
High-Level Polymetric Views of Condensed Run-time Information

St́ephane Ducasse
Software Composition Group

University of Bern, Switzerland
ducasse@iam.unibe.ch

Michele Lanza
Software Composition Group

University of Bern, Switzerland
lanza@iam.unibe.ch

Roland Bertuli
I3S Laboratory

Sophia-Antipolis, France
bertuli@essi.fr

Abstract

Understanding the run-time behavior of object-oriented
legacy systems is a complex task due to factors such as
late binding and polymorphism. Current approaches ex-
tract and use information from thecompleteexecution trace
of a system. The sheer size and complexity of such traces
make their handling, storage, and analysis difficult. Current
software systems which run almost non-stop do not permit
such a full analysis. In this paper we present a lightweight
approach based on the extraction of a condensed amount
of information, e.g., measurements, that does not require a
full trace. Using this condensed information, we propose
a visualization approach which allows us to identify and
understand certain aspects of the objects’ lifetime such as
their role played in the creation of other objects and the
communication architecture they support.

Keywords: software visualization, reverse engineer-
ing, run-time information, object-oriented program-
ming, program understanding

1. Introduction

Corbi [4] reported that during maintenance profession-
als spend at least half of their time analyzing software to
understand it. Moreover, Sommerville [27] and Davis [5]
estimate that the cost of software maintenance accounts for
50% to 75% of the overall cost of a software system. These
facts show that understanding applications is one of the
hardest tasks in the maintenance of software systems.

One approach is to support the understanding of object-
oriented systems using dynamic information. An exten-
sive amount of research has already been dedicated to this
research field [12] [21] [31] [22] [17] [14] [25] which is
mostly based on extracting information generated during
the execution of a software system. To do so people in-
strument the source code using various techniques (method
wrapping, logging, extended virtual machines) and then run
the system. The instrumented source code generates anexe-

cution trace, which contains information about the run-time
behavior of the system,e.g.,which method is calling which
other methods, which objects are created at which time by
which other objects, etc.

The problem is that often the event trace for large, com-
plex, long-running systems is voluminous [26]. Our expe-
rience shows that collecting a trace of a couple of seconds
generates tens of thousands of events. Moreover, the low-
level nature of the information contained in such a trace
makes it hard for a software engineer to infer higher-level
information about a software system. For example, he may
want to know which other objects a certain object is send-
ing messages to, but he does not want to have to anal-
yse and verify every single method invocation contained in
the trace. Many approaches based on run-time information
have therefore as primary goal the reduction of the com-
plexity of the trace in order to reveal certain aspects like the
collaboration between classes [17] [25] [3].

Our approach is based on acondensedset of informa-
tion, i.e., we do not keep and analyze the complete trace,
we rather compute simple run-time metrics bycountingcer-
tain events. For example, we count how many methods of
a class are invoked during the program execution. Then we
visualize this value, representing the number of the invoked
methods of a class, in arun-time polymetric view. Poly-
metric views, presented by Lanza and Ducasse [19] [20],
are visualisations enriched with software metrics. These
views allow us to support the understanding of the run-time
behaviour of a large, complex, and long-running systems.
This allows us to reduce the amount of information to a few
metrics, while still obtaining and visualising valuable infor-
mation about the run-time behaviour of the system.

In this article we first discuss the problems and chal-
lenges that the run-time analysis of object-oriented appli-
cations poses (Section 2). We then present our approach in
detail (Section 3), before presenting and analyzing a case
study performed using our tool, DIVOOR, an extension of
CodeCrawler [18], with different run-time polymetric views
(Section 4). We conclude the paper with a discussion of our
findings (Section 5), a look at the related work (Section 6),



and an outlook on our future work (Section 7).

2. Run-time Analysis Problems

Wilde and Huitt [32] assessed that understanding object-
oriented applications is difficult because of several reasons,
such as:

• Polymorphism and late-binding make traditional tool
analyzers like program slicers inadequate. Data-flow
analysers are more complex to build especially in pres-
ence of dynamically typed languages.

• The use of inheritance and incremental class defini-
tions, together with the dynamic semantics ofself and
this, make applications more difficult to understand.

• The domain model of the applications is spread over
classes residing in different hierarchies and/or subsys-
tems and it is difficult to pinpoint the location of a cer-
tain functionality.

