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Abstract

Surprising as it may seem, many of the early adopters
of the object-oriented paradigm already face a number
of problems typically encountered in large-scale legacy
systems. The reengineering of those systems often poses
problems because of the considerable size and complexity
of such systems. In the context of the FAMOOS project we
have developed a language independent environment called
Moose which can deal with that complexity. This paper
describes the architecture of Moose, the tools which have
been developed around it and the industrial experiences we
have obtained.
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1 Introduction

Legacy systems are not limited to the procedural
paradigm or languages such as COBOL. Although the
object-oriented paradigm promised increased flexibility of
systems and the ease in their evolution, even these systems
get hard to maintain over time and need to be adapted to
new requirements. The goal of the FAMOOS Esprit project
was to support the evolution of such object-oriented legacy
systems towards frameworks [6].

During the FAMOOS project we built a tool environ-
ment called MOOSE to reverse engineer and reengineer
object-oriented systems. It consists of a repository to store
models of software systems, and provides query and naviga-
tion facilities. Models consist of entities representing soft-
ware artifacts such as classes, methods, etc. MOOSEhas the
following characteristics:

� It supports reengineering of applications developed in
different object-oriented languages, as its core model

is language independentwhich, if needed, can becus-
tomizedto incorporate language specific features.

� It is extensible. New entities like measurements or
special-purpose relationships can be added to the en-
vironment.

� It supports reengineering by providing facilities for an-
alyzing and storing multiple models, for refactoring
and by providing support for analysis methods such as
metrics and the inference of properties of source code
entities.

� Its implementation being fully object-oriented,
MOOSE provides a complete description of the
meta-model entities in terms of objects that are easily
parameterized and/or extended.

These properties make MOOSE an ideal foundation for
reengineering tools [3].

The outline of this paper is the following: Before pre-
senting the specific aspects of MOOSE, we list the main
characteristics that we expect from a reengineering environ-
ment. After presenting the architecture of MOOSE, we give
an overview of its underlying meta-model and interchange
format. We present how a modelled system can be navi-
gated and queried. Then we show how MOOSE supports
code refactorings. To give a more dynamic perception of
MOOSE we show a typical use in the form of a short sce-
nario. Finally we evaluate the environment regarding the
requirements we previously listed and conclude.

2 Requirements for a Reengineering Envi-
ronment

Based on our experiences and on the requirements re-
ported in the literature [12, 8, 9], these are our main require-
ments for a reengineering environment:

Extensible. An environment for reverse engineering and
reengineering should be extensible in many aspects:
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� The meta-model should be able to represent and
manipulate entities other than the ones directly
extracted from the source code (e.g. measure-
ments, associations, relationships, etc.).

� To support reengineering in the context of soft-
ware evolution the environment should be able
to handle several source code models simultane-
ously.

� It should be able to use and combine information
from various sources, for instance the inclusion
of tool-specific information such as run-time in-
formation, metric information, graph layout in-
formation, etc.

� The environment should be able to operate with
external tools like graph drawing tools, diagram-
mers (e.g. Rational Rose) and parsers.

Exploratory. The exploratory nature of reverse engineer-
ing and reengineering demands that a reengineering
environment does not impose rigid sequences of ac-
tivities. The environment should be able to present the
source code entities in many views, both textual and
graphical, in little time. It should be possible to per-
form several types of actions on the views the tools
provide such as zooming, switching between different
abstraction levels, deleting entities from views, group-
ing entities into logical clusters, etc. The environment
should as well provide a way to easily access and query
the entities contained in a model. To minimize the dis-
tance between the representation of an entity and the
actual entity in the source code, an environment should
provide every entity with a direct linkage to its source
code. A secondary requirement in this context is the
possibility to maintain a history of all steps performed
by the reengineer and preferably allow him to return to
earlier states in the reengineering process.

Scalable.As legacy systems tend to be huge, an environ-
ment should be scalable in terms of the number of en-
tities being represented, i.e. at any level of granularity
the environment should provide meaningful informa-
tion. An additional requirement in this context is the
actual performance of such an environment. It should
be possible to handle a legacy system of any size with-
out incurring long latency times.

In addition to these general requirements, the context of our
work [6] forces us to have an environment that is able to
support multiple languages.

