Supporting Objects as An Anthropomorphic
View at Computation
or
Why Smalltalk for Teaching Objects?

Stéphane Ducasse and Roel Wuyts
Université of Berne
{ducasse, wuyts}@iam.unibe.ch
http://www.iam.unibe.ch{ducasse/

Abstract

In this paper we stress the fact that a language and an environment for teaching
object-oriented programming should support the anthropomorphic metaphor pro-
moted by the paradigm. We show that all the cultural aspects of Smail&al|khe
vocabulary and the syntax support the object metaphor. In addition, we stress that
the programming environment should also support the metaphor. We show that
Smalltalk environments offer an important property we named liveness or object
proximity that promotes the anthropomorphic perception of objects. By provid-
ing excerpt from our forth coming book, we show how Squeak with the Morphic
framework reinforces this ability to make object into living entities.

1 Introduction

The title of this position paper could have been: “Why Smalltalk is still one of the best
languages (if not the best) to teach object-oriented programming?” but we refrained
to explain again why Smalltalk is better from a syntactical and semantically point of
view than Java. We point the reader to the papers of Thomas Kiihne [Kue01] for a
presentation of the main advantages of the Smalltalk language and its environment
over Java for teaching. Guzdial and Soloway elaborate in [GS02] why the richness of
the Squeak environment makes it a good tool to motivate Nintendo generation students
to build multimedia systems.

As explained by the following definition, the teramthropomorphisntepresents
the action we perform when we tend to think that physical objects or animal have
human behavior.

Anthropomorphism noun [U] the showing or treading of animals, gods
and objects as if they are human in appearance, character or behgtAimm
Cambridge International Dictionary of English)

As anthropomorphism is the essence of object-oriented programming, object-oriented
languages and environments should support it. That is why in this paper we show why
the Smalltalk language and its environment are an excellent environment that immerses
the novice programmers in the object metaphor. Indeed Smalltalk culture, vocabulary,
syntax, and pureness favors it. Then we show that the Smalltalk environments have a
fundamental property we name liveness or object proximity that supports the percep-
tion of objects not simply as abstract data structures existing at execution time but as
persistent living entities.

This paper first presents the cultural aspects of Smalltalk that supports the object
metaphor, then presents how the environment reinforces this perception by the liveness
of objects or the proximity a programmer can have with his objects.

We are currently writing a book to teach object-oriented programming to novices
[DDO00b], [DD00a], [Duc02]. Our approach starts from an objectified turtle a la LOGO
with which elementary aspects such as variables, loops, abstractions, and abstraction
compositoins are presented. Then object-oriented programming is approached using
Joe the Box example [KG77], the construction of simple games based on the Morphic
framework?, and finally a robot environment.

In appendix we present two chapters of our forthcoming book to illustrate these
points [Duc02]. The second chapter shows in particular that the Morphic environment
developed for Self and now used in Squeak is a further step in this anthropomorphic
view in the sense that it supports a direct interaction with graphical objects. We are cur-
rently using the MorphicWrapper package [MGO01, Mor] developed on top of Morphic
that allows one to send messages to morphs by typing the mesieptly above the
concerned objects. However, we do not have any material showing this aspect except
the environment available at: http://www.iam.unibe-etiicasse/WebPages/Turtle.html.
Therefore, we only show two screenshots illustrating these aspects.

2 Smalltalk: Promoting an Anthromorphic View of Ab-
straction

When teaching object oriented programming and design, the choice of the vocabulary is
important. For example, we say that an object performs certain actions. We commonly
use the objects as the subject of active sentences. In a similar way that we talk to a
friend, we talk to objects that react by executing methods.

Smalltalk culture promotes this anthropomorphism in a constant manner from the
vocabulary used, the syntax, and the conceptual uniformity of the language as we show
now.

Vocalulary. Inthe Smalltalk jargon we do not invoke a method or call a function but
send a message to an objeSending a message implies two aspects: first the fact that
the receiver is responsible to react to the message the way it wants. The analogy with
the reception of a letter is again a strong incentive to think about objects as entities

1the Morphic framework has been developed for the language Self and ported to Squeak [MGO01] by its
creator, John Maloney.

protecting their private information while exhibiting some behavior. Second, invoking

a method implies that a method defined in a specific class is invoked, while sending a
message lets the door open to the way the message resolution actually happens. There-
fore sending a message supports late binding understanding.

Syntax: Talking English. The Smalltalk syntax itself promotes the anthropomorphic
aspect of object-oriented programming. Indeed, the syntax of the language has been
designed with the idea in mind that kids would talk to the objects they create. Hence
the result is that code tends to look like english.

The following example is taken from Squeak Alice [Ali] an authoring environment
based on 3D ported to Squeak [GS02]. The line expresses that we ask the object,
a3DObject , to turn to the left, makin@ turns at spee@. The keyword-based de-
composition identifies clearly which argument plays which role. But more important
is that we can read the expression aloud and it sounds like a sentence as shown by the
following message send.

a3DObject turn: #left turns: 2 speed: 2.