Using dynamic information is one way to support the
understanding process. In such a context essential questions
need to be answered such as:

• What are the most instantiated classes?

• What are the classes having tenured objects? From an
architectural point of view detecting singletons is also
valuable information.

• What are the classes that create objects? Detecting ob-
ject factories is important information.

• How do classes communicate with each other?

• Which percentage of the methods defined in a class are
actually used?

2.1 Challenges and Constraints

The run-time analysis of object-oriented systems is chal-
lenging because of the following constraints:

• Amount and density of information. The execution
traces generated for run-time analysis are packed with
very largeamounts of low-level information. There-
fore they must be analysed using techniques which
reduce their complexity, such as filtering, clustering,
slicing, concept analysis, or visualization [28] [26]
[13] [3].

• Granularity of information.Execution traces contain
large amounts of low-level information,e.g., which
methods invoke which methods, which methods ac-
cess which attributes, which objects are created at what
time, etc. It is difficult, using such small pieces of in-
formation, to gain an understanding at a higher level.

3. Our Approach

In a run-time context numerous classes, complex inher-
itance and containment hierarchies, and diverse patterns
of dynamic interaction all contribute to difficulties in un-
derstanding, reusing, debugging, and tuning large object-
oriented systems. Many of these difficulties are due to the
amount and quality of the data that can be gathered using
execution traces. The relevant information we are looking
for is often hidden in huge amounts of data that must first
be filtered and analysed. Our approach uses a condensed set
of information to support the understanding of the run-time
behavior of an application.

3.1 The Principle of a Polymetric View

The baseline of our work is based upon the approach
implemented in the tool CodeCrawler [18] [19] [20]. It
implements the polymetric views, software visualizations
enriched with software metrics, described by Lanza [19],
which we mainly used to support the understanding of soft-
ware systems with static analysis. In Figure 1 we see that,
given two-dimensional nodes representing entities (e.g.,
software artifacts) and edges representing relationships, we
enrich these simple visualizations with up to 5 metrics on
these node characteristics:

Width 
Metric

Height 
Metric

Color Metric

Entity

Relationship

Position Metrics (x,y)

Figure 1. The principle of a polymetric view.

• Node Size.The width and height of a node can render
two measurements. We follow the convention that the
wider and the higher the node, the bigger the measure-
ments its size is reflecting.

• Node Color. The color interval between white and
black can display a measurement. Here the conven-
tion is that the higher the measurement the darker the



node is. Thus light gray represents a smaller metric
measurement than dark gray.

• Node Position. The X and Y coordinates of the po-
sition of a node can reflect two other measurements.
This requires the presence of an absolute origin within
a fixed coordinate system, therefore not all layouts can
exploit this dimension, particularly tree layouts.

In our previous work [20] we only made use of static
information and software metrics which could be gathered
from the static analysis of a software system. In this article
we also make use of the thickness of the edges to render
measurements. This gives us information about theweight
of an edge between two entities,e.g.,a thick invocation edge
between two classes signifies there are many invocations
between the two classes.

Note that since run-time information tends to be non-
linear and with huge differences in scale (for example, a
method can be invoked 10 times, while another one 50’000
times), some of the views use a logarithmic scale to display
the measurements.

Figure 2. An inheritance tree enriched with
run-time measurements.

Example. Figure 2 shows an example of an inheritance
tree enhanced with run-time information. The nodes rep-
resent the classes of the analyzed application, the edges il-
lustrate the inheritance relationships. In this example, the
width of the nodes reflects the number of created instances,
while the height represents the number of used methods dur-
ing the execution. The color tone represents the number of
method calls. For example the flat dark node at the bottom
of one the hierarchies represents a class which is heavily
instantiated (the node width is remarkable compared to the
other nodes), but who seems, once instantiated, to perform
little behaviour (the node has a small height),i.e.,only few
methods of this class have been invoked during the analysed
run-time.

3.2 Run-Time Information Collection

Run-time information collection is a rich domain that
goes from the wrapping of methods [2] and the control of
objects [8] to the instrumentation of virtual machines.

A great body of work has been done on run-time infor-
mation in terms of a trace of events [10] [11] [24]. This trace
represents valuable information but is space-consuming and
complex and therefore requires additional abstractions and
manipulations to extract the wanted information.

