greater abstraction of the
code.

Structure-based patterns. Based on the structure of the
packages, we can have the following patterns: com-
bined styles (packages contain a mixture of styles)
and exclusive style (packages contain in majority one
programming style). Being a multi-paradigm pro-
gramming language, the most common case in Lisp
projects is that packages have a mixture of program-
ming styles. We have also found some exceptions of
packages that had used only one style of programming,
mainly object-oriented programming.

Size-based patterns. This last category is based on the
size of the packages and how this size is distributed
throughout the system. First we can have balanced
packages, where all the packages of the system are bal-
anced in size, meaning that the program structure is
well organized in packages. Then we can have mono-
lithic package, where there is one big package com-
pared to the rest of the packages, which contains most
of the system. This characterizes a bad decomposi-
tion of the system in packages. Most of the analyzed
projects had a balanced package distribution, with only
a few larger packages than the average size. We ob-

served that the projects that are predominant object-
oriented have a better package decomposition. But we
have also found, in the case of older projects, some
cases of monolithic packages, that contained most of
the system.

2.2. The Class-Method Relation View

The CLASS-METHODS RELATION VIEW, see Figure 2,
shows the relationships between classes and methods in a
object-oriented Lisp application.

This view reveals the difference between CLOS and
other object-oriented languages, like C++ or Java. As pre-
viously mentioned, in CLOS methods do not belong to
classes. Having multiple dispatch, methods conceptually
belong to each class they dispatch on, but they do not syn-
tactically belong to one or another class. Consequently, the
relation between a class and a method is not one of contain-
ment but rather one of specialization.

Description. The CLASS-METHOD RELATION VIEW vi-
sualizes classes and methods as nodes, while the edges rep-
resent specialization relationships. The shape and color of
the node encodes the node type: classes are represented by
blue rectangles and methods by green circles. The metrics
used to enrich this view are the number of attributes for the
class width and the number of corresponding methods for
the class height.

Because each method can specialize on one or more
classes, we can have classes connected to one or more meth-
ods and methods connected with one or more classes.

The layout of the view is a force-based layout [8]. This
layout positions the nodes by resolving a system of forces.
Nodes repel each other, while edges connecting them draw
them together. The physical interpretation of this equilib-
rium state is the mechanical equilibrium. Because the lay-
out will put together classes that have methods in common,
we decided to map the number of methods both on nodes
height and on connections to distinguish between the im-
portance of classes when they are close to each other.

In Figure 2 we have an example for a small Lisp project
with approximatively 40 classes. The view was obtained
after a fixed number of iterations (300 in this case). The
layout was not iterated until it reached the equilibrium state
because that wouldn’t have changed significantly the final
layout.

Reverse engineering goals. The CLASS-METHOD RE-
LATION VIEW helps to identify possible independent or
loosely coupled components of the system. This way the re-
engineer can study each component separately and after un-
derstanding the components they can study the overall sys-
tem more easily. The components can be identified on the
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Figure 2. Class-Method Relation View, from the Lisa project

view by looking at conglomerates of classes and methods
heavily connected, or by visually detecting loosely coupled
components that have little or no connections to other parts
of the system. Furthermore, the view can also help identi-
fying classes that have no connection with any method or
methods with no connection to any class.

From our case studies we have extracted a series of visual
patterns, described below:

Stars. Star like figures with a blue rectangle in the mid-
dle, a class, and green circles around it. In this case
these methods are connected to only one class, mean-
ing that they specialize on only the class of one param-
eter. Such methods are like C++/Java methods which
specialize on this, the class they belong to.

Lonely classes. Lonely classes are those classes that have
no connection to any methods. They are identified by
the blue rectangles with no lines connecting to them.
These classes are degenerated classes and we identified
a series of causes for this cause: (i) the class is only
used for data storage, similar to C’s struct, and has no
methods associated to it, also called Data Class; (ii)
in projects that make heavy use of the macro feature,
method definitions get “hidden” by macro definitions;
(iii) they are auxiliary classes, that do not belong to the
system but were introduced into the model for a better
understanding of the system.