3 Architecture

MOOSEuses a layered architecture (see Figure 1). Infor-
mation is transformed from source code into a source code
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Figure 1. Architecture of Moose.

model. The models are based on the FAMIX meta-model
[4, 5] which is described in section 4. The information in
this model, in the form of entities representing the software
artifacts of the target system, can be analyzed, manipulated
and used to trigger code transformations by means of refac-
torings. We will describe the architecture of MOOSEstart-
ing from the bottom.

� Extraction/Import. MOOSE supports multiple lan-
guages. Source code can be imported into the meta-
model in two different ways:

1. In the case of VisualWorks Smalltalk – the
language in which MOOSE is implemented –
sources can be directly extracted via the meta-
model of the SMALLTALK language.

2. For other source languages MOOSE provides
an import interface for CDIF files based on
our FAMIX meta-model. CDIF is an industry-
standard interchange format which enables ex-
changing models via files or streams. Over this
interface MOOSEuses external parsers for source
languages other than SMALLTALK . Currently
C++, JAVA , ADA and other SMALLTALK di-
alects are supported.

� Storage and Tools.The models are stored in mem-
ory. Every model contains entities representing the
software artifacts of the target system. Every entity is
represented by an object, which allows direct interac-
tion and querying of entities, and consequently an easy
way to query and navigate a whole model. MOOSEcan
maintain and access several models in memory at the
same time.

Additionally the core of MOOSEcontains the follow-
ing functionality:

– Operators. Operators can be run on a model
to compute additional information regarding the
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software entities. For example, metrics can be
computed and associated with the software enti-
ties, or entities can be annotated with additional
information such as inferred type information,
analysis of the polymorphic calls, etc. Basically
any kind of information can be added to an entity.

– Navigation facilities.On top of the MOOSEcore
we have included querying and navigation sup-
port. This support is discussed in section 5.

– Refactoring Engine. The MOOSE REFAC-
TORING ENGINE defines language-independent
refactorings. The analysis for a code refactoring
is based on model information. The code manip-
ulation which a refactoring entails, is being han-
dled by language-specific front-ends. Section 6
describes the engine in more detail.

� Tools Layer. The functionality which is provided by
MOOSEcan be used by tools. This is represented by
the top layer of figure 1. Some examples of tools based
on MOOSEare described in section 7.

4 A Language Independent Meta-model

MOOSE is based on the FAMIX meta-model [4, 5].
FAMIX provides for a language-independent representa-
tion of object-oriented sources and contains the required
information for the reengineering tasks performed by our
tools. It is language independent, because we need to work
with legacy systems in different implementation languages
(C++, JAVA , SMALLTALK , ADA). And it is extensible:
since we cannot know in advance all information that is
needed in future tools, and since for some reengineering
problems tools might need to work with language-specific
information (e.g. to analyse include hierarchies in C++),
we allow for language plug-ins that extend the model with
language-specific features. Next to that, we allow tool plug-
ins to extend the model to store, for instance, analysis re-
sults or layout information for graphs. Figure 2 shows the
core of the FAMIX model. It consists of the main object-
oriented entities, namely Class, Method and Attribute. In
addition there are the associations InheritanceDefinition, In-
vocation and Access. An Invocation represents a Method
calling another Method and an Access represents a Method
accessing an Attribute. These abstractions are needed for
reengineering tasks such as dependency analysis, metrics
computation and reorganisation operations. The complete
model consists of much more information, i.e. more enti-
ties such as functions and formal parameters, and additional
relevant information for every entity. The model does not
contain any source code. The complete specification of the
model can be found in [5].

Figure 2. Core of the FAMIX model.

Information exchange with CDIF

To exchange FAMIX-based information between different
tools we have adopted CDIF [2] . CDIF is an industrial stan-
dard for transferring models created with different tools.
The main reasons for adopting CDIF are, that firstly it is
an industry standard, and secondly it has a standard plain
text encoding which tackles the requirements of convenient
querying and human readability. Next to that the CDIF
framework supports the extensibility we need to define our
model and plug-ins. As shown in Figure 1 we use CDIF to
import FAMIX-based information about systems written in
JAVA , C++ and other languages. The information is pro-
duced by external parsers such as SNiFF+ [15, 16]. Next
to parsers we also have integrations with external environ-
ments such as the Nokia Reengineering Environment [6].

5 Navigation and Querying

One of the challenges when dealing with complex meta-
models is how to support their navigation and facilitate easy
access to specific entities. In the following subsections
we present two different ways of querying and inspecting
source code models in MOOSE.

