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Abstract. Tuple spaces have turned out to be one of the most fundamental ab-
stractions for coordinating communicating agents. At the same time, researchers
continue to propose new variants of tuple spaces, since no one approach seems
to be universally applicable to all problem domains. Some models offer a cer-
tain configurability, but existing approaches generally stop at a fixed set of con-
figuration options and static configuration at instantiation time. We argue that
a more open approach is needed, and present OPENSPACES, an object-oriented
framework that supports static configurability through subclassing across several
dimensions, as well as dynamic configurability of policies through run-time com-
position. We introduce OPENSPACESby showing how it can be used to instantiate
a typical application, and we present an overview of the framework, implemented
in Smalltalk, detailing the various degrees of configurability.

Keywords: Object-Oriented Languages, Frameworks, White Box Reuse, Black
Box Reuse, Dynamic Reconfiguration

1 Introduction

Tuple spaces have proven to be among the most fundamental and successful abstrac-
tions for coordinating concurrent activities. There are numerous reasons why this should
be so, both technical and pragmatic.

On the technical side, tuple spaces have the advantage of capturing both commu-
nication and synchronisation in a simple and natural way. Tuples themselves represent
resources that can be communicated, shared and exchanged, without the need to use
additional synchronisation mechanisms. Furthermore, associative lookup obviates the
need for communicating agents to be explicitly aware of one another’s “identity.”

On the pragmatic side, there are many kinds of problems that map naturally to the
tuple space view of the world, namely, that there are many different kinds of concurrent
“agents” that want to exchange “stuff” with one another. Tuples, in a sense, represent
the least common denominator of data structures, and can therefore be used to easily
model almost any kind of “stuff.”

Why, then, have so many different variants of tuple spaces appeared over the years?
Numerous variations on tuple spaces have been proposed, and it does not seem as
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though this proliferation will end soon [PA98]. Again, there are numerous reasons why
this should be so, both technical and pragmatic.

On the pragmatic side, applications requirements impose different policies govern-
ing what kinds of “stuff” are exchanged, which agents have access to which resources,
how resources are matched against queries, and what kinds of actions may be triggered
upon exchanges of resources. On the technical side, tuple spaces say nothing about how
such policies may be introduced as higher-level abstractions. (Linda, for example, pro-
vides no abstraction mechanisms whatsoever, considering that to be a matter for the
host language.)

To alleviate this problem, some researchers have proposed tuple spaces with various
configurable parameters [Tol97]. Still, the degree of configurability in these approaches
tends to be limited, and any configuration parameters must be fixed when the tuple
space is instantiated. Even approaches that allow different matching algorithms to be
employed do not allow these to be changed at run-time. For application domains in
which the policies under which agents exchange information and resources may be
dynamically negotiated, this is not enough.

We propose OPENSPACES, an object-oriented framework which offers the core ser-
vices of tuple spaces as standard features, and at the same time allows the policies in
place to be arbitrarily tailored, and set in place at run-time. OPENSPACES is both a
white-box and black-box framework. Individual tuple space abstractions can be spe-
cialised by subclassing, and their instances can be dynamically configured and com-
posed at run-time.

OPENSPACEScan be tailored in the following ways: (1) Different kinds of entities
to be stored in anOpenSpace are defined by subclassingEntry . (2) Different match-
ing policies are defined by subclassingConfigurationPolicy . (3) Methods to be
triggered before and after every access to a space can be specialized. This is useful for
validating, modifying or rejecting entries, or for triggering any useful side effect. (4)
These hook methods and the matching algorithms can be plugged in dynamically in a
black-box fashion and take effect without restarting the system. (5) A special update
method can be triggered to automatically adapt affected entries whenever the policy in
place is dynamically changed.

In section 2 we introduce a motivating example that illustrates several of the kinds
of configurability typical of coordination applications. In section 3 we introduce OPEN-
SPACESby showing how it can be used to tackle the motivating example. Sections 4 and
5 present the OPENSPACESframework in more detail and illustrate how the framework
supports variation. In the last two sections we present related work and conclusions.

2 Example: An Electronic Market Place

We will motivate OPENSPACESwith a running example that exhibits not only a classical
set of coordination requirements, but also common forms of variability. In the following
section we will see how OPENSPACEScan fulfill both sets of needs.
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2.1 Scenario

Let us consider a typical trading situation: a buyer agent (i.e., someone representing a
client) is looking for some goods or services. He wants to inform potential sellers of his
needs and publishes his request e.g. as an advertisement in a newspaper. The sellers see
the request and may react by offering a concrete bid for it. The buyer agent can choose
amongst all received offers and may accept the one that meets his needs best.