Lonely methods. Lonely methods are those methods that
have no connection to a class. They are identified by
the little green circles with no lines connecting to it.
This means that the methods do not specialize on any
class. This is possible in CLOS because here meth-
ods can also specialize on objects. In CLOS, object
identity in addition to object type can be used as a de-
scription for the method’s parameters. For example,
a method can be defined that operates only when the
actual argument is equal (applying the Lisp function
EQL) to the object in the parameter specification (these
are called eql specializations).Thus, Lonely Methods
specialize on objects rather than classes, and because
of that they are not connected to any class.

Conglomerates. Conglomerates are formed by a set of
classes and methods heavily connected by edges and
situated in a close vicinity to each other. These classes
are pulled together by methods connected to more than
one class, because a method pulls together the classes
that it is connected to (i.e., those classes it specializes
on). As a result of these forces, the viewer sees a con-
glomerate of classes and methods, that lend the im-
pression of entanglement. The methods that cause this
conglomerates are called multi-methods [1], i.e., meth-
ods that specialize on more than one class. This visual
pattern is distinctive for CLOS systems, because in
message-sending object-oriented languages there are
no multi-methods.

2.3. The Generic Concerns View

Separation of concerns is a powerful principle that can
be used to manage the inherent complexity of software [10].
One of the benefits of separation of concerns offers an in-
creased understanding of how an application works, be-
cause the code belonging to a concern can be seen and rea-
soned about in isolation from the other concerns.

In “classical” object-oriented languages, where methods
belong to classes, aspects can crosscut methods from differ-
ent classes. Consequently, in AOP (Aspect-Oriented Pro-
gramming), programmers are supposed to first define each
of the system’s aspects in isolation and then to let the de-
fined aspects be automatically weaved together into the final
code. In contrast to this, in generic-function systems, like
Lisp/CLOS, the implementation of cross-cutting concerns
is achieved easier because an aspect can be abstracted into
a generic function, where this generic function implements
aspect methods for each class.

We propose a means for identifying crosscutting con-
cerns in CLOS applications by analyzing how the generic
functions are spread over the system. We call these con-
cerns, associated with generic functions, generic concerns.
We define the GENERIC CONCERNS VIEW (see Figure 3)
for visually representing how these generic concerns are
spread over a system.
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Figure 3. Generic Concerns View showing the display-parse-tree concern from the Climacs

project

Description. The GENERIC CONCERNS VIEW (see Fig-
ure 3) is a polymetric view [13] and visualizes the impact
of a generic function over the system’s classes. The system
is represented by its class inheritance hierarchy using a tree
layout, whereby the nodes are classes, while the edges rep-
resent inheritance relationships. The metrics used in shap-
ing each node are number of attributes for the width, and
number of methods for the height of each node.

The key information of the view is given by how nodes
are colored. Thus, if a node is colored in blue it means
that the class has a corresponding method that is associated
with the generic function for which the view is displayed
(i.e., the class has a corresponding method that has a class
specific implementation of the generic function). In other
words, blue colored classes are those that are dispatched
upon by one of the methods of the generic function.

Because this visualization takes as input the generic
function under study, it is best used in an interactive tool.
Our prototype based on the Mondrian interactive visual-
ization engine [18] allows us to select the generic function
from a list and updates the view of the visualization. Thus,
the tree layout of the classes forms the map on which the
impact of the different concerns are highlighted.

Reverse engineering goals. As mentioned before, the
GENERIC CONCERNS VIEW helps to identify and locate
cross-cutting concerns associated with generic functions.
By analyzing an extensive series of case-studies we have
identified two recurring patterns for this view, representing
two types of concerns:

Scattered concerns. Concerns that are scattered all over
the inheritance hierarchy are usually general concerns
that are common for most of the application’s classes.
For example, in Figure 3 we show an example of an
display-parse—tree concern. Other examples
of such concerns are instantiation, serialization, log-
ging, drawing (in case of a graphical application), pars-
ing (in a parser).