Our approach focuses on collecting a reduced amount
of information, namely measurements, during the execu-
tion, such as the number of invocations, number of object
creations, number of used classes/methods, the number of
method calls on a class during the execution, etc.). We con-
strain ourselves to use only relatively simple measurements.

Class Run-Time Measurements
Name Description

NCM Number of called methods
RCM Ratio of called methods vs. not called methods
NMI Number of method invocations on a class
NIMI Number of internal method invocations on a class
NEMI Number of external method invocations on a class
NCCM Number of called class (static) methods
NCMI Number of class (static) method calls on a class
NCI Number of created instances of a class
NCO Number of createdobjectsby the class instances

Method Run-Time Measurements
Name Description

TI Total number of calls
ITI Number of invocations (caller is receiver of invocation)
ETI number of invocations (caller is different than the receiver)

Table 1. A list of the measurements we extract
from an execution trace.

The measurements we currently extract from an execu-
tion trace are listed in Table 11.

4 Run-time Polymetric Views

In this section we define 3 run-time polymetric views and
show the result of their application and analysis on a con-
crete case study that we present below. For the experience,
we run the application on a scenario covering its different
aspects.

1At first sight the difference between NCM and NMI can be delicate
to grasp. NCM represents the number of calledmethodsof a class, while
NMI represents the number ofinvocationson the methods of a class. For
example, if a class has 5 methods and during the execution 3 different
methods have been invoked 500 times, then NCM equals to 3 while NMI
equals to 500.



4.1 Case Study in a Nutshell

The particular software system used in our experiment
is the Moose reengineering environment that is developed
by our group [9]. Moose is a relatively small case study
consisting of 137 classes and 2093 methods of Smalltalk
code. It serves as a foundation for other reverse engineer-
ing tools. It provides a language independent representa-
tion and manipulation of source code written in C++, Java,
Cobol, and Smalltalk. To achieve this language indepen-
dence it is based on the FAMIX meta-model [7], which de-
scribes how elementary source code elements such as at-
tributes, methods, classes, and namespaces are represented
[6]. Moreover, Moose describes meta-models as instances
of its own meta-meta-model. This explicit description of
meta-models supports the creation of generic model reader
and writers.

To parse the source code of applications of Java or
C++, Moose interprets CDIF or XMI compliant files, while
for extracting Smalltalk applications, Moose uses its own
parser and analyzes the resulting abstract syntax trees to
generate Moose models.

Run-time scenario. We run the Moose system for the
analysis of a Smalltalk application: therefore a meta-model
is created, a Smalltalk-specific source code model of the
application is created, then the application is analyzed (met-
rics are computed and extracted), finally, using two external
representation formats (CDIF and XMI), the model is saved
on file and reloaded multiple times.

4.2 The Instance Usage Overview

Instance Usage Overview Description

Layout Inheritance tree, without sort
Nodes Classes
Edges Inheritance
Scope Full system
Metric Scale Logarithmic

Node Width NCI (Number of created instances)
Node Height NCM (Number of called methods)
Node Color NMI (Number of method invocations on a class)

Figure Figure 3

View Intention. The Instance Usage Overviewshows
which classes are instantiated and used during the system’s
execution. As shown by the view description above, the
node width represents the number of created instances, the
height of a node represents the number of methods that
have been used, and the color represents the total number
of method invocations during the program execution.

Revealing Symptoms. Note that this view only considers
instance method invocations and does not take into account
class or static method invocations. While this view provides
an overview of a complete application it also offers detailed
information, such as:

• Small, white, and square nodes represent classes that
have not been instantiated, therefore not used.

• Narrow, pale nodes represent classes whose methods
have been invoked but having no or few instances.
This can be the case of singletons or abstract classes
which are not instantiated but their methods are used
by means of inheritance.

• Flat, pale nodes represent classes that are heavily in-
stantiated but not often used as their number of invo-
cation is low (denoted by the light color).

• Flat, dark nodes represent classes that are heavily in-
stantiated with few used, but heavily invoked, meth-
ods.

• Large, dark nodes represent classes that have been
heavily instantiated and whose behaviour has been
greatly used.

Case Study. Figure 3 shows a part of theInstance Usage
Overview applied on our case study.

The dark, large node annotated asA in our view is a
CDIF scanner, which parses files written in the CDIF for-
mat, an old industrial exchange format. An instance of the
scanner is created each time a model is loaded into memory.
It is heavily invoked since the scanning is a dense process
putting in movement many small and specific methods.