This simple scenario exhibits several classical coordination requirements: the buyer
doesn’t know the sellers in advance; multiple potential sellers should be informed of the
request; neither simultaneous nor synchronous communication between the buyer and
sellers is needed; instead, the request should bepublishedin some suitable medium;
the request can be withdrawn once it is fulfilled (or expires); multiple buyers may wish
to publish requests in thematically related media. This negotiation protocol therefore
perfectly matches the characteristics of a blackboard-style architecture. Every step can
be performed by posting a corresponding entry to the blackboard. It can be read or
taken (consumed) by the receiver. Participants don’t have to know each others’ location
or name, they just need to know where to find the blackboard.

2.2 Analysis

Even this simple scenario poses special requirements for thepolicies in place for the
blackboard. A minimal implementation would require the following setup: (1) There
are two kinds of agents to represent the buyers and the sellers. (2) The agents exchange
entries (possibly, but not necessarily tuples) representing requests, offers and deals.
Requestsdescribe the desired product and maximum price.Offersdescribe the offered
product and price. ADeal finally is written to accept a received Offer. (3) An offer
must reference the request it responds to. A deal must reference the offer it accepts. (4)
Requests must be readable by anyone interested, but they may only be withdrawn by
the issuing buyer, when he is no longer interested in receiving more offers. (5) Offers
referencing a request may only be read and removed by the initiatingBuyer. (6) Deals
may be read and removed by the seller who has issued the referenced offer. (7) To divide
the market into multiple thematic sections, all entries must have a label with the name
of the section they belong to.

3 The Market Place usingOPENSPACES

We will now introduce OPENSPACESby showing how it can be used to implement the
market place scenario. We start with the simplest solution that works and incremen-
tally show how we can specialize and extend the framework to provide new features or
more refined solutions. First we present an overview of the framework to introduce the
different entities involved.

3.1 OPENSPACESin a Nutshell

Our framework is tailored to instantiate data-driven coordination languages. The core
defines a blackboard style medium, anOpenSpace , which allows agents to interact
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by exchanging data that are encapsulated asEntry objects. The agents are specializa-
tions ofSpaceAgent . To get a reference to anOpenSpace , the agent calls the glob-
ally accessibleSpaceServer , a name server that holds aSpaceAdministrator
maintaining a collection of currently registered spaces.

SpaceAdministratorSpaceServer

SpaceAgent OpenSpace

Entry

ConfigurationPolicy

<<associated>>

Fig. 1.Overview on the core classes of OPENSPACES.

The space offers the standard accessing primitives:write: anEntry puts the
entry into the space,read: aTemplateEntry and take: aTemplateEntry
retrieves an entry by associative lookup. Thetemplateis an entry that is used as a mask
to select an entry from the space. Thematching algorithmdetermines whether or not an
actual entry matches the template and may be returned for it.

In OPENSPACES the matching algorithm is variable. It can be specified as needed
for an application. Every used subclass ofEntry may have its own strategy, which
is defined in an associatedConfigurationPolicy . In addition the policy object
controls the access to the spacefor entries of its associated class. This is realized with
validating methods that are applied before and after all accesses. These methods may
basically trigger any action on attempts to access the space (cf. section 4.3).

3.2 Market Place V.1: Standard Implementation

Instead of communicating tuples, we will useForm as a concrete subclass ofEntry .
It has as its sole attribute a dictionary, calledbindings , which is used to store asso-
ciations of any keys and values. This is a flexible approach since additionally needed
values may be added without the need to define new subclasses.

A template matches aForm: (1) if the form is an instance of the same class as the
template or of a subclass, and if (2) the form’s bindings contains all the keys of the
template’s bindings and (3) their respective values are equal. Additional keys of the
form are not considered.

The definition of the matching strategy is a responsibility of configuration policy
objects. Figure 2 shows the implementation of the matching algorithm for the used
forms. It is defined in classFormPolicy , extendingConfigurationPolicy .
Using the Market Place forms In the forms’ bindings we enter the needed data for
the trade communication and the name of the section of the market the form belongs
to. As mentioned, aForm may be a request, an offer or a deal. Therefore it gets a
value denoting its type. A request form can have bindings for a product name, for a
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FormPolicy >> does: aForm matchWith: aTemplate
"Answer true if aForm contains all keys of aTemplate and all
respective values are equal."
|ok|
ok := (aForm isKindOf: aTemplate class)

and: [aTemplate bindings notNil].
ok ifTrue:

[aTemplate bindings keys
do: [:key |

(aForm bindings includesKey: key)
ifFalse: [ok := false]
ifTrue:

[ok := (aForm bindings at: key)
= (aTemplate bindings at: key)]]].

ˆ ok

Fig. 2.The matching algorithm for forms defined in classFormPolicy .

description of the product, and for the maximum price the buyer is willing to pay for it.
An offer form may describe a concrete product and price, and holds a reference to the
request. A deal form has a reference to the offer it accepts.