Localized concerns. These concerns are only spread in
one subtree of the inheritance hierarchy, and they are
closely related with the root of the subtree. For exam-
ple, they appear in drawing (for a graphical object),

evaluation (for a mathematical expression), or event
handling (for user interface components).

2.4. The Class Types View

The CLASS TYPES VIEW, see Figure 4, is a visual
way of identifying different types of classes, based on their
structure. Classes are classified based on the ratio between
the number of attributes and number of methods. This char-
acteristic of classes is visually encoded using colors.

There are at least 2 different types of classes in a Lisp
object-oriented system, beyond the typical classes that we
can find in C++/Java languages.

First, we can have mixin classes. A mixin is a class de-
signed to be used additively, not independently, i.e., is in-
tended to be composed with other classes or mixins. The
term mixin, or mixin class, was originally introduced in Fla-
vors [19], a predecessor of CLOS. The difference between a
regular, stand-alone class, and a mixin is that a mixin mod-
els some small functionality slice and is not intended for
stand-alone use, but it is supposed to be composed with
some other class needing this functionality. But not all
classes that have only methods, and no attributes, are con-
sidered mixin classes. You can tell if a class is a mixin class
by looking at its use. If it follows the previous mentioned
rules, has only behavior and it is used additively through
multiple inheritance, then it is considered to be a mixin.
Consequently, mixin classes will appear higher in the class
hierarchy.

Second, there is a special case of classes that we can
encounter: empty classes. These are classes that neither
have attributes nor any associated methods. There are three
reasons why this type of classes exists: (i) they can be
classes that are only used as symbols, and not in the sense
of classes in the object-oriented paradigm; (ii) they are aux-
iliary classes that do not belong to the system but are intro-
duced into the model of the system for a better understand-
ing of the system; these are, for example, system classes
(e.g., Object or Class) that are inherited by an applica-
tion class and therefore included in the model, and because
they were introduced just as auxiliary classes they do not
have any attributes or methods; (iii) they can also appear
in projects that make heavy use of the macro feature, and
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Figure 4. Class Types Views

where the class definition is “hidden” by macro definitions.

To identify the aforementioned special types of classes
we need the following information: the number of attributes
of a class, the number of methods of a class, and their posi-
tion in the class hierarchy. Based on these requirements we
have obtained the CLASS TYPES VIEW, defined as follows.

Description. The CLASS TYPES VIEW is also a polymet-
ric view [13] and visualizes the system’s class inheritance
hierarchy with a tree layout. The metrics used to enrich
this view are number of attributes (NOA) for the width and
number of methods(NOM) for the height. The color of the
nodes is based on the following coloring schema:

NOA =0 and NOM =0 white

NOA =0 yellow
NOM =0 red
others light-green (more methods)

to brown (more attributes)

In Figure 4 we have several examples of CLASS TYPES
VIEWS, chosen to reveal the visual patterns that are pre-
sented in the following paragraph.

Reverse engineering goals. The CLASS TYPES VIEW
helps to identify different types of classes, based on their
structure, more precisely on the attributes to methods ra-
tio. By studying the hierarchies of classes from several
case studies, based on the previously mentioned coloring
schema, we have identified a series of visual patterns:

Yellow root nodes and green inner-nodes and leaves (see
Figure 4 case a): this represents the most common
use of mixins, multiple inheritance via mixin compo-
sition. The root nodes are predominant yellow (the
mixin classes), with some green nodes (representing
the base class, that the mixins are combined with),
while the inner nodes and leaf nodes are green (rep-
resenting implementation classes).

Yellow leaves (see Figure 4 case b): in this case the leaf
nodes are classes that only add new functionality to
the super-class, without adding any new data. In this
case, the yellow leaves do not represent mixins, be-
cause these classes are not a set of methods that will
be use through inheritance by other classes, but these
are subclasses that only have associated methods. This
pattern is present quite often, and is in most cases cases
related to the use of multi-methods. Based on two
groups of these type of classes, we have a set of multi-
methods that specialize on each combination of them.
This case represents an multi-dispatch solution for the
Visitor pattern [6], where one set corresponds to the
visited classes and the other one to the visitors.