As show below, the Java equivalent is less readable because we have to remember
the order of the arguments and it does not read like english.

a3DObject.turnTurnsSpeed(#left, 2, 2);

Language Uniformity and Dynamic Typing. The fact that Smalltalk is puré.e.,

every entity is an object promotes also the object metaphor.Basic language elements
such as integer, boolean, string or array are first class objects. In a similar fashion

the complete environment from code browsers, compiler to scheduler and concurrency
support are objects. There is no difference between objects and primitive types, so the
novice is not inclined to think in terms of the underlying data structures.

Moreover, dynamic typing combined with this uniformity is another step in that
direction: the novice programmer does not have to lose his time to determine which
number related types (float, signed int, double....) he should use when he declares
a variable. In addition he does not have to coerce the types. The coercion is done
automatically. There is no mixture between the physical representation of objects and
their behavior. A novice thinks mainly in terms of objects. This aspect is also promoted
by the fact that class methods are not static methods with specific rules but just methods
sent to specific objects that are classes. The same rules that worked for instance apply
for classes.

3 Thelmage: The Anthropomorphism at The Environ-
ment Level
The anthropomorphism of the objects is also promoted by the Smalltalk environment

itself. The virtual machine execution model with its image —the image is a chunk of
memory containing all the objects currently created and the byte-code of the currently

loaded classes — represents a world in which objects appear as living entities. The
environment acts asraicro-worldeven if nothing is specially dedicaced to novice and
no specific metaphor have een developed.

We used the terntivenessor proximity to refer to an important property that an
environment should have to support the anthropomorphism. By liveness or proximity
we refer to the fact that an environment lets novice programmer see and manipulate his
objects: he can send messages to objects. An object can be assigned to a global vari-
able or inspected by an inspector and can then receive messages while its class is been
completed by defining method incrementally. Via such an approach the novice grab
his objects and talk with them. The abstractness of the computation entity decreases
and the objects become living entities. The inspector acts as a microscope by which
the novice can see his own objects changing and reacting to messages. Note that an
inspector is a dangerous tool because it violates the encapsulation. In a similar fashion
that dedicaced debuggers for teaching purpose have been developed in LearningWorks
[Gol95] where the stack was filtered, it is straightforward to develop dedicated inspec-
tors that would not violate encapsulation and let only send messages to objects.

The incremental compilation coupled with the presence of an image hosting the de-
velopment environmnent strenghtens the liveness of the objects. Objects are not only
entities created at run-time. They are present during all the phases of development.
Being able to create an object from a nearly empty class, to specify new behavior and
interact with the objects as soon as these methods are defined reinforce the anthromor-
phic metaphor behind object-oriented programming.

In Smalltalk a debugger just pops up when there is a problem, and lets the code to
be changed on the fly and the execution continued as if the bug would not have existed.
This behavior by letting the programmer freely changing method code without having
to switch between programming modes,, from editing to compiling to debugging,
reduces the mental gap between objects as acting entities and objects as description of
computation.

4 Conclusion

We presented why Smalltalk and its environment are perfectly adapted to promote ob-
ject thinking because of the omnipresent anthropomorphism used. We would like to
stress that Self [US87] which is the result of the same design principles than Smalltalk
to prototype-based languages offers the same advantages. Even if some aspects of Self
are interesting like the fact that instance variables are declared using accessor methods
or the absence of metaclasses, we do not have experienced teaching with Self so we
cannot really evaluate the problems we may encounter.

By using the terms “Teaching Objects” in the title of this article and not object-
oriented programming our intention was to stress that nearly 30 years after the inven-
tion of object-oriented programming it would be interesting that languages used for
teaching could support the understanding of objects and not writing programs where
the main goals are to fight with a badly designed type system. Althought this is a sweet
dream to think that such an argument could be used to choose which language to use
for teaching and not be only urged to teach what marketing departments of big compa-

nies have imposed to the world, we encourage researchers and teachers to scientifically
evaluate the reasons that force them not to use adequate pedagogical tools.

References

[Ali] Squeak, http://www.alice.org/.

[DD00a] Stéphane Ducasse and Florence Ducasse. Caro, dis-moi c’est quoi
programmer?, 2000. Support de cours de Technologie, 150 pages,
http://www.iam.unibe.ch/ ducasse/.

[DDO0Ob] Stéphane Ducasse and Florence Ducasse. De I'enseignement de concepts
informatiques.Journal de I'association EPI Enseignement Public et Infor-
matiques(97), September 2000.

[Duc02] Stéphane Ducasse. From Logo to OO: Learning Program-
ming in Squeak (temporary title) Morgan Kaufman, 2002.
http://www.iam.unibe.chtducasse/WebPages/Turtle.html.

[Gol95] Adele Goldberg. What should we teach? AGM SIGPLAN OOPS Mes-
senger, Addendum to the proceedings of the 10th annual conference on
Object-oriented programming systems, languages, and applications (Ad-
dendum)volume 6, 1995.

[GS02] Mark Guzdial and Elliot Soloway. Teaching the nintendo generation to
program.Communication of the ACM2002.

[Guz01] Mark Guzdial. Squeak - Object Oriented Design with Multimedia Appli-
cations Prentice-Hall, 2001.