The dark, large node annotated asB represents the
Moose meta-meta-modelAttributeDescriptionclass which
has been instantiated a high number of times. This meta-
meta-model class is instantiated to represent the current
Moose meta-model. As Moose is a dynamic environment
and meta-models can be extended, the current meta-model
representation is created each time a model is loaded. Sev-
eral methods (i.e., mainly accessors) are then executed to
populate the meta-model entity from a meta-meta-model
description. This explains the high number of created in-
stances. However, we were puzzled by the fact that those
classes are so heavily instantiated and used (350,000 calls
and 3,500 instances). Further inspections may yield chances
for optimizations.

The FAMIX meta-model classes (represented in the in-
heritance hierarchy whose root is calledC on the figure)
which model the source code entities are flat, lightly col-
ored nodes. Indeed the models loaded into Moose during
the scenario are simple models containing only a couple of
classes. Hence these classes are not the most instantiated



Figure 3. The Instance Usage Overview.

as would be case with the loading of large models. This
inheritance hierarchy contains the three following shapes:

1. The flat nodes are the information extracted from
Smalltalk code (Classes, Methods, Attributes, Inher-
itances, ...), and they occur always as leaves of the
inheritance tree. The white classes (D) that model
instance and local variables are less instantiated and
used compared to the two classes modeling variable
accesses and method invocations (E, F).

2. The small, square leaf nodes (G) represent classes that
are defined in the language independent meta-model
but that are not relevant in Smalltalk (classes modeling
entities such as Includes, SourceFiles, Functions, etc.).
Therefore these classes have not been instantiated at
all.

3. The narrow nodes in the middle of the hierarchy (H)
represent abstract classes as they are not instantiated
but their methods are invoked by subclass instances.

The small hierarchy (under the class annotated I) repre-
sents the visitors parse tree that extracts the FAMIX meta
model from the Smalltalk source code. The classVWParse-
TreeEnumerator2 (J) is invoked each time a model is cre-
ated from Smalltalk source code while the other two Visi-
tors, which areVWParsetreeMetricCalculator(K) andVW-
ParseAnnotator(L), are dedicated to analysis that is only
performed on demand.

Finally the small hierarchy (M) is not covered at all by
our execution. In fact, these classes represent a part the
graphical user interfaceof Moose, and have not been used
during the execution.

2VW stands for VisualWorks, a Smalltalk development environment
and distribution.

Discussion. The Instance Usage Overview gives an
overview of the run-time behavior of a whole application. It
gives clues on the classes used in the system in the context
of superclass code reuse. This view has the double advan-
tage of combining static (inheritance shape of the system,
number of classes) and run-time information for each class
(number of created instances, number of method calls, num-
ber of invoked methods). It helps to identifyoften instanti-
ated classes, not instantiated classes, heavily used classes,
andunused classes.

4.3 The Communication Interaction View

Communication Interaction Description

Layout Embedded Spring Layout
Nodes Classes
Edges Invocations
Scope Full system
Metric Scale Linear

Node Width NCM (Number of called methods)
Node Height NCM (Number of called methods)
Node Color NMI (Number of method invocations on a class)
Edge Width Number of Invocations Between two Classes

Figure Figure 4

View Intention. The Communication Interactionview
shows the communication between classes of a system dur-
ing its execution. As described above the size of a node
represents the number of methods used and the color the
number of method invocations. TheCommunication Inter-
action view takes advantage of an embedded spring layout:
it weights the springs on the edges so that classes heavily
communicating with each other will aggregate themselves.
In addition, the width of the edges represents the class-to-
class communication.



Figure 4. The Communication Interaction view.

Revealing Symptoms. This view only considers instance
level method invocations and not direct class references or
instance creations between classes. This view may contain:

• Unconnected, tiny, square nodes represent classes
whose methods do not invoke other methods or get in-
voked by other methods.

• Connected, tiny, square nodes represent classes whose
methods are rarely invoked. Note that such classes
can still have methods heavily invoking other methods,
represented as a dark class node.

• Large, white, square nodes represent classes having
a considerable number of method used but which are
rarely invoked during the execution.

• Dark, square nodes represent heavily used classes.
Small, dark, square nodes in addition represent classes
whose few methods are heavily used.

• Groups of nodes loosely connected to the view core
represent classes communicating via a funnel [18] [20]
to the rest of the system.