White leaves (see Figure 4 case b): in this case the leaf
nodes are empty classes, with no data and no associ-
ated methods. This pattern usually indicates that these
classes are used as symbols and not as normal object-
oriented classes, e.g., the symbols from an language
(html tokens). Another cause of these white classes
is the use of macros. The operations on these classes,
the associated methods, are “hidden” behind a set of
macro definitions, that form a small domain specific
language, corresponding to the domain of the problem.

Inner red node (see Figure 4 case b or ¢): they represent
classes that have only attributes. They usually are re-
garded as Data Classes, classes whose only purpose
is to store data. We observed that this is valid only
when they appear as leaf nodes. But when encoun-
tered as inner-nodes in the class hierarchy, they rep-
resent classes that have only state and the behavior is
provided by its subclasses. This case is similar with
abstract classes from C++/Java, which have state and
virtual methods, that are then implemented by the sub-
classes. We call these inner red classes Apparent Data
Classes.



3 Evaluation of the approach

In order to validate our approach, and to identify the re-
curring patterns for the newly defined visualizations, we ap-
plied them on several medium to large Lisp case studies.
We have analyzed several open-source active Lisp projects,
from small projects to large ones, up to 365 KLOC. The
projects were chosen from a variety of domains: graphi-
cal libraries, artificial intelligence projects, musical applica-
tions, web servers, mathematical software, windowing sys-
tems, interface managers, editors, compilers.

In Table 1 we list some of the case studies we per-
formed!, with a series of additional information extracted
from the models of the analyzed systems, like total number
of lines (including comments and white lines), and number
of structural entities (packages, classes, generic functions,
methods, functions, macros, and global variables).

Project H LOC ‘ Entities ‘
SBCL 365314 7546
CL-HTTP 309006 17784
CLOCC 221216 8589
ACL2 219957 4686
Maxima 211630 9456
McClim 138891 13570
Closure 79500 7627
CommonMusic 59020 2861
GBBOpen 25158 674
Slime 21453 884
AlegroServe 16508 1045
Lisa 13443 1437

Table 1. Case studies

In the rest of this section, we present the findings in the
most representative case study that we analyzed, namely the
SBCL project, one of the largest open-source Lisp projects?.

Steel Bank Common Lisp (SBCL) is an open-source
compiler and runtime system for ANSI Common Lisp, de-
rived from the CMUCL system®. SBCL is distinguished
from CMUCL especially by a greater emphasis on main-
tainability. It provides an interactive environment including
an integrated native compiler, a debugger, and many exten-
sions. SBCL runs on a number of platforms, like Linux,
MacOSX, Solaris, FreeBSD or Win32 and on a variety of
hardware architectures.

In Table 2 we summarize the most important size charac-
teristics of the SBCL project. When we compare the num-
bers from this project with the average values from other

Thttp://www.cl-user.net/
Zhttp://sbcl.sourceforge.net/
3http://www.cons.org/cmucl/

Number of lines 365314
Number of extracted entities 42787
Number of packages 54
Number of functions 4449
Number of macros 693
Number of classes 95
Number of generic functions 472
Number of methods 571
Number of methods per class 6
Number of attributes per class 1.2
Number of methods per generic function 1.2
Number of methods per attribute 5

Table 2. SBCL project statistics

Lisp projects, we notice that the density of structural entities
per line of code is smaller than average, a typical situation
for most of the large projects.

3.1 SBCL: Programming Style Distribution View

Looking at Figure 5 we first observe that we have two
types of packages: some with one dominant program-
ming style (i.e., the Exclusive Style pattern), like SB-GRAY
or SB!BIGNUM and to a lesser extent ASDF, and others
that combine more programming styles (i.e., the Combined
Styles pattern), like SB-PCL, SB!C, SB! IMPL or SB! VM.