3.3 Uniquely Identifiable Entries

To have a uniquely referenceable index for each form, we add a binding for the index
and its value to every form when writing the form to the space. To remember the highest
index used so far, there is aTail entry to hold its current value. AMarketAgent –
a specializedSpaceAgent – who wishes to append a new form to the market place,
takes the tail entry, increments its index value, puts it back to the space and writes the
form with the new index to the space (See figure 3). Beside remembering the last used
index, theTail entry – actually a counter – acts also as a semaphore, ensuring that
only one form is written per index.

MarketAgent >> append: aForm
"Get a new index, add it to aForm and write aForm to the space"
|template tail|
template := TailEntry new.
template section: (aForm bindings at: #section)).
tail := self hostSpace take: template.
tail index: tail index + 1.
self hostSpace write: tail.
aForm bindings at: #index put: tail index.
self hostSpace write: aForm

Fig. 3.The MarketAgent’s appending method.

A MarketAgent who wants to read all present requests would have to iterate
over all indices up to the last one denoted by the tail. As a simplification the agent may
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use thereadAll operation provided by OPENSPACES, which is similar toread , but
returns a collection with ALL entries from the space that match the template.

3.4 Stepping through a trade

As actual participants we specializeMarketAgent to Buyer andSeller . Their
respective protocols support the role specific actions of their respective parts. These
are as follows: (1) The buyer makes a request by appending a new request form to the
market space. (2) Sellers get the request when scanning for newly arrived requests. (3)
Each seller may make an offer for it by appending an offer form that references the
request with its index. (4) The buyer scans for offers to her request and takes them from
the market. (5) When detecting a valuable offer, the buyer accepts it by appending a
deal form with a reference to the offer and also the initial request to avoid differences.
She then removes referenced requests. (6) The seller detects the deal form by scanning
for any reactions to its own offers and removes it.

For each participant we have built a simple user interface. TheBuyerUI allows a
user to specify a requested product and send a request form to the space. The UI shows
the received index for the request. The UI shows the collected offers and lets the user
select the best and send a deal form. The seller has a similar UI for her counterpart.

Fig. 4.The user interface for the buyer.

3.5 Market Place V.2: Consistency Assertions

In the first version of the market place, we defined a special matching algorithm for
our market forms. In addition to the specific form matching algorithm we now define
access control assertionsin the configuration policy, which are applied at each attempt
to read, take or write certain entries. We thereby check the forms for completeness and
correctness.

This checking is made in subclasses ofConfigurationPolicy . To become
effective the policies must be registered with the class of entries it will be affecting. We
therefore subclassedForm toRequest , Offer andDeal (without any changes in the
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implementation). The corresponding policies each override thepreWriteCheck:
method to specify the needed checks on the used forms before they are written to the
space. The forms are accepted only if they are correct, otherwise they are rejected. (In
section 4.3 is a more detailed discussion of these hook methods).

RequestPolicy >> preWriteCheck: aForm
"Check aForm for necessary keys, if its index is equal to the
tail’s and if there is no other form present with this index."
|ok|
"... ok := aForm includes keys #section, #product, and #index"
ok ifTrue:

[ |template tail|
template := TailEntry new.
template section: (aForm bindings at: #section).
tail := self hostSpace read: template.
ok := (aForm bindings at: #index) = tail index ].

ok ifTrue:
[ template := Form new.
template bindings

at: #section put: (aForm bindings at: #section).
(hostSpace readAll: template)

do: [:each |
(each bindings at: #index)=(aForm bindings at: #index)

ifTrue: [ok := false]]].
ˆok

ifTrue: [aForm] "passed"
ifFalse: [nil] "reject"

Fig. 5.ThepreWriteCheck: method of theRequestPolicy for consistency assertion.

TheRequestPolicy checks if the request form is complete and if its index actu-
ally is unique and equal to the tail entry’s index. Figure 5 shows this consistency check.
TheOfferPolicy checks if the offer includes a reference to a request that is actually
(still) present at the space. TheDealPolicy checks if the deal includes references to
an offer and a request. If the referenced forms are still at the space they are removed
(space clean up).

With the same approach we may increase consistency of the system more by e.g.
not allowing an agent to write the same form twice, etc. Note that the form and policy
classes can be used with the new policies as soon as they are defined and registered at
the space.

3.6 Market Place V.3: Automatic Index Handling

The index incrementing procedure for writing market forms is somewhat awkward. We
want to reduce the workload and the responsibility of the market agents - and also the
network traffic(!) - by doing this at the space.
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We specialize the configuration policies to handle the indices automatically. The
agents append forms without checking for a correct index. The policy takes care of the
tail business and sets the index of the form accordingly. Since the write operation of the
space returns the actually written entry, the agent checks this for the received index.