5.1 Programming Queries

The fact that the meta-model in MOOSEis fully object-
oriented together with the facilities offered by the Smalltalk
environment, it is simple to directly query a model in
MOOSE. We show two examples. The first query returns
all the methods accessing the attributename of the class
Node.

(MSEModel currentModel
entityWithName: #’Node.name’)

accessedByCollect:
[ :each | MSEModel currentModel

entityWithName: each accessedIn ]

The second query select all the classes that have more than
10 descendants.
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MSEModel currentModel allClassesSelect:
[ :each | each hasProperties and:

[ (each hasPropertyNamed: #WNOC) ifTrue:
[(each getNamedPropertyAt: #WNOC) > 10]]]

Note that these queries resemble SQL queries on model in-
formation stored in a database [10]

5.2 Querying using theMOOSEEXPLORER

Reengineering large systems brings up the problem
of how to navigate large amounts of complex informa-
tion. Well-known solutions are code browsers such as the
Smalltalk one, which have been sufficient to support code
browsing, editing and navigating a system by the way of
senders and implementers. However, for reengineering
these approaches are not sufficient because:

� The number of potentially interesting entities and their
interrelationships is too large. A typical system can
have several hundreds of classes which contain in turn
several thousands of methods, etc.

� All entities need to be navigable in auniform way.

– In the context of reengineering no entity is pre-
dominant. For example, attribute accesses can be
extremely important to analysis methods but in
other cases completely irrelevant.

– In presence of an extensible meta-model, the nav-
igation schema should take into account the fact
that new entities and relationships can be added
and should be navigable as well.

MOOSE EXPLORER proposes an uniform way to repre-
sent model information (see figure 3). All entities, relation-
ships and newly added entities can be browsed in the same
way. From top to bottom, the first pane represents a current
set of selected entities. Here we see all the attributes of the
current model. The bottom left pane represents all the possi-
ble ways to access other entities from the currently selected
ones. Here, from the selected attributename of the class
Node the methods that access it are requested. The result-
ing entities are displayed in the right bottom pane and can
then be further browsed. ‘Diving’ into the resulting enti-
ties puts them as the current selection in the top pane again,
which allows for further navigation through the model.

6 Refactoring

The MOOSEREFACTORING ENGINE closes the reengi-
neering circle. While the MOOSEcore provides for a repos-
itory and querying and navigation support, the MOOSE

REFACTORING ENGINE provides support for doing actual
code changes. Refactoring [7] is about making changes to

Figure 3. MOOSE EXPLORER: navigating a
meta-model in an uniform way.

code to improve its structure, simplicity, flexibility, under-
standability or performance [1] without changing the exter-
nal behaviour of the system. The MOOSE REFACTORING

ENGINE provides functionality similar to the Refactoring
Browser [14] for Smalltalk, but for multiple implementa-
tion languages.

The MOOSE REFACTORING ENGINE does virtually all
of the analysis — needed to check the applicability of a
refactoring and to see what exactly has to be changed — us-
ing the language-independent FAMIX model. The language
dependence can be kept on a minimal level, because firstly
the refactorings are very similar for the different languages,
and secondly, FAMIX is designed to capture these common-
alities as much as possible. For instance, FAMIX supports
multiple inheritance, which covers Smalltalk’s single inher-
itance, C++’s multiple inheritance and Java’s classes and
interfaces. Language extensions (see section 4) cover most
of the remaining issues, for instance, to figure out if a class
entity in MOOSErepresents a class or an interface in Java.

Of course, changing the code is language-specific. For
every supported language a component has to be provided
that performs the actual code changes directly on the source
code. Currently the MOOSE REFACTORING ENGINE is
a prototype with language front-ends for Smalltalk and
Java. For Smalltalk we use the Refactoring Browser [14]
to change the code, and for Java we currently use a text-
based approach based on regular expressions. Although the
text-based approach is more powerful than we initially ex-
pected, we plan to move to an abstract syntax tree based
approach in the future.

A set of language-independent refactorings together with
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the analysis support of MOOSEitself provides for a power-
ful combination of using analysis to drive (semi-)automated
code improvements. This is illustrated by the scenario in
section 8.