Case Study. Figure 4 shows the application of theCom-
munication Interactionview on our case study.

A group of classes is clearly disconnected from the rest
of the core of the view, while it joins the biggest part of the
view through the class annotated asA. This group of classes
implements the XMI file production based on a MOF com-
pliant interface and is disconnected from the rest because
the XMI/MOF production is an independent package used
by Moose to produce XMI model files. The big class (B)
is the XMI producer which uses MOF interface objects
that communicate via a bridge class (A) with the FAMIX-
compliant meta-model. The XMI producer is rarely used
because Moose favors the CDIF exchange format. This ex-
plains why its class node is pale.

The big class (C) is the central repository storing all
the analyzed models. Moreover it acts as a main entry for
querying the models. That is why this class is connected
to all the classes modelling the Smalltalk source code. The
medium sized dark class node (D) is the CDIF scanner that
is mainly invoked by an importer class (E) which loads
models into memory. The importer has the responsibility
to populate a model and as such to transform textual rep-
resentations (from a CDIF text file) into objects. Note that
the Moose developers learned that this class was also in-
voked by another one as shown in Figure 4. The big class
(F) represents the classMSEClassthat models classes in
Moose. The class (G) is the class representing the meta-



meta-model of Moose which is then instantiated to repre-
sent the FAMIX meta-model. This class is used by all the
FAMIX classes as they describe themselves automatically
and by the input/output tools as they provide meta-model
independent functionality.

Discussion. The Communication Interactionview iden-
tifies heavily invoked classes, but it is less scalable thanIn-
stance Usage Overviewbecause when the classes commu-
nicate heavily a naive embedded spring layout has difficul-
ties to create well identifiable groups of classes. Note also
that in our approach we took into account as invocations
self sends between classes and subclasses which make the
underlying view much denser. Another way to reduce such
a high degree of coupling would be to group all the classes
within a common hierarchy.

4.4 The Creation Interaction View

Creation Interaction Description

Layout Embedded Spring Layout
Nodes Classes
Edges Instantiation
Scope Full system
Metric Scale Logarithmic

Node Width NCO (Number of created objects by the class)
Node Height NCI (Number of created instances)
Node Color NCI (Number of created instances)
Edge Width Number of Creation Between two Classes

Figure Figure 5

View Intention. The Creation Interaction view shows
the instance creations between classes of the system dur-
ing the execution. As described above the width and the
color of a class node represents the number of instances
created by the class and the height represents the number
of instances of the represented class. TheCreation Inter-
action view also takes advantage of the embedded spring
layout by weighting the springs so that classes heavily in-
stantiating each other classes will aggregate themselves. In
addition, the width of the edges represents the number of
class-to-class instantiations.

Revealing Symptoms. This view only considers instance
level object creations, and may contain:

• Unconnected, tiny, square nodes representing classes
that have not been instantiated, and have therefore not
been used during the system’s execution.

• Connected, tiny, white, square nodes represent classes
with few instances. Note that such classes can still in-
stantiate other classes.

• Flat, lightly colored nodes represent classes that heav-
ily create instances, but are not often instantiated them-
selves. A few objects of these classes create a lot of
other objects. Note that we can have an abstract class
that still creates a lot of objects simply due to the fact
that its methods are used by instance subclasses.

• Narrow, dark nodes represent classes that have been in-
stantiated many times, but whose instances create only
few other instances.

• Wide, dark nodes represent classes that have been
heavily instantiated and used as the number of meth-
ods used and the number of invocations are high.

Case Study.Figure 5 shows the application of theCre-
ation Interaction view on an execution of our case study.
Four big groups of classes are identifiable:

1. The group on the top of the view, which is composed
of a narrow dark node (A) and some flat nodes (B), has
an interesting shape. The narrow class node represents
the classAttributeDescription, a meta-meta-model en-
tity which has been instantiated during the initializa-
tion of the system by all the FAMIX meta-model enti-
ties. The small flat nodes represent the FAMIX meta-
model classes that are not Smalltalk specific but that
still have been creating instances of the classAttribut-
eDescriptionto represent themselves during the cre-
ation of the FAMIX meta-model.

2. Extracting a source code model is done in two different
phases by two different entities: (1) theVWImporter
(C) which uses the reflective API of Smalltalk to query
simple structural information such as classes, meth-
ods, attributes, and (2)VWParseTreeEnumerator(D)
which is a visitor extracting from the abstract syntax
tree (AST) more detailed information.