In Figure 6 thepreWriteCheck: method passes the validated form back to the
space’s writing operation where it will be used instead of the original form. Since the

AutomaticIndexPolicy >> preWriteCheck: aForm
"Take the tail entry, increment its index and put it back.
Enter the new tail index to the form"
|checkedForm|
checkedForm := (aForm bindings includesKey: #section)

ifTrue: [aForm]
ifFalse: [nil].

checkedForm notNil
ifTrue:

[ |template tail newIndex|
template := TailEntry new.
template section: (aForm bindings at: #section).
tail := self hostSpace take: template.
newIndex := tail index + 1.
tail index: newIndex.
self hostSpace write: tail.
aForm bindings at: #index put: newIndex.
self hostSpace write: aForm
checkedForm bindings at: #index put: newIndex].

ˆcheckedForm "return form with new index"

Fig. 6.The automatic index handling at the configuration policy

configuration policy is local to the space, this is quickly done and causes less network
traffic. It allows us to reduce the responsibilities the agent has to fulfill, allowing it to be
’thinner’. Altogether this modification reduces the risk of errors, improves consistency
of the market, and thereby assures even better performance.

3.7 Reconfiguration

As soon as a new configuration policy class is defined and is associated with an entry
class, it will be used. I.e. the next space operation with an affected entry will be ruled
by the policy’s matching algorithm and access checking methods. The important impli-
cation here is that the space can bedynamicallyreconfigured. In section 5.4 we present
how the framework lets the programmer define the needed procedure to adapt entries
that are in the space at the moment the reconfiguration becomes effective.

After these examples of using our framework, we continue with a more detailed
description of the classes and contracts in OPENSPACES.
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4 The OPENSPACESFramework

OPENSPACES is an object-oriented framework implemented in Smalltalk. It offers the
possibility to implement a variety of different data-driven coordination languages to
be used in distributed environments. Instantiations may have the characteristics of the
original LINDA [GC85] model, of object-oriented approaches like proposed by JAVA -
SPACES [FHA99] and TSPACES [WMLF99]. The novelty of OPENSPACES is that it
offers fine-grained configuration options which may also be dynamically changed.

We now present the core classes and their structural relationships, collaborations
and the key contracts between these classes.

4.1 Core Classes and their Relationships

The core of OPENSPACESconsists of the following six classes:

OpenSpace

Entry[] entries
ConfigurationPolicies configurations
Str ing spaceName

write: anEntry  ^Entry
read: aTemplate  ^Entry
take: aTemplate  ^Entry
blockingRead: aTemplate  ^Entry
blockingTake: aTemplate  ^Entry
readAll:  aTemplate  ^Entry[]
takeAll:  aTemplate  ^Entry[]
...

ConfigurationPolicy

OpenSpace hostSpace

does: anEntry
        matchWith aTemplate ^boolean
preWriteCheck: aTemplate  ^Entry
postWri teCheck: aTemplate  ^Entry
preReadCheck: aTemplate  ^Entry
postReadCheck: aTemplate  ^Entry
preTakeCheck: aTemplate  ^Entry
postTakeCheck: aTemplate  ^Entry
updateOldEntr iesOfClass: aClass

SpaceAdministrator

OpenSpace[]  spaces

getSpaceNamed:  aSpaceName
registerEntryClass: aClass

withPolicy: aPolicy
atSpace:  aSpaceName

unregisterEntryClass: aClass
atSpace:  aSpaceName

SpaceServer

SpaceAdministrator admin

getSpaceNamed:  aSpaceName
...

*

*

SpaceAgent

OpenSpace hostSpace

...

Entry

Fig. 7.Structural Relationships of the core of OPENSPACES.

Entries contain the data which space agents may exchange via a space.Entry is
the abstract root class for all space entries. It has no attributes, applications must define
subclasses with the necessary instance variables to hold the exchanged data. There is
no restriction concerning number or kind of objects to be held.

The class of a concreteEntry descendant forms also the key which is used to
associate the class with aConfigurationPolicy . This association governs the
behaviour of the Space concerning all operations with instances of the specified entry
class. Actually every entry subclass has to be registered at the space with a correspond-
ing configuration policy. Unregistered entry types are rejected.
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Configuration Policies represent the semantics of the space’s access operations af-
fecting certain classes of entries. Subclasses ofConfigurationPolicy define the
matching algorithm to be used for retrieving operations and a set of access controlling
methods which are applied at each access with the involved entry types.