[[KM T97] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.
Back to the future: The story of squeak, A practical Smalltalk written in
itself. In Proceedings OOPSLA '97, ACM SIGPLAN Noticedume 21,
November 1997.

[KG77] Alan Kay and Adele Goldberg. Personal dynamic meti&E Computer
10(3):31-41, March 1977.

[Kue01] Thomas Kuehne. A smalltalk for students — a giant leap for studentkind.
Journal of Object-Oriented Programminmay 2001.

[MGO01] Kim Rose Mark Guzdial.Squeak - Open Personal Computing and Multi-
media Prentice-Hall, 2001.

[Mor] Morphic Wrapper, http://mathmorphs.swiki.net/2.

[SMU95] Randall B. Smith, John Maloney, and David Ungar. The self-4.0 user in-

terface: manifesting a system-wide vision of concreteness, uniformity, and
flexibility. In Proceedings OOPSLA '95, ACM SIGPLAN Noticesl-
ume 6, 1995.

[Squ] Squeak, http://www.squeak.org/.

[Us87] David Ungar and Randall B. Smith. Self: The power of simplicityPto-
ceedings OOPSLA '87, ACM SIGPLAN Noticeslume 22, pages 227—

242, December 1987.

A A Typical Programming Session

This section is a part of a forthcoming book whose goal is to teach object-oriented
programming of all ages aradpriori no background. The next chapter is a chapter that

uses the Morphic system developed for Self [SMU95] and ported to Squeak M
[MGO1].

1

Implementing Joe the
Box

X Transct
| joe jate |

joe 1= Box new.

joe rotate; 15 @ mowve: 50,

jane = Box new,

janie zhrink: 10

@ @Should we change the class definition template@ @

In this chapter you will program your first class, the clBss. Doing so you will learn how to describe
the behavior and the state of objects. We start with a first implementation that we later refine. This first class
is one of the first example used to teach object-oriented concepts to novices by researchers that invented
object-oriented programming.

1 Box’s Behavior and State

A box has the following behavior, it knows how to draw itself, move to a given distance, move to a given
point, rotate, grow and shrink. A typical scenario is described by the script 1.1. A graphical resultis shown
by the first figure of the chapter above.

Script 1.1 (A typical Box scenario)

| joe jane |

joe := Box new.

joe rotate: 15.

joe grow: 100.

joe move: 10@10.

joe moveTo: 150@200.
jane := Box new.

jane move: 30@-30.
jane shrink: 40.

jane rotate: 45

It is worth to spend some time looking at 1.1. It shows that while at the first glance the scripts may
look similar they are not. From an object point of view, there is difference between asking a turtle to draw
a square as shown in the chap®&rand asking a box to draw itself. The methods and the arguments that
they require are different. Here a box knows how to grow, shrink and rotate.

(0-2001 Stéphane Ducasse (ducasse@iam.unibe.ch)

2 Implementing Joe the Box

Before starting programming, we have to analyze the behavior of a box to imagine a possible way to
program it. Here is the behavior a box should have. A box should know how to:

o

draw itself at a given location. When a new box is created it automatically displays itself.

o

move to a given location (methadoveTo: aPoint).

o rotate from a given angle (methoodtate: aninteger).

[¢]

translate from a certain distance (methodve: aPoint).

It is fundamental to start by looking at objects from thieghavior An object is a behavioral entity,
i.e., an entity reacting to messages. A similar behavior can be implemented by different manners so it is
crucial not to start to think in terms of the internal structures that may represent the object but in terms of
the essence of the object, bishavior

Teacher’s Corner
Note the way we phrase the sentences describing box actions: we do not say the box is dis-
played but it displays itself. We always use the active form where the subject is the object
itself. Considering the object as a living being is a good way to think in an object-oriented
manner. Imagine talking about an animal or a person you will say that the person acts and not
is acted by others.
Teacher’s Corner

From behavior to state. Now from this description of the box’s behavior, we should imagine a possible
state for a box that could be used to implement the wished behavior. As this example and the concept of
box are familiar, we propose that boxe state is represented by a size, a position and a tilt.

In fact any box will be represented by such a triplet (size, position and tilt) but each given object will
have its own triplet values. For example, the box referenced by the vajieblén the script 1.1 has its
ownstate,i.e., its own size, position, and tilt. In the same way the e has asimilar state because
it is also a box created from the claBex too but it has its own state which may or not equal to the one
of joe . When the state of one given box changes it does not change the state of the other boxes. This
situation is illustrated by the first figure of this chapter. If this aspect is not clear we suggest you to (a) read
the chapteP? and (b) create the clag@ox, inspect two instances and modify their states.

2 Defining the clasBox

To create a class we use a dedicated browser called the system browser or class browser . To open such a
browser, bring up the default menu and chose the menu item open... and the item browser (or use the b).

To create a class, create first a new category (which represents a folder for all the classes we will create
related to this small project) by selecting the item addltem of the menu associated with the leftmost pane of
the browser (Figure 1.1). Name it for exampleeTheBox . When you select the newly created category,
the system displays a template to help you defining a new class (see the class 1.1 and the figure 1.2).