3. The group on the top left of the view represents the first
extraction phase where we identify the fact that the big
class (C) creates a lot of entities of the surrounding
classes (E). The opposite group in the view describes
the second phase where theVWParseTreeEnumerator
(D) creates a lot of instances of theAccessandInvoca-
tion classes (F) which are among the most numerous
entities in our meta-model.

4. Finally the group on the bottom left reveals an interest-
ing aspect of the system. The big dark node (G) rep-
resents the classMeasurement. Measurements which
represents source code metrics are the most numerous
entities created during a model analysis. As such they
are not represented in memory, but they are stored on
file. Instances ofMeasurementare then created during



Figure 5. The Creation Interaction view.

the loading of a file like the other entities but a sec-
ond phase removes them from memory by means of
garbage collection. What the picture shows is the fact
that during the loading/saving of a source code model,
instances ofMeasurementare created. The classes sur-
rounding it are the various classes responsible for the
loading and saving (H).

Discussion. The view Creation Interaction is clearly
more scalable than theCommunication Interactionview.
This is normal as a class has a higher probability to invoke
more other classes than to create instances of other classes.
The view is useful, as it allows us to classify classes ac-
cording to their behaviour in terms of the creation of other
objects.

5 Discussion

The approach while based on a condensed set of run-time
information has proven to be successful to provide insights
about the behaviour of an application at run-time. The pre-
sented views are rich as they have multiple facets revealing

different kinds of information. The approach by its reduc-
tion of dynamic information is also applicable to systems
that should not be disturbed and for which generating a
trace would lead to extremely huge amounts of data. The
approach is also incremental in the sense that the collected
information can be cumulated. Finally the views provide
overviews as well as in some cases more fine-grained infor-
mation. Our approach could also be plugged dynamically
while a system is running. Note that it is linked to the wrap-
ping technology but also to the minimal set of run-time in-
formation it requires. Our tool, DIVOOR, uses the Method
Wrappers [2] that allows one to dynamically and safely con-
trol any method without method recompilation or byte-code
modification.

The drawbacks of the approach are that it does not pro-
vide fine-grained run-time information at the level of se-
quence of interactions like sequence diagrams, as done by
De Pauw [24] and that it requires the viewer to interact
with the view to gather the relevant information. Moreover,
our current implementation of the embedded spring layout
shows some limits when being applied on densely commu-
nicating systems.



6 Related Work

In the past, a great body of research has been conducted
to support the understanding of object-oriented applications
[12] [17] [21]. Among the various approaches to support
the understanding of software behavior that have been pro-
posed in the literature, graphical representations of software
execution have long been accepted as comprehension aids.
Various tools provide quite different software execution vi-
sualizations.

Murphyet al. have developed, in AVID, an approach that
allows software engineers to specify a high-level model of
a system [31]. The software execution can be visualized
using these models. Their visualization is oriented towards
the liveness of objects and their number. Their work is di-
rected more towards static, architectural models, while our
work is more focused on the visualization of different kinds
of interactions between classes of a software system during
its execution. In a recent version they introduces sampling
of events to reduce the information [3].

Sysẗa and Shimba [28] [29] [30] mix static and dynamic
information to support program understanding. Shimba
uses traces of Java programs and extracts automatically sce-
nario diagrams but also state diagrams representing the run-
time of the system based on SCED [15]. Shimba provides
also string matching algorithms for recognizing patterns in
event traces.

Langeet al. with their Program Explorer are focused on
views of classes and objects [17] [16]. The authors have de-
veloped a system for tracking function invocation, object in-
stantiation, and attribute access. The views show class and
instance relationships (usually focused on a particular in-
stance or class), and short method-invocation histories. It is
not intended as a global understanding tool. The users must
know what they are interested in before they start, whereas
our approach is made for covering a complete system.

Jerdinget al. have created their own interaction dia-
grams to visualize the entire software execution [10] [11].
The purpose of their tool ISVis is to be able to visualize all
the method calls between the classes. They can extract and
recognize execution patterns, but its drawback is a certain
lack of flexibility in the analysis: It has a good scalability
for large numbers of messages, but not for a huge number
of classes. In the latter case the visualization becomes less
useful.