Open Space is the abstraction representing the blackboard medium. It holds a collec-
tion of entries and offers several ways of accessing it. The standard primitives adapted
from LINDA are supported:write , read andtake . 1 The two retrieving operations
read: aTemplateEntry and take: aTemplateEntry use their parameters
as a mask to do an associative lookup of a matching entry. The template is anEntry
which may have some of its data fields defined and some not. In a general matching
strategy the undefined fields act as wildcards for the lookup. Those with actual values
restrict the selection of entries that have equal values. The lookup in general is nonde-
terministic.

The simpleread andtake operations are non-blocking, i.e. the calls return imme-
diately, either with a found entry or a null-value, if nothing was detected. OPENSPACES

also supports the blocking variants:blockingRead and blockingTake . These
cause the calling client process to suspend until a matching entry is available.

Two additional bulk-retrieving operations are supported.readAll andtakeAll
act the same as the simple ones with the exception that they return collections withall
currently available matching entries. All space access operations are atomic.

The exact behaviour of anOpenSpace may be different for any class of used en-
tries, depending on theconfiguration policyobjects they are associated with. Therefore
OpenSpace provides the functionality to manage themappingbetween entry classes
and configuration policies.

Space Agent is the standard user abstraction for the space. It holds a reference to
its current space which it gets from the globally accessibleSpaceServer . The class
SpaceAgent is often subclassed to add application specific behavior and hide the
underlying communication structures.

The Space Server is used by all space agents to access a space.SpaceServer is
a singleton object that acts as a name server. Spaces are looked up by their name, they
must be registered to become available. If a request is made specifying an unknown
space name, the space server may act as a factory. It can create and register a new
space with the given name. The space server delegates the actual managing of the space
references to theSpaceAdministrator and redirects the allowed requests to it.

The Space Administrator is the actual manager ofOpenSpaces . TheSpaceAdministrator
holds a collection with references to all currently registered Spaces and implements
their accessing by name. It offers the methods to register (and unregister) any local or
remote Spaces.

1 The naming convention was borrowed from JAVA SPACES, since it seems more natural and
clear to ”write” an entry instead of ”out-ing” it.
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4.2 CORBA as an Implementation Layer

OPENSPACES uses Cincom DST (Distributed Smalltalk) for the distribution. DST is
CORBA 2.0 compliant and offers in addition a special feature called ‘Implicit Invoca-
tion Interface’ (I3) which is an extension to the CORBA facilities that provides remote
communication between Smalltalk applications without explicit IDL definitions.

Connecting to a Space To get an initial reference to theSpaceServer OPEN-
SPACESoffers two options for a client. The first is to set its ORB as client to the cor-
responding address and port number of the server ORB. Like that the naming service
of the server ORB can be used to resolve a reference to the space server. The second
option is to write an IOR file with the stringified object reference of the space server to
an accessible location where the agents may read it and connect themselfes.

Distributed Event Service DST provides an implementation of the CORBA event
service protocol. In OPENSPACES this is used for a notification option: a SpaceAgent
may subscribe to be notified by the space when an entry is written that matches a given
template. The subscription is terminated when a match is found. For continuing notifi-
cation it can repeatedly be renewed.

Market Place V.4: Automatic Notification As example of notification mechanism,
we implemented an automated variant of the Market Place. Buyers would like to be
informed of newly arriving Offers the reference their own Requests. Sellers would like
to be notified of new Requests and also of Deals for their own Offers.

This variant is easily realized by extending the two agent classes toNotified-
Buyer andNotifiedSeller . Upon every request the buyer makes, he subscribes
at the space with a template of an offer holding the corresponding request number.
When notified, he automatically takes the newly arrived offer from ths space. The seller
subscribes for requests at initialisation time and for the accepting deals at each offer she
issues.

4.3 Framework Contracts

After having briefly described the core classes, we now present how they interact. An
important part of the framework’s flexibility originates from the contracts of the differ-
ent access methods available to clients of anOpenSpace . We describe in detail the
read contract. The take contract is analogous. The write contract differs in some parts.

Read Contract An attempt to perform aread operation by an agent initiates the
following interactions between the participating entities (cf. figure 8):

1. An agent creates atemplaterepresenting the kind of information he wants to re-
trieve from the space.

2. The agent calls the space’sread: method with the template.
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3. The space looks up the configuration policy associated with the template class.
4. The space calls the cpolicy’spreReadCheck: method with the template.
5. The policy creates achecked templateand returns it.
6. The space iterates over its entries asking the policy for each if it matches with the

checked template.
7. The space passes the firstfound entryto the policy’spostReadCheck: method.
8. The policy creates achecked entryand returns it.
9. The space returns the checked entry to the agent.

aTemplate

foundEntry

checkedEntry

checkedTemplate

1. create

5. c
reate

8.
 c

re
at

e

anAgent
2. read: aTemplate

9. ^ checkedEntry

3. aConfigurationPolicy :=
configurations at: aTemplate class

aSpace aConfigurationPolicy

4. checkedTemplate :=
        preReadCheck: aTemplate

7. checkedEntry :=
       postReadCheck: foundEntry
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Fig. 8.The read contract: instead of directly accessing the space’s entries, the presented template
and the found entry are controlled by the configuration policy.