Class 1.1

Object subclass: #NameOfClass
instanceVariableNames: ’'instVarNamel instVarName2’
classVariableNames: 'ClassVarNamel ClassVarName?2’
poolDictionaries: "
category: 'JoeTheBox’

Modify the proposed template to obtain the class 1.2 and in the bottom pane bring the menu and choose
the menu item accept. Now the class exists. The system shows you that the class is defined by displaying it
in the second pane as shown in figure 1.3. Using the terminology used in other programming languages we

2. Defining the clasBox 3

|Eerniel-Objects
Eettiel-Claszes
Eetrniel-Methodz

Eernel-Proc sio 4 clazs... i)

Ketrtiel-Mag
Fornel Nua LEcent classes... L

Kernel-sTa(browse all

Collections- PTOWEE
P printout

fileChat
reorgatize
update

refiaime, .,
remose

Figure 1.1: Bring up the menu over the leftmost pane of the browser and select the add item choice to
create a new class category.

X System Browser Ho
Morphic-Gamez-Che
| Morphic-Bordets
Moviez-Flaver
| Moviez-Obsolete
Moviez-Eernel
Hetwork-UTID

| TestBalloonFont _
JoeTheBox inztatice | ¢ | clazz

Object subclazz: *HamelfSubclazs
instanceVariabvleNamesz: "
clazsWariatleNames:
poolDictionaries: '
category: ' JoeTheBox'

Figure 1.2: The browser shows you that a new class has been created by displaying it in the second pane
from the left.

(0-2001 Stéphane Ducasse (ducasse@iam.unibe.ch)

4 Implementing Joe the Box

x System Browser: Box Ho
Morphic-Games-Che Box --all -
Morphic-Borders o messages

Movies-Flaver
Movies-Otzolete
Movies-Eertiel
Network-UTID

TeztBalloonFont -
JoeTheBox inztatice | ¥ | clazz

Object subtclazz: #Box
instanceVariableMNames: 'pozition tilt gize
classVariableNames:
poolDictionaries; '
category: ' JoeTheBox'

Figure 1.3: The browser shows you that a new class has been created by displaying it in the second pane
from the left.

can say that the class has beampiled This means that we could already create instances of this class,
even if now this is not really useful since they do not have any specific behavior.

Class 1.2

Object subclass: #Box
instanceVariableNames: ’position size tilt
classVariableNames: ”
poolDictionaries: "
category: 'Joe The Box’

Here are some explanations about 1.2: A box is a simple object. Hence, it is a sigjass The
internal state of box instances, such as the bgoes andjane , is represented by instance variables of
the clasBox. So line 2 we specify that the claBsx has three instance variables by given their respective
names. Here the cla8ox has the instance variablpssition , size , andtilt . This indicates to the
classBox to create instances having three values representing the wished state. As shown by the class 1.2
we empty the other parts of the templates because they are irrelevant for now.

Important!

A class acts as an object factory, an object model or an @ @moule @ @.
The instance variables describe the state of the instances created by th
classes. Each instance of the class will have the structure described by th
class but filled with its own values. The factory metaphor is really useful

to explain the difference between classes and instances. Classes are the
description of instances.

D

199}

3. Initializing Instances 5

XE . Box Ho
| zelf position: nil

Eillﬂiittilljs:l VAL aize: il

Sy tilt: f1il

1ilt

Figure 1.4: Inspecting aon initialized boxall its instance variables are empitg., havingnil as value.

3 Initializing Instances

Once the class is defined, create and inspect one of its instances by executing the script 1.2 (see the
chapter??). The figure 1.4 shows an inspector oBax instance. All the instance variables hank as

value. Indeed, when an instance is created by invoking the metbwdn a class, thelefaultbehavior

of the class is to return aminitializedinstance. Uninitialized means that all the instance variables of the
newly created instances have no value. To represent the no value concept, Squeak uses thie ohject
That's why the instance variables of the inspected box have all as nélue

Script 1.2 (Inspecting a box)

Box new inspect

Having uninitialized values is not really good because methods may not work or have to test if the
variables have been correctly initialized. But even then this is not satisfactory because if an instance
variable is not initialized it is difficult to know the value to initialize it. In fact the best solution is to
initialize the instance as soon as it is created.

For that purpose we specialize the metlitialize that sets up a default state for a box. The
methodBox»initialize is automatically invoked by the methoéw on newly created instances. This
method sets the instance variables values. Once this method defined, in the bottom pane of the inspector
evaluate the expressia@elf initialize . If you closed the inspector or want to convince you that
the methodnitialize is invoked when a new instance is created, reuse the script 1.2 to check that
the created instance is now well initialized. In both cases, you should obtain a situation similar to the one
described by the figure 1.5.

Method 1.1

Box>>initialize
"A box is initialized to be in the center of the screen, with
50 pixels size and 0 tilt"

size = 50.
tilt := 0.
position := World bounds center

Reader Note
The fact that th@ew method automatically call thaitialize method is a little extension
we added into Squeak. It may happen that such an extension will be included into Squeak at

INil comes from the latin nihil which means nothing.