SB-Gra!

SBIIMPL SBIVM

Figure 5. SBCL: Programming Style Distribu-
tion View

The object-oriented paradigm is used (the blue boxes)
in several packages, but mainly in SB-PCL, ASDF and
SB-GRAY. SB-PCL is the package responsible with the
definition of PCL (Portable Common Loops) which is a
portable CLOS implementation; this explains why this



package contains more object-oriented code. ASDF (An-
other System Definition Facility) is a system build utility
(similar to make). It takes advantage of modern Common
Lisp features and it uses CLOS for extensibility. Finally,
SB-GRAY implements an extensible object-oriented ver-
sion of Lisp streams. This was introduced from the inability
to customize or extend stream behavior. In all these cases
it is clear why this package are almost exclusively object-
oriented.

Another interesting aspect consist of the distribution of
macros over the packages (green boxes). We notice that
the majority of them are in two packages: SB!VM and
SB!IMPL. SB!VM is the package responsible with the def-
inition of the Lisp virtual machine that provides a com-
mon interface for all the computer architectures supported
by SBCL. This is a perfect example of macro use: imple-
menting a domain specific language, in our case the virtual
machine. The second package that contains a many macros
is SB! IMPL that is responsible with the implementation of
the language, the language definition. Being a metacircu-
lar language, the Lisp language definition is implemented
in terms of Lisp macros.

3.2 SBCL: Class-Method Relation View

An interesting result of applying this view to SBCL is
depicted in Figure 6.

Figure 6. SBCL: Class-Method Relation View

We see a giant class in the center of the view and most
of the other classes being attracted by the giant class. It
is visually similar with a galaxy, with the giant class be-
ing the center of the galaxy and the other entities orbiting
around it. This is the perfect example of the Conglomerate
pattern. Obviously, the most interesting class of the sys-
tem is the giant class. As we have seen most of the object-
oriented code is in the PCL package, responsible with the
implementation of Lisp’s object system. When examining
that package we find that the giant class is the T class. T
is the root of all types and classes in Lisp and also CLOS,
similar with the Ob ject class from Java. The classes that

form the conglomerate from the center of the view belong
to the SB—PCL package. Other major classes are OBJECT,
CLASS, SLOT, GENERIC—-FUNCTION or METHOD, which
are actually the main entities from CLOS. The small scat-
tered classes in the margin of the view are the classes be-
longing to other packages than SB-PCL.

3.3 SBCL: Generic Concerns View

In Figure 7 we show a scattered concern, that impacts all
parts of the system’s class hierarchy. The concern is present
in all the sub-trees of he hierarchy, so we can say that this
concerns is a general one. The visualized generic concern is
the print-object generic function. The generic func-
tion print—-object writes the printed representation of
an object to a stream.
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Figure 7. Scattered concern in SBCL

This function has a default implementation, applicable
for all types of objects, and for each class the programmer
can provide a specific implementation based on the class
specifics. So it is normal to see this concern spread all over
the system.

3.4 SBCL: Class Types View

The CLASS TYPES VIEW puts again the giant T class in
the center of attention (the very tall yellow bar in Figure 8).
But we can see now that codeT is the root of the class hier-
archy representing the implementation of the object system.
Also note that the upper classes from the main tree are yel-
low, meaning that they have only functionality and no state
at all. This does not mean that they are mixin classes, be-
cause they are not used additively with another base class,
with the help of multiple inheritance.



Figure 8. SBCL: Class Types View

When analyzed in more detail the main inheritance tree
is very similar with the CLOS Meta-Object Protocol hier-
archy [9]. These upper yellow classes are similar with Java
interfaces, with the difference that in this case the methods
belonging to these classes do have implementations, and not
only define an interface to a class. The white leaves, that we
observe on the bottom of the main tree, are some keywords
used in the implementation of Lisp’s object system from the
compiler, and that are used as language keywords, but de-
fined internally as classes. There is only one red class in
the figure, i.e., a class that only has state and no functional-
ity. Upon inspection that class turned out to be a test class
containing some test cases represented as attributes.