All read variants (read , blockingRead , readAll ) apply the same pre- and post-
hooks before and after the retrieving, the same holds for the variants oftake .

Take and Write Contracts The take contract is analogous to the one for read ac-
cesses. The difference is that the called hook methods arepreTakeCheck: and
postTakeCheck: and a successful lookup results in the removal of the matching
entry from the space. The write contract again differs in using its own hook methods.
Additionally the write operation has to check the lists with reservations for reading or
taking which are maintained for the blocking accesses. This means that it has to scan
these two lists to check if the written entry matches with a template used for the block-
ing accesses. If so the waiting process has to be resumed. The same with all notification
handlers. If the new entry matches one of the event handler’s templates it has to issue
the corresponding event. These checks are performed after the postWriteChecks.
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Discussion With the described contract, the hook methods allows a user to specify
many useful variants of a space’s behaviour. This offer advantages like:

– ProtectionThe space can ensure that the entry put in the space holds certain prop-
erties and the space agent is ensured that the retrieved entry is coherent.

– Shifting ResponsibilityInstead of requiring the space agents to be responsible for
consistency of the space, it is the space itself that does so by invoking the configu-
ration policy that controls its state.

– Reduction of thenetwork traffic.
– Hiding space administrationThe space can perform administrative tasks that are

hidden from the space agent.
– Basicallyany actionmay be triggered if needed.

5 Extensions, Configurations and Reconfigurations

The OPENSPACESframework provides three main axes of variability. First, simple sub-
classing of the core classes allowswhite-box extensionand reuse [JF88]. Second, the
specialisation ofconfiguration policyobjects offersblack-box extension. Moreover, be-
sides compile-time extension, the configuration policy objects allows the runtimere-
configurationof a given system. The following sections present these three aspects of
the framework extension.

5.1 White-Box Extensions

SubclassingEntry class serves two purposes: (1) to define application specific data
fields and (2) to map the considered entry type to a specific configuration policy as
shown in the assertions example in section 3.5.

The baseclassEntry doesn’t have any predefined data fields. Subclasses define
any kind of attributes: arrays like in LINDA , named instance variables like e.g. in JAVA -
SPACES, or any mixed strategies.

SubclassingSpaceAgent class will be used for any application-specific adaption of
space-using. E.g. summarizing several single accesses like theappend method in the
Market Place example in figure 3. Other examples that motivate specialization include
handling of multiple space references or automatic subscription for notification.

SubclassingOpenSpace class allows one to introduce new or specialised operations
like e.g. an update method which allows an agent to modify an entry at the space in
one step, instead of having to read, modify and rewrite it. Or a direct exchange method,
allowing to agents exchange their entries atomically, as realized in TSPACESwith the
rhonda operation. Many extensions however can be realized with suitably choosen
configuration policies, as shown with the index handling example in 3.6.
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5.2 Black-Box Extension: Configuration Policies

As we already mentioned, each space maintains amappingbetween entry classes and
their associated configuration policies. These policies determine the way the space con-
trols accesses of entries. We discuss the detailed mechanism how this is organized. Then
we present another variation of our market promoting an automatic garbage collection
at the space.

Matching Algorithm The basic strategy for the associative lookup of entries at re-
trieving operations is simple: the space scans its entries collection for an entry that
matches the given template. The ConfigurationPolicy provides the boolean function
does: anEntry matchWith: aTemplate which is used for this scan (cf. form
matching in figure 2). The state of the template may be controlled, special values may
be required, a keyed matching may be performed. Any condition may be tested.

Pre- and Post-Access Hooks For each access operation, theConfiguration-
Policy class defines twohookmethods.preReadCheck: aTemplate is called
before the space’s scan for a matching entry. It returns a validated version of the tem-
plate that will be used for the lookup. To reject a template the method returns nil which
causes the read operation method to abort and also return nil. After a successful lookup
of a matching entry this is validated in the same manner by thepostReadCheck:
hook. This validated entry finally will be returned to the calling space agent. The take
and write operations each employ an analogous pair of validators.

These hooks may be used for entry verification, modification, exchange or access
refusal. Moreover, any additional actions can be triggered, like accessing the space to
check for consistency, for doubles, perform some logging activity, etc.