(0-2001 Stéphane Ducasse (ducasse@iam.unibe.ch)

6 Implementing Joe the Box

X8 Box @0l

orz
self | pozition: 428@7311
all inzt vars ziza: =0
pozition Tt
e tilt: 0
1ilt

Figure 1.5: Inspecting ainitialized box all its instance variables contains some values coherent with their
role.

the time you will read this book. In any case the plain Squeak solution to this problem is ex-
plained in the chapte?? so that you can understand and program in Squeak without our little

extension.
Reader Note End

4 About Returned Values

In Squeak, each method returns the receiver of the messalfie using the ~ symbol if there is not another
object returned explicitly. For example, the following method is strictly equivalent to the method 1.1.

Method 1.2

Box>>initialize
"A box is initialized to be in the center of the screen, with
50 pixels size and O tilt"

size = 50.

tit .= 0.

position := World bounds center.
" self

In Squeak, any method returns per default the receiver of the message. To return a
different value use the character ~ followed by the expression to be returned.

5 Accessing Instance Variables

The methodinitialize above illustrates an important aspect of the object model of Squeak. The
instance variables are accessible from the methods as if they were defined in the method body. For example,
we are assigning 50 in the instance variasilee . The instance variablsize is accessible from any
method of the clasBox.

Contrary to the variables, called local, of a script which do not exist after the script execution, instance
variables last the complete object life-time. We propose you some experiments to really understand this
phenomena below. Note that this behavior is not new, we used it constantly with the turtle. For example,
we changed the direction of the turtle using the methorth , then later used the direction to perform
some other actions.

6. Drawing a Box and Other Operations 7

We propose you to do some experiments to really understand this notion. Define the sigéhod
(the method 1.3) which returns the value of the instance varigibée andsize: aninteger (the
method 1.4) which changes the value of the instance varside to be the one specified as argument.

Method 1.3

Box>>size

\size

Method 1.4

Box>>size: aninteger

size := aninteger

Now execute the script 1.3 and use the menu item print it to get the results we preseméusimg If
you have an inspector opened on a box instance, you can also execute the neséagiee |, self
size: 10 in the bottom left part of the inspector. Perform some other experiments to prove yourself
you understand.

Script 1.3 (Instance variables life-time)

| joe jane |

joe := Box new.

joe size. returns 50
joe size: 10.

joe size. returns 10
joe size: 20.

joe size. returns 20
joe size: joe size + 5.
joe size. returns 25
jane = Box new.

jane size. returns 50

In summary we have:

Instance variables are accessible to all the methods of a class. Instance variables last
the same life-time than the object to which they belong to.

In Squeak, instance variables cannot be accessed from outside of an object. Instance
variables are only accessible from the methods of the class that define them.

6 Drawing a Box and Other Operations

Now that we can initialize a newly created box using the metindtéhlize , We are in position to
define methods without been worried about the initialization of instance variables.

Method draw. We define the methodraw that uses a turtle but we hide it as shown by the me@idd
We create a method, put it at the right position of the box, set the direction of the turtle to the tilt of the
box, use the black color and then draw a square of the box size.

(0-2001 Stéphane Ducasse (ducasse@iam.unibe.ch)

8 Implementing Joe the Box

zelf pozitiog: Sl1Z@304
all inst var] qime. &0

position s

size tilt: a

tilt

zelf grow: 10,
zelfl grow: -40

Box new inzpect

Figure 1.6: Using an inspector to send messages about newly created methods. Here thgmethod
has been defined and we ask its execution via the inspector.

Method 1.5

Box>>draw
"Draw the receiver position in black"
"Box new initialize draw"

| aTurtle |

aTurtle := Turtle new hidden.

aTurtle jumpAt: position.

aTurtle turnRight: tilt.

aTurtle penColor: Color black.

4 timesRepeat: [aTurtle go: size.
aTurtle turnLeft: 90]

Test the method by executing the caidf draw into the bottom pane of an inspector in a similar
way than shown in figure 1.6, or by executing the script 1.4.

Script 1.4 (sending the message draw to a box)

| joe jane |
joe = Box new.
joe draw

During your experiments you may need to clear the screen. Use the the script 1.5 for that purpose.

6. Drawing a Box and Other Operations 9

Script 1.5 (Clearing the screen)

World clearTurtleTrails

Experiment 1.1

Up until now, creating a new box did not displayed it. Change the mettitidlize so that any new
box is automatically displayed.

Method grow: The methodyrow: aninteger makes the box growing of a certain size and redraw
itself to reflect this size change. Use the inspector or dedicated scripts to tests your method. Try the
script 1.6 to see that we have a problem.

Method 1.6

Box>>grow: increment
"grow the receiver's size from increment"

size := size + increment.
self draw

Script 1.6 (Problem with the firstgrow: method.)

| joe |
joe = Box new initialize.
joe grow: 20.

The problem we have is that the turtle grows and redisplay itself well, but it does not remove the
previous box shape. To solve that problem we propose you to define a method maanad which is
similar to the draw method except that it draw the box using a transparent color (the method 1.7).