4 Related Work

The importance of software visualization as an approach
to reverse engineering and program understanding can be
inferred from the large number of tools and techniques that
have been developed for this purpose: Rigi [20], SHriMP
[17], CodeCrawler [14], Mondrian [18], etc. However, most
of these tools focused on analyzing and visualizing main-
stream programming languages, like C/C++ or Java. There
are only a few visualization tools and techniques that ad-
dress Lisp systems.

Haarslev and Moller [7] developed a framework for vi-
sualizing object-oriented systems written in CLOS, based
on a TgX-like notation for specifying graphical layout of
arbitrary objects. Using the framework, users can define
layout descriptions declaratively, and apply them directly to
the system under analysis. The meta-level architecture of
CLOS is used to associate visualizations with application
objects, requiring no source code modifications of applica-

tion systems. Some example uses of this framework are a
class browser, generating a interactive graph of a class hier-
archy, or a class inspector.

GraphTrace [11] is a tool for visualizing the dynamic
behavior of object-oriented programs. GraphTrace allows
a user to create displays revealing different aspects of the
structure of an object-oriented program, and then to ani-
mate these displays in order to understand how the program
works. The tool works with both structural and behavioral
views of a system. Structural views are simply generated
from the code’s structure. Behavioral views are generated
by recording the message activity that occurs in the execu-
tion of the program and then animating those views. Con-
current animation provides the user with several parallel
views on a systems behavior. GraphTrace was developed
in and for the Strobe language [21], an extension of CLOS.

The Scheme Macro Stepper [3] is a macro debugger with
full support for modern Scheme macros. The macro de-
bugger shows the macro expansion process as a reduction
sequence, where the reducible expressions are macro appli-
cations and the contexts are primitive syntactic forms, i.e.,
nodes in the final abstract syntax tree. The debugger also in-
cludes a syntax display and browser that helps programmers
visualize properties of syntax objects.

ZStep [15] is a program debugging environment de-
signed to help the programmer understand the correspon-
dence between static program code and dynamic program
execution. Some of ZStep’s features are: an animated view
of program execution, complete history of program execu-
tion and output, “video recorder” controls to run the pro-
gram in forward and reverse directions and control the level
of detail displayed, direct access from graphical objects to
the code represented, direct access from expressions in the
code to their values and graphical output. ZStep is imple-
mented in Macintosh Common Lisp, and it works with a
subset of Common Lisp.

The novelty of our approach as compared to the above
ones is that our visualizations represent the system on a
higher abstraction level. All of the previous presented ap-
proaches, view the system under analysis at the code level.
Our visualizations view the system at a higher level, view-
ing the system’s entities (classes, methods or packages) and
the relation between them and not its code.

5 Conclusions

In spite of optimistic claims, most reverse engineering
and software visualization techniques have significant lan-
guage dependent traits. So far, the main focus of reverse
engineering techniques has been on mainstream object-
oriented languages like C/C++ or Java. However, one lan-
guage that was hardly addressed is Lisp, even though there
exist a significant number of legacy Lisp systems. These



systems cannot be accommodated by current techniques as
Lisp has a set of unique language features (e.g., macros and
CLOS entities).

In this paper we defined a suite of visualizations which
take in consideration Lisp’s unique features. Specifically,
the visualizations support: (i) the exploration of the use and
distribution of programming styles with a Lisp system; (ii)
the understanding of the connection between classes and
Lisp-style methods and the impact of multi-methods; (iii)
the distinction between various types of Lisp classes; (iv)
the detection of cross-cutting concerns defined by means of
generic functions.

We have extracted a series of recurring visual patterns
based on applying these visualizations on a significant num-
ber of projects. We see these patterns as an initial study of
the specifics of Lisp systems. In the future, we plan to do a
more detailed study of Lisp macros as these are significantly
harder to design and debug than normal Lisp code.
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