5.3 Market Place V.5: Automatically Discarding Outdated Forms

Some automatic handling of outdated forms is a realistic requirement. Without such
support, obsolete Requests and forgotten Offers can easily start to clutter a space. One
possible solution for this is to add a timestamp to every entry being written to the space.
After the expiry of the lifetime of the entry it will be discarded, this may be after a col-
lectively defined duration for all entries or after an individually amount that is specified
in the entry’s fields.

The task of adding the arrival time at the space can be done by thepreWrite-
Check: method, by adding a key#entryTime with the current time to the form’s
bindings before writing it to the Space.

The check for expiration can be done periodically or triggered by the space access-
ing operations. Each of the hook methods of the configuration policy may call a garbage
collection method that scans through all entries and discards the expired ones. This is
sufficient for consistency since every access ‘sees’ a freshly updated view of the Space.

We implemented a Market Place variant with a default expiration time for all forms,
using the policy’s pre-operation hooks to trigger the cleanup. The following code ex-
tends theFormPolicy by creating a new subclassLeasingPolicy on which the
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hooks methods are specialized. Figure 9 shows the specification ofpreReadCheck: .
The boolean variableisCleaning is used to distinguish if the hook method is trig-
gered by a client or by the configuration policy itself in the course of cleaning up.

5.4 Run-Time Configuration

Beside the static extension of the framework, OPENSPACES provides dynamic con-
figuration of the spaces. Indeed, changing requirements of any kind can necessitate a
reconfiguration of the used mapping. With OPENSPACES, an application can change
the policies on a running system.

Dynamic Configurations. To define a configuration mapping, the space offers a reg-
istering methodregister: anEntryClass withPolicy: #aConfigura-
tionPolicy that associates entry classes with specific policies. Since the needed
configuration policy is looked up for every access of the space, a modification of the
mapping automatically becomes effective. Therefore, it is easy to apply a new configu-
ration on the fly. It is actually the standard procedure to register all needed entries after
the creation of the space.

Note that the registration methods use the same mechanism for mutual exclusion as
the basic operations. This guarantees that no running execution is interrupted.

Reconfigurations. There are situations that may require policies to be changed without
restarting and resetting the entire system. New requirements or temporary changes may
call for restrictions or modifications of the parameters.

To change the policy of an entry class we just unregister the old association before
registering the new one. This is easily done with OPENSPACES. Dynamically changing
the configuration mapping however can have an impact on the entries that are already
present in the space, having been written under the previous policy. The OPENSPACES

approach to this delicate problem is to give the programmer the possibility to specify
necessary actions to be applied when a new policy is activated. To do so the space’s
method to register a new configuration calls a hook method of the new configuration
policy, calledupdateOldEntriesOfClass: anEntry . It is executed after the
new policies are activated, before any client may access the space thereafter. Any ac-
tions can be triggered for a clean transition. (It’s the responsibility of the programmer
to implement them!)

In Figure 10 we show the code used to dynamically introduce the lease time exten-
sion of the previous example. Any forms already present at the space should be supplied
with an arrival time binding. The easiest way to do this is to take them all from the space
and write them again, letting the new policy take care of it.Caveats. The triggered actions in all of these hooks methods of the configuration poli-
cies may easily cause loops. When e.g. apreReadCheck: method of a configuration
policy calls the read method with an entry of the same class as the policy is registered
for, some precautions must be taken to prevent infinite loops. A solution can be to dis-
tinguish between the first call to the method (by the client) and the following calls (by
the policy itself) with a flag that is set before the policy does its accesses and unset
afterwards. Like that the hook is bypassed for ‘internal use’ (cf. figure 9).
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FormPolicy subclass: #LeasingPolicy
instance variables: ’defaultLeasingTime isCleaning’.

LeasingPolicy >> preWriteCheck: aTemplate
|checkedTemplate|
checkedTemplate := super preWriteCheck: aTemplate.
checkedTemplate notNil

ifTrue: [aForm bindings at: #arrivingTime put: Time now].
ˆcheckedTemplate

LeasingPolicy >> preReadCheck: aTemplate
|checkedTemplate|
ˆ self isCleaning "Is the method initiated by the receiver?"

ifTrue:
[aTemplate] "Do not cause a loop"

ifFalse:
[checkedTemplate := super preReadCheck: aTemplate.
self cleanupSectionOfTemplate: checkedTemplate]

LeasingPolicy >> preTakeCheck: aTemplate
"... same as preReadCheck: "

LeasingPolicy >> cleanupSectionOfTemplate: aTemplate
"Enter ’cleaning-mode’, perform cleanup and exit again"
|section|
self isCleaning: true.
section := aTemplate bindings at: #section.
self throwAwayOutdatedFormsAtSection: section.
self isCleaning: false.
ˆaTemplate

LeasingPolicy >> throwAwayOutdatedFormsAtSection: aSectionName
|template forms arrived|
template := Form new.
template bindings at: #section put: aSectionName.
forms := hostSpace readAll: template.
forms do: [:each |