7 Foundation for other tools

MOOSE serves as a foundation for other tools. It acts
as the central repository and provides services such as met-
ric computation and refactorings to the reengineering tools
built on top of MOOSE. At this point in time the following
tools have been developed:

� CODECRAWLER supports reverse engineering through
the combination of metrics and visualization [11, 3]
(see Figure 4). Through simple visualizations which
make extensive use of metrics, it enables the user to
gain insights in large systems in a short time. CODE-
CRAWLER is a tool which works best when we ap-
proach a new system and need quick insights to get
information on how to proceed. CODECRAWLER

has been successfully tested on several industrial case
studies.

� GAUDI [13] combines dynamic with static informa-
tion. It supports an iterative approach creating views
which can be incrementally refined by extending and
refining queries on the repository, while focusing on
dynamic information.

The following tools are currently under development:

� The MOOSE REVEALER is used to detect entities
which fulfill certain properties. At the basic level these
may be abstract classes, empty methods, etc. At a
higher level of complexity it addresses design prob-
lems such as unused attributes or big classes which
could be split by identifying clusters of methods or at-
tributes.

� The MOOSE FINDER is a tool that allows to com-
pose queries based on different criteria like entity type,
properties or relationships, etc. A simple query finds
entities that meet certain conditions. Such a query can
in turn be combined with other queries to express more
complex ones. The MOOSEFINDER is currently being
extended in order to handle multiple models in the con-
text of software evolution.

� The MOOSEDESIGN FILTER can use the meta-model
information to communicate with Rational Rose, in or-
der to generate design views on the code.

Not only does MOOSEserve as the base for all those ap-
plications providing them a number of functionalities like

the metrics framework, the repository also serves as com-
mon interface between those tools.

Except for providing the foundation for our own tools,
MOOSEalso interfaces with external tools. One example is
the Nokia Reengineering Environment [6].

8 Scenario

Figure 4. CODECRAWLER showing an inheri-
tance tree view of a system. The width of
the nodes represents the number of methods,
the height represents the number of instance
variables.

In this section we present a typical scenario of how the
MOOSE environment can be used. It shows three differ-
ent tools based on MOOSE, and their interaction to detect
a problem, analyze it and finally resolve it by changing the
code. Note that the scenario is partly hypothetical in the
sense that the MOOSE REVEALER is in its early stages of
development and that its capabilities are not yet tested in
real world cases.

We start with CODECRAWLER. Figure 4 shows a screen-
shot of this tool. In this case the bigger boxes denote bigger
classes in the inheritance hierarchy. The classes are bigger,
in terms of number of methods (x-axis) and number of at-
tributes (y-axis). In this way CODECRAWLER points us to
possible problems in a software system, as big classes might
imply a wrong distribution of responsibilities. We will fo-
cus on the tall gray class on the right side of the drawing.

In the second phase we use the MOOSE REVEALER to
analyze our possible problem. In this case the MOOSERE-
VEALER finds out that the class can be split in two pieces,
because it finds two groups of methods that have a strong
internal cohesion, but do not really depend on the other
group. The MOOSE REVEALER proposes the user to split
the class in a superclass and a subclass, both with one group
of methods. If the user decides that the proposed solution
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is a good idea, he or she can trigger the MOOSE REFAC-
TORING ENGINE to implement the proposed change. The
MOOSEREFACTORING ENGINE initiates a series of refac-
torings: it creates a new superclass, and pulls up the meth-
ods of one of the groups into this new class, while updat-
ing all the references to these methods and checking if the
changes do not have any unwanted effect on the system (the
changes should be behaviour preserving).

The scenario shows how powerful the combination of
metrics, visualization, FAMIX-based analysis and refactor-
ings can be. Of course, not every big class can be nicely
split (and quite often there is a good reason to have a specific
big class). Currently we are researching how far we can get
in finding possible solutions to potential problems. In the
end, however, only the developer can decide if a potential
problem is really a problem and if the proposed solution is
indeed a good and viable solution.

The fact that most of the analysis is based on
the language-independent representation of software in
MOOSE, makes the scenario applicable for every language
supported by MOOSEand the MOOSEREFACTORING EN-
GINE.