Method 1.7

Box>>undraw
"erase the receiver"

| aTurtle |

aTurtle := Turtle new.

aTurtle jumpAt: position.

aTurtle turnRight: tilt.

aTurtle penColor: Color transparent.

4 timesRepeat: [aTurtle go: size.
aTurtle turnLeft: 90]

Now that the methodindraw is defined, the methogrow: should call it before anything else as
shown by the method 1.8.

(0-2001 Stéphane Ducasse (ducasse@iam.unibe.ch)

10 Implementing Joe the Box

Method 1.8

Box>>grow: increment
"grow the receiver's size from increment"

self undraw.
size := size + increment.
self draw

Experiment 1.2

Implement the methods

o move: aPoint which translate the box from a distance in x and y specified as a point.
o moveAt: aPoint which move the box to the specified point.
o rotate: aninteger which rotates the box of a given angle.

o grow*: aninteger andshrink*: aninteger that make grow and shrink the receiver by a
given factor.

7 Limiting duplication

The methodslraw (the method 1.5) andndraw (the method 1.7) are nearly the same except for the
color of the turtle. This is not really good, since every times we will change one method we will have to
change the other and there is chance that we forgot.

Experiment 1.3

Propose a solution to this problem. The idea is that to avoid duplication, the metfaadsandundraw
can call a third method with the color of the pen as argument. Try to implement such a method before
reading the solution.

The drawWithColor: aColor (the method 1.9) factors out the duplicated code. Change the
methoddraw andundraw to call this method with the right argument.

Method 1.9

Box>>drawWithColor: aColor
"Draw the receiver using a given color"

| aTurtle |

aTurtle := Turtle new hidden.

aTurtle jumpAt: position.

aTurtle turnRight: tilt.

aTurtle penColor: aColor.

4 timesRepeat: [aTurtle go: size.
aTurtle turnLeft: 90]

In general we should avoid as much as possible to have duplicated code. This is not a problem to
duplicate code for a small experiment. However, if you want to keep the code always think that you should
create other method to share and reuse the duplicated code. Creating one or several methods to factor the
duplicated code is a good trick to cure duplicated code.

8. Looking at Alternate Designs 11

Avoid duplicated code. Refactor the duplicated code by calling a method representing
the duplicated code.

8 Looking at Alternate Designs

We said that the implementation we proposed is one of the multiple ways of implementing the behavior of
theBox class. First let us analyze the currentimplementation. The Blasdas its own state then gives a
part of its state to a turtle. TH&ox class uses th€urtle class to realize its behavior. This is a common
practice where a class do not repeat behavior but reuse the behavior of an existing class.

We used the clasBurtle because it was familiar to us. However, another class, the Blassould
have been a possible candidate too. Look at the &assand change the methatawWithColor: to
use it instead offurtle . What is important is that the interface proposed by the diass should not
change. We are changing the implementation and this should not change the behavi@w{.the

Now if we look carefully we see that the turtle or the pen instance are created every time the box is draw
and undraw. In addition the state of the box is systematically copied to the turtle state then lost because the
turtle is recreated and the previous one is lost. One idea would be to use a turtle as representing part of the
box state. Indeed a turtle has a position and a tilt. Define the Blas$ as shown below in the class 1.3
and reimplement some of the box's methods to convince you that this is possible. This solution has as
advantages that less objects are created, less state is copied from the box to the turtle and as drawbacks that
the clasBox is tied with the clasJurtle

Class 1.3

Object subclass: #BoxT
instanceVariableNames: ’'size turtle’
classVariableNames: "
poolDictionaries: "
category: 'Joe The Box’

To help you we show two methods, the method 1.10 and the method 1.11, that are important. Try to do
it by yourself first. Implement all the other methods.

Method 1.10

BoxT>>initialize
"A box is initialized to be in the center of the screen, with
50 pixels size and O tilt"

size = 50.
turtle := Turtle new hidden.
turtle jumpAt: World bounds center.

Method 1.11

BoxT>>drawWithColor: aColor
"Draw the receiver using a given color"
turtle penColor: aColor.
4 timesRepeat: [turtle go: size.
turtle turnLeft: 90]

(0-2001 Stéphane Ducasse (ducasse@iam.unibe.ch)

B A First Morph

Squeak, the open-source Smalltalk developed by a part of the original Xerox team
that invented Smalltalk [IKM97], [Squ], [MGO1], is particularly interesting because
Squeak interface is based the Morphic graphical interface inherited from Self [US87],
[SMU95]. Morphs add another dimensions in the concretness and the anthropomor-
phism because they can be directly manupilated. The interested reader should read
[MGO01] and [Guz01] to get an overview of Morphic showing the possible direct in-
teraction. In the following we illustrate how even with a traditional approach Morphs
direct interaction promotes an anthopomorphic view of computation.

1

The Baby Clicking
Game

SThit-T1
Eernel-Maztitudes-Te
Mot phd -Che:z:z

Flazhert
TeztBalloofniFott

In this chapter we propose you to build a small game for baby that learns how to use a mouse. The
idea is to have a morph moving on the screen and to click on it to change its direction. This way we will
show you how to change the behavior of a morph and how to add interaction with the morph. You will
learn how you can define a class by refining another one and extending its behavior. This example will be
then analyzed in the next chapter to explain you what is inheritance, i.e., how can we extend or refine the
behavior of a class to obtain other classes with related behavior.