(each bindings includesKey: #arrivingTime)
ifTrue:

[arrived := each bindings at: #arrivingTime.
((arrived addTime: defaultLeasingTime) < Time now)

ifFalse: [hostSpace take: each]]

Fig. 9.The configuration policy for automatic garbage collection.
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LeasingPolicy >> updateOldEntriesOfClass: anEntryClass
"Take all present forms from the space and rewrite them. Like
that they are supplied by the policy with a binding denoting
they had just arrived."
| template forms |
template := Form new.
forms := hostSpace readAll: template.
forms

do: [:each | hostSpace write: each] "adds arriving time"

Fig. 10.The update method for the dynamic introduction of the lease time policy.

It is also not recommendable to use the blocking variants of the retrieving operations
because they would cause the main space process to block.

6 Related work

There are several parameters regarding configurability of a data-space framework: is it
object-oriented, does it support white-box extensions, are there options for pluggable
configurations in the black-box style? We will focus on three implementations promot-
ing configurability options.

R.Tolksdorf’s BERLINDA [Tol97] is a object-oriented framework similar to OPEN-
SPACES. It has a set of basic abstractions for a space, entries, agents. It can be extended
in a white-box style. In BERLINDA, a concrete entry class has to implement the match-
ing function, which can be defined as desired. Like in OPENSPACES, this feature is
remarkable, since all other known implementations use a fixed algorithm, which cannot
be modified. Note however that in OPENSPACESthe matching algorithm is decoupled
from the entries and then can be changed dynamically.

Concerning access control, the work of Minsky and Leichter [ML95] on LAW-
-GOVERNED L INDA is of great interest. In this model aLaw rules the reactions of
the tuple space to events occurring on attempts to use the access operations or when a
successful matching has been performed. These events may trigger actions that are de-
fined in the global law. [MMU00] introduces controller-processes for each agent using
a space which enforce the application of the law.

OPENSPACEShas a similar reaction model. The events are all types of access oper-
ations at the space, the reactions are the different hooks methods that are applied before
and after each of them. By modifying or exchanging a used template or a found entry
in the hook methods we can model LAW-GOVERNED L INDA ’s variants of operation
completions. The two different post-retrieving hooks allow one additionally to distin-
guish between a matching of a read or of a take operation. The enforcing of the rules
in OPENSPACES is encapsulated in the configuration policies of which are local to the
space. This has the advantage that a reconfiguration does not have to modify multi-
ple copies of a law that are spread amongst the controllers. Moreover, OPENSPACES

does not restrict the space operations that may be used as reactions, but it is left to the
framework user to be aware of potentially blocking methods or loops.
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In “Programmable Coordination Media” Denti et al. show well the principal benefits
of a space with programmable behaviour [DNO97]. Indeed, their specialization of the
space behaviour to enforce resource accessing strategies inspired us for searching ways
to let a space take care of additional responsibilities. This helps to free the agents from
unnecessary responsibilities and adds control to the space.

Two popular tuple space frameworks in Java have been released in ’99: Sun Soft’s
JAVA SPACES [FHA99] and IBM’s TSPACES [WMLF99]. Both use subclassing of a
general entry (resp. tuple) abstraction for the exchanged data. The matching algorithm
is fixed for both of the systems. TSPACES provides some interesting extensions like
the mentionedrhonda operator, or a set of query-like range matching options and
set-retrieval operations.

In summary, while LAW-GOVERNED L INDA offers a fine grained access control at
the space, most implementations provide at most extension through subclassing. The
matching algorithm is definable in BERLINDA, in all other works it is fixed. Moreover,
dynamic reconfiguration of the space behaviour is not addressed.

7 Conclusion

In this paper we have presented OPENSPACES, an object-oriented framework for build-
ing applications with architectures in a blackboard style. The kernel of OPENSPACES

is based on six entities:Space agentsaccessspacesto store or retrieveentries. Configu-
ration policyobjects are responsible for the matching strategy and for a complete set of
access controlling methods. Thespace serverprovides access for the space agents and
thespace administratormanages creation and lifecycle of the spaces.

We have presented several extensions to show how the design of the framework al-
lows the developer to control all the important parameters of space manipulations. Be-
sidewhite-box extensionbased on the specialization of the core entities, OPENSPACES

allows us to extend it in ablack-boxstyle by defining new policy objects that can be
plugged to configure the space’s behavior. This reconfiguration may be donedynami-
cally during runtime. OPENSPACESoffers support to handle the transition between two
consecutive configurations.

For the future we plan to extend our prototypical framework with support for pure
CORBA using IDL. This will allow clients agent written in other languages to use
OPENSPACESfor coordination.
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