9 Validation and Evaluation

MOOSEand its tools have been validated in a few indus-
trial experiences. The idea was that members of our team
went to work on the industrial applications in a ’let’s see
what they can tell us about our system’ way. There was
no training of the developers with our tools. The common
point about those experiences was that the subject systems
were of considerable size and that there was a narrow time
constraint for all experiences we describe below:

1. A very large legacy system written in C++. The size
of the system was of 1.2 million lines of code in more
than 2300 classes. We had four days to obtain results.

2. An medium-sized system written in both C++ and
JAVA . The system consisted of about 120,000 lines of
code in about 400 classes. The time frame was again
four days.

3. A large system written in SMALLTALK . The system
consisted of about 600,000 lines of code in more than
2500 classes. This time we had less than three days to
obtain results. Parsing and storing the complete system
took less than 5 minutes on a PC Pentium III 500Hz.

The fact that all the industrial case studies where under ex-
treme time pressure lead us to mainly get an understanding
of the system and produce overviews [3]. We were also able
to point out potential design problems and on the smallest

case study we even had the time to propose a possible re-
design of the system. Taking the time constraints into ac-
count, we obtained very satisfying results. Most of the time,
the (often initially sceptical) developers were surprised to
learn some unknown aspects of their system. On the other
hand, they typically knew already about many problems we
found.

We learnt that, in addition to the views provided by our
tools, code browsing was needed to get a better understand-
ing of specific parts of the applications. Combining metrics,
graphical analysis and code browsing proved to be an suc-
cessful approach to get the results described above. The
obvious conclusion is that tools are necessary but not suffi-
cient.

Memory issues

Up to now we did not have problems regarding the number
of entities we loaded into the code repository. The maxi-
mum number of entities we loaded was around 250,000 in
the third industrial case, which was the limit on the available
computers. Surpassing 300,000 entities made the environ-
ment swap information to the hard disk and back. The code
repository might run into problems with multi-million line
projects. For that reason we have designed the code repos-
itory to support a possible database mapping easily. In that
sense the design of the code repository is more database-
oriented (with, for instance, a global entity manager than
object-oriented.

In addition, the following considerations have to be taken
into account when speaking about memory problems. First,
the amount of available memory on the used computer sys-
tem is, of course, an important factor. Secondly, we have
never even tried to optimize our environment neither in ac-
cess speed nor in memory consumption, because so far we
did not really have problems in these areas. Therefore, there
is some room for improvement, would it be needed in the fu-
ture. A third aspect is that tools that make use of the repos-
itory need some memory of their own as well. For instance,
CODECRAWLER needs to create a lot of additional objects
(representing nodes and edges) for the purpose of visualiza-
tion.

The requirements revisited

In section 2, we listed three properties which a reengineer-
ing environment should possess. We will now list those
properties and discuss how MOOSE evaluates in that con-
text. In section 2 we stated that such an environment should
be:

1. Extensible. The extensibility of MOOSE is inherent
to the extensibility of its meta-model. Its design al-
lows for extensions for language-specific features and

6



for tool-specific information. We have already built
several tools which use the functionalities offered by
MOOSE.

2. Exploratory. MOOSEis an object-oriented framework
and offers as such a great deal of possible interactions
with the represented entities. We implemented several
ways to handle and manipulate entities contained in a
model, as we have described in the previous sections.

3. Scalable. The industrial case studies presented at the
beginning of this section have proved that MOOSEcan
deal with large systems in a satisfactory way: we have
been able to parse and load large systems in a short
time. Since we keep all entities in memory we have
fast access times to the model itself. So far we have
not encountered memory problems: the largest system
loaded contained more than 250,000 entities and could
still be held completely in memory without any notable
performance penalties.

10 Conclusion and Future Work

In this paper we have presented the MOOSEreengineer-
ing environment. First, we have defined our requirements
for such an environment and afterwards we have introduced
the architecture of MOOSE, its meta-model and the different
tools that are based on it.

The facilities of MOOSEfor storing, querying and nav-
igating information and its extensibility make it an ideal
foundation for other tools, as shown by tools such as GAUDI

and CODECRAWLER. Next to that, the environment has
proven its scalability and usability in an industrial setting.

Future work includes further development of our
MOOSE-based tools, using them to explore in more de-
tail topics such as design extraction, steering of refactor-
ings based on code duplication detection or other kinds of
analysis, and evaluating system evolution. Furthermore, we
are working on providing extended support for fine-grained
analysis by means of composed queries. Next to that, we
plan to introduceclassificationsor groupingsof entities to
support higher level views of systems.
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