1 A Moving Morph

We do not want to create a Morph from scratch. For this purpose we will extenélaeberMorph
class. A FlasherMorph is a simple morph that flashes,change color at constant rate. The the s@ipt
shows how to create such a simple morph.

Script 1.1 (A flashing Morph)

FlasherMorph new openinWorld

We want to reuse this class but customize its behavior to our needs. First define thesdags
ingFlasher as shown in the clas®?.

Class 1.1

FlasherMorph subclass: #EscapingFlasher
instanceVariableNames: "
classVariableNames: "
poolDictionaries: ”
category: 'Flasher’

(0-2001 Stéphane Ducasse (ducasse@iam.unibe.ch)

2 The Baby Clicking Game

The following step is to make the morph moves without intervention of the user. The Morphic system
supports the animation of morphs and we will use it to make our morph movingst&pe method is called
by the system every amount of time determined bydtepTime method. The clasBlasherMorph
uses this mechanism to regularly change its color.

So in addition to the color change performed each step, we will change the position of the Morph in
diagonal. ThatOs why the methatiep first does asuper step . This means that we ask that the
behavior of thestep method defined on the cla$asherMorph to be executed then we change the
position by adding 2 in x and 2 in y to the current position of the morph (by using adding to the position a
point). Define the methostep as shown in the the meth&®.

Method 1.1

EscapingMorph>>step
"At each step change the position of the morph"

super step.
self position: self position + (2@2)

Now execute the scrif?, your morph should be moving.

Script 1.2 (An escaping flasher)

EscapingFlasherMorph new openinWorld

2 Interactively Changing the Direction of Flasher

Now that the morph is moving we would like to be able to let a baby to click on it to change its direction.
Morph allows one to specify a lot of different interactions. We do not want to go on the details. The basic
idea is that certain methods should precise when the morph wants to be aware of certain events such as
pressing or releasing the mouse button on it or entering or leaving it. Then the morph has to specify the
behavior associated with the kind of event it is interested in. Let us look at a concrete example. For our
game we want to know when the mouse button is pressed, for that we specify the ratidies-
MouseDown: to say that the morph wants event generated by pressing the mouse button (the?gthod

and the methodhouseDown: to specify how it will behaves when it receives such event.

Method 1.2

EscapingMorph>>handlesMouseDown: evt

N true

Note that this method overrides (it does not invoke the behavior of the mb#mtiesMouseDown:
defined in the superclass) the one defined in the supercldsscapingFlasher | it just replaces this
behavior for the clasEscapingFlasher . The methodstep andhandlesMouseDown: are used
in two different ways: the first extend the behavior while the second replace it. Now we specify the
methodmouseDown: . This method is invoked each time the mouse is pressed on a morph (if the method
handlesMouseDown: specifies by returning true that the morph is interested into that kind of event). Right
now we just print something in th€ranscript to be sure that the morph reacts when we click on it.
open arranscript by dragging one from the left flap, create a new instandeszapingFlasher
and click on it.

2. Interactively Changing the Direction of Flasher 3

Method 1.3

EscapingMorph>>mouseDown: evt

Transcript show: ' mouse down’ ; cr

Our goal is that when we click on the morph it should change its direction. So we should think about
how can we represent this behavior. Different approaches exist, the first one that came in our mind is that
we just have to be able to change the point that is added in the time method. To change the direction, we
just have to negate the point. By adding a negated point the flasher will go up instead of down. What we
need is a way to know if the last point added was positive or negative. When the morph is clicked we just
have to revert this information. Even simpler if we store a point representing the last point added to the
position we just have to negate it each time the morph is clicked. So we will add an instance variable to the
EscapingFlasher class so that each instances will now know the last point added. Modify the class
EscapingFlasher according to the clas??.

Class 1.2

FlasherMorph subclass: #EscapingFlasher
instanceVariableNames: ’point’
classVariableNames: ”
poolDictionaries: ”
category: 'Flasher’

Define the methodhitialize that is called each time a new object is created. Here we want to
let the morph initialized itself as it is done by its superclass then initialize the point. ThatOs why we use
super initialize as first line of the metho@?.

Method 1.4

EscapingMorph>>initialize

super initialize.
point = 2@?2.

For a baby the default size of the flasher is too small so we propose you to take the advantage of
initializing the flasher to change its size. Try the metR?@éd

Method 1.5

EscapingMorph>>initialize
"self new openinWorld"

super initialize.
self bounds: (self bounds scaleBy: 3).
point = 2@2.

Now changing direction is just negating the point each escaping flasher morph holds. Define the method
changeDirection as described in the meth@@. Here this method adds a specific behavior to the class
EscapingMorph and does not hide or override any behavior of the superclass.