De Pauwet al. presented two different approaches. In
their tool Jinsight, they are focused on interaction diagrams
[24]. This way, all messages between objects can be visual-
ized. The extraction of execution patterns is also one of the
main purposes. However, with a large execution trace it be-
comes difficult to understand class roles during execution.
Earlier on, De Pauw, with itsclass call clustersandclass
call matrix [22] [23], was closer to our approach. These

visualizations are simple, they have a good scalability, but
they only present a facet of an object-oriented application.

Except the last approach, all of them have in common
that they visualize program executions by applying sophis-
ticated diagrams to keep the whole execution trace. In con-
trast, we extract from the execution trace information which
we then condense into a few measurements to enrich our vi-
sualizations.

A dynamic program slice [13] is an executable part of
a program whose behavior is identical, for the same pro-
gram input, to that of an original program with respect to a
variable(s) of interest at some execution position. Dynamic
slicing has been used to support the understanding of pro-
gram [14]. In a similar way, CodeSurfer [1] supports the
understanding by using hypertext facilities but not full visu-
alization support.

7 Conclusions and Future Work

In this paper we presented a new way of presenting run-
time information that is not based on a trace of a system, but
on acondensedand compact set of information,i.e., mea-
surements, extracted during its execution. The measure-
ments are then used to generate run-time polymetric views,
simple visualizations enriched with measurements [20].

The views proposed, while being based on simple princi-
ples and a condensed set of run-time information, still pro-
vide rich insights and highlight multiple facets of the run-
time behavior of a system. The advantages of our approach
is the fact that it can be applied to systems for which a
trace generation would be difficult to extract or too big to
efficiently analyze such as webservers or other applications
running 24 hours a day.

In the future we plan to extend our current approach in
the following ways:

• Attribute dynamics. Understanding how attributes are
used during the lifetime of an object or a class and their
usage frequency is an axis we want to explore.

• Object lifetime. Objects do not have the same lifetime
over an execution and it would be interesting to iden-
tify the different kind of objects.

• Test coverage. Understanding and assessing tests
is a problem that with the emergence of test-driven
methodologies is getting more and more crucial. We
plan to apply our approach to understand and estimate
tests and their quality. We also think we could verify
the coverage of tests and infer which parts of a system
are covered by how many tests.

• Large systems. We also want to assess whether this
approach scales up to deal with traces of very large



systems, where the scalability problem is not given by
the trace itself, but by the number of involved objects,
which has an impact on the visualizations.

Acknowledgments. We acknowledge the financial sup-
port of the Swiss National Science Foundation for the
projects “Tools and Techniques for Decomposing and Com-
posing Software” (SNF Project No. 2000-067855.02) and
Recast: Evolution of Object-Oriented Applications (SNF
Project No. 2000-061655.00/1).

References

[1] P. Anderson and T. Teitelbaum. Software inspection using
codesurfer. InProceedings of WISE’01 (International Work-
shop on Inspection in Software Engineering), 2001.

[2] J. Brant, B. Foote, R. Johnson, and D. Roberts. Wrappers
to the Rescue. InProceedings ECOOP ’98, LNCS1445, pp
396–417. Springer-Verlag, 1998.

[3] A. Chan, R. Holmes, G. C. Murphy, and A. T. Ying. Scal-
ing an object-oriented system execution visualizer through
sampling. InInternational Workshop on Program Compre-
hension, 2003.

[4] T. Corbi. Program understanding: Challenge for the 1990’s.
IBM Systems Journal, 28(2):294–306, 1989.

[5] A. M. Davis. 201 Principles of Software Development.
McGraw-Hill, 1995.

[6] S. Demeyer, S. Ducasse, and S. Tichelaar. Why unified is
not universal. UML shortcomings for coping with round-trip
engineering. InProceedings UML ’99, LNCS1723, Oct.
1999. Springer-Verlag.

[7] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 — the
FAMOOS information exchange model. Technical report,
University of Bern, 2001.

[8] S. Ducasse. Evaluating message passing control techniques
in Smalltalk. Journal of Object-Oriented Programming,
12(6):39–44, June 1999.

[9] S. Ducasse, M. Lanza, and S. Tichelaar. Moose: an exten-
sible language-independent environment for reengineering
object-oriented systems. InProceedings of the Second Inter-
national Symposium on Constructing Software Engineering
Tools (CoSET 2000), June 2000.