(0-2001 Stéphane Ducasse (ducasse@iam.unibe.ch)

4 The Baby Clicking Game

Method 1.6

EscapingMorph>>changeDirection

point := point negated

Redefine the methadouseDown: to call the methogdhangeDirection as shown in the metha?.
Method 1.7

EscapingMorph>>mouseDown: evt

self changeDirection

3 Accelerating Flasher

Any good game should stress a bit its player else it quickly starts to get bored. So we would like our
escaping flasher to accelerate each time we click on it. To still let a chance to the player to get it we would
like the following behavior: clicking on it should accelerate it if the morph is not at its maximum speed.
If this is the case it should slow down to its original speed. Hence, the game will be to click fast when the
flasher is accelerating until it is getting slowly again.

Class 1.3

FlasherMorph subclass: #EscapingFlasher
instanceVariableNames: ’point increasing ’
classVariableNames: ”

poolDictionaries:

category: 'Flasher’

Method 1.8

initialize

super initialize.

point = 2@?2.

self bounds: (self bounds scaleBy: 3).
increasing := true

Method 1.9

mouseEnter: evt

increasing
ifTrue: [self speedUp]
ifFalse: [self slowDown]

4. Saving the parents 5

Method 1.10

slowDown

point < (5@5)
ifTrue: [increasing = true]
ifFalse: [point := point - (2@2)]

Method 1.11

speedUp

point > (20 @20)
ifTrue: [increasing = false]
ifFalse: [point := point + (5@5)]

4 Saving the parents

Parents are usually less good than kids to play game but they are better at typing keyboard. So we ant to
have a mode where nervous parents can stop the morph and reset its speed. Doing so you will learn how
a morph can manage keyboard events. Define a subclassB$thagingFlasher if you want to keep

its behavior. The following assumes you did so. Handling keyboard is slightly more complex than mouse
event. It requires two extra methods. First, we specify that the moprh wants to get keyboard events by
defining the methodhandlesKeyboard: to return true. Then we define the methoelyDown: to

handle the key and perform associate action.

Method 1.12

EscapingFlasherWithKeyboard>>handlesKeyboard: evt

N true

(0-2001 Stéphane Ducasse (ducasse@iam.unibe.ch)

6 The Baby Clicking Game

Method 1.13

EscapingFlasherWithKeyboard>>keyDown: anEvent
"Handle a key down event. The default response is to do nothing."

| char |
char := anEvent keyCharacter.
char = $a

ifTrue: [self resetSpeed].
char = $q

ifTrue: [self slowDown].
char = $s

ifTrue: [self stop].
char = $l

ifTrue: [self startStepping].

Now the problem is that the focus of the mouse is not given to the morph. If you type on the morph
the letters will continue to appear in your browser or workspace. To assign correctly the focus, define the
methodsmouseEnter: andmouselLeave: as follow.

Method 1.14

EscapingFlasherWithKeyboard>>mouseEnter: evt

evt hand keyboardFocus: self

Method 1.15

EscapingFlasherWithKeyboard>>mouseLeave: evt

evt hand releaseKeyboardFocus: self

Now you can implement the functionality you want to associate with the keys. For example, the method
resetSpeed can be defined as follow:

Method 1.16

EscapingFlasherWithKeyboard>>resetSpeed

point = 2@2.

The methodstop andstartStepping are defined on the clasddoprh. stop stops the animation
of the morph, i.e., thetep method is not invoke anymore asthrtStepping does the opposite.

We could improve the code by defining a method nanefdultSpeed returning the poine@?2and
to use it everywhere we would need to initialize the speed. So such a method would have to be defined into
the classEscapingFlasher . Note that while a system evolves the code changes and it is frequent to
have to adapt or refactor the code of classes to get a better system. A solution is only good for the problem
it solves today, tomorrow we may have another slightly different problem that will require to modify our
solution.

5. Exercises 7

5 Exercises

Browse the class FlasherMorph and understands how it works. Try to implement the following variations
and have fun discovering how to do it.

o The flasher should be flashing in green instead of one when it is hit for the first time or when is going
up.

Change the intensity of the color according to the speed of the flasher. The more you click it the
brighter. Look into the class FlasherMorph and Color.

o

o

Change the size of the flasher according to the number of times.

Define the direction to which the morph should go randomly. 10 atRandom returns a number between
1 and 10.

o

(0-2001 Stéphane Ducasse (ducasse@iam.unibe.ch)

Figure 1: Creating a turtle by asking the class to create an instance.

C Direct interaction using Morphic Wrapper

Here we present only two screenshots showing the use of Morphic Wrapper [Mor] to
support direct interaction. The figure 1 shows that we ask to create a turtle by typing
in the air. In the future we plan to introduce classes as Morphs as proposed in Morphic
Wrappers to support the idea that classes are factory of objects. The figure 2 shows
how messages are sent to this turtle by asking it directly.

! gos 100; turnLeft: 90

Working
Forkspace Ho b4 Micro Brow
g | atzolute directions
Clear Trails Clear Turilez = direction operations
S dArawing
=| initialize-releasze
2l east

"Makez the receiver pointing to the

direction =0

Figure 2: Sending a message to a turtle by directly interacting with it using the Morphic
Wrapper framework.

10