[10] D. Jerding and S. Rugaber. Using Visualization for Archi-
tectural Localization and Extraction. InProceedings WCRE,
pp 56 — 65. IEEE, 1997.

[11] D. F. Jerding, J. T. Stasko, and T. Ball. Visualizing Message
Patterns in Object-Oriented Program Executions. Technical
Report GIT-GVU-96-15, Georgia Institute of Technology,
May 1996.

[12] M. F. Kleyn and P. C. Gingrich. Graphtrace — understand-
ing object-oriented systems using concurrently animated
views. In Proceedings OOPSLA ’88, volume 23, pp 191–
205, Nov. 1988.

[13] B. Korel and J. Laski. Dynamic program slicing.Informa-
tion Processing Letters, 29(3):155–163, 1988.

[14] B. Korel and J. Rilling. Dynamic program slicing in under-
standing of program execution. In5th International Work-
shop on Program Comprehension (WPC ’97), pp 80–85,
1997.

[15] K. Koskimies, T. Sysẗa, J. Tuomi, and T. M̈annistöo. Au-
tomated support for modeling oo software.IEEE Software,
15(1):87–94, Jan. 1998.

[16] D. Lange and Y. Nakamura. Program explorer: A program
visualizer for C++. InProceedings of Usenix Conference on
Object-Oriented Technologies, pp 39–54, 1995.

[17] D. B. Lange and Y. Nakamura. Interactive visualization
of design patterns can help in framework understanding.
In Proceedings of OOPSLA ’95, pp 342–357. ACM Press,
1995.

[18] M. Lanza. Codecrawler — lessons learned in building a soft-
ware visualization tool. InProceedings of CSMR 2003, pp
409–418. IEEE Press, 2003.

[19] M. Lanza.Object-Oriented Reverse Engineering — Coarse-
grained, Fine-grained, and Evolutionary Software Visual-
ization. PhD thesis, University of Berne, May 2003. Recipi-
ent of the Denert-Stiftung Software Engineering Prize 2003.

[20] M. Lanza and S. Ducasse. Polymetric views — a lightweight
visual approach to reverse engineering.IEEE Transactions
on Software Engineering, 29(9):782–795, Sept. 2003.

[21] A. Mendelzon and J. Sametinger. Reverse engineering by
visualizing and querying.Software — Concepts and Tools,
16:170–182, 1995.

[22] W. D. Pauw, R. Helm, D. Kimelman, and J. Vlissides. Visu-
alizing the behavior of object-oriented systems. InProceed-
ings OOPSLA ’93, pp 326–337, Oct. 1993.

[23] W. D. Pauw, D. Kimelman, and J. Vlissides. Modeling
object-oriented program execution. InProceedings ECOOP
’94, LNCS 821, pp 163–182, July 1994. Springer-Verlag.

[24] W. D. Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Ex-
ecution patterns in object-oriented visualization. In COOTS
’98, pp 219–234, 1998.

[25] T. Richner and S. Ducasse. Using dynamic information for
the iterative recovery of collaborations and roles. InPro-
ceedings of ICSM ’2002, Oct. 2002.

[26] R. Smith and B. Korel. Slicing event traces of large soft-
ware systems. InAADebug 2000 International Workshop on
Automated Debugging, 2000. Demo.

[27] I. Sommerville. Software Engineering. Addison Wesley,
sixth edition, 2000.

[28] T. Sysẗa. Static and Dynamic Reverse Engineering Tech-
niques for Java Software Systems. PhD thesis, University of
Tampere, 2000.

[29] T. Sysẗa. Understanding the behavior of java programs. In
Proceedings of the 7th Working Conference on Reverse En-
gineering (WCRE 2000), pp 214–223, 2000.

[30] T. Sysẗa, K. Koskimies, and H. M̈uller. Shimba — an envi-
ronment for reverse engineering java software systems.Soft-
ware — Practice and Experience, 1(1), Jan. 2001.

[31] R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wright,
D. Swanson, and J. Isaak. Visualizing dynamic software sys-
tem information through high-level models. InProceedings
OOPSLA ’98, pp 271–283. ACM, Oct. 1998.

[32] N. Wilde and R. Huitt. Maintenance support for object-
oriented programs.IEEE Transactions on Software Engi-
neering, SE-18(12):1038–1044, Dec. 1992.


