
Logic and Trace-based Object-Oriented Application Testing

St́ephane Ducasse Michael Freidig∗

Roel Wuyts†

Presented to WOOR’2004 (International Workshop on Object-Oriented Reengineering)

Abstract

Due to the size and the extreme complexity of legacy sys-
tems, it is nearly impossible to write from scratch tests be-
fore refactoring them. In addition object-orientedlegacy
systems present specific requirements to test them. Indeed
late-binding allow subclasses to change fundamental as-
pects of the superclass code and in particular call flows.
Moreover Object-oriented programming promotes a distri-
bution of the responsibilities to multiple entities leading to
complex scenario to be tested.

In such a context one of the few trustable source of infor-
mation is the execution of the application itself. Traditional
forward engineering approaches such as unit testing do not
really provide adequate solution to this problem. There-
fore there is a need for a more expressive way of testing the
execution of object-oriented applications. We propose to
represent the trace of object-oriented applications as logic
facts and express tests over the trace. This way complex se-
quences of message exchanges, sequence matching, or ex-
pression of negative information are expressed in compact
form. We validated our approach by implementing TestLog
a prototype tool and testing the Moose reengineering envi-
ronment and a meta-interpreter.

Keywords: Legacy System, Testing, Dynamic Infor-
mation, Logic Programming

During reengineering, it is crucial to write tests to make
sure that the changes made do not affect the overall be-
havior of the system. Since reengineering is typically app-
plied to large, complex and badly understood systems, it
is extremely hard to write such tests from scratch. This is
especially true since reengineers most of the time do not
know the system they are working on, and face a lot of
time pressure [6]. The situation is even worse in the case of
object-orientedlegacysystems. Indeed late-binding allow
subclasses to change fundamental aspects of the superclass
code, in particular control flow. Moreover object-oriented

∗Software Composition Group, University of Bern, Switzerland
†Decomp Laboratory, Université Libre de Bruxelles, Belgium

programming promotes a distribution of the responsibilities
to multiple entities leading to complex scenario to be tested.

In the specific context of reengineering legacy object-
oriented applications, one of the few trustable sources of
information is the execution of the application itself. The
approach presented in this article is based on the logic rep-
resentation of program execution and the specification of
tests as logic queries. This work is related to the use of
logic queries for advanced debugging [15].

This article is structured as follows. Section 1 stresses
the specific problems encountered when testing legacy
object-oriented applications. Section 2 presents our ap-
proach. Sections 3, 4 and?? presents frequently occuring
patterns to test in object-oriented applications. Sections 6
and 7 present the validation of the approach on two bigger
case studies. Section 8 presents the implementation details
of the approach.

1. Testing Object-Oriented Programs

Object-oriented programming promotes a distribution of
responsibilities among multiple interacting objects. In addi-
tion to this spatial repartition a temporal repartition occurs
because of the presence of late-binding. The fact that the
message receiver is late-bound and always represents the
receiver of the current method is extremely powerful and is
the basis for building frameworks. As such it introduces an-
other dimensions as it opens the door to the introduction of
new behavior or modifications of behavior defined in super-
classes [22]. A subclass can easily customize locally funda-
mental aspects of its superclasses by changing the sequence
of messages and calling relationships between the methods,
leading to the fragile class problem [19].

Unit testing, incarnated recently by the flurry of *Unit
frameworks, supports object-oriented testing very well [1].
A context is built, within this context methods are invoked
and their result or changes on the tested objects are checked.
Even if unit testing is powerful and has proven to be valu-
able, there are some situations that are difficult to express
with such an approach.

1

Let us consider that we want to test the application of an
observer pattern. In such a case one must verify the collabo-
rations between a subject and itsregisteredobservers. Only
registered objects should receive an update message, when
a subject receives a change message, it responses with an
updated message to every registered observers that in turn
takes an appropriate action. A test of this collaboration re-
quires an analysis of messages exchanged between objects
that is not easily feasible with a unit test.

Requirements for Testing Run-Time Information. Be-
cause it is painful to manually analyze a behavior that
spawns over many steps of an execution, there is a need
to create a language that enables a tester to formally spec-
ify a test and automatically evaluate whether it passes or
fails. Moreover, the solution should support the expressions
of query on objects that arenot in the scope of each other
[14]. Here is a non-exhaustive list of actions that a tester
would like to be able to use to express tests:

Because it is painful to manually analyze a behavior that
spawns over many steps of an execution, there is a need to
create a language that enables a tester to formally specify
a test and automatically evaluate whether it passes or fails.
Here is a non-exhaustive list of actions that a tester would
like to be able to use to express tests:

• Identification of a message based on its name, its
sender, its receiver or its arguments,

• identification of object creation,

• identification of specific message sequences within
complex interactions,

• identification of messages inclusion, i.e., that a se-
quence of messages is included in another one,

• identification that certain messages are not sent or not
received by an object,

• access to the state of an object at a given point in time
such as before and after an invocation,

• detection of state changes,

• observation of the history of an object as it is created,
passed around as argument or serves as sender or re-
ceiver,

• access the state of an object in the recursive state of
another object.

• access whether a reference between two objects exists,
is established or detached.

Note that message sequences identification is particularly
important in presence of late-binding as a subclass may re-
define a method and introduce new method invocations.

instrumented
and executedA

B

C

Tests
> ObserverNotifies(object1,(object2, object3, object4)).
> true

trace reified

ObserverNotifies(?ob, ?l)
 if forAll...

tests definition

tests definition

Figure 1. The principle of logic trace-based
testing.

2. Logic and Trace-Based Testing

Reengineering object-oriented legacy applications is a
challenging task as legacy applications traditionally lack
tests, documentation and are generally very complex.
Within this context, program execution is a trustable source
of information that can be used to develop tests. The ap-
proach proposed in the paper is to specify tests based on
the execution trace of the application and to express tests
as logic predicates over the trace. Figure 1 describes our
two-step approach.

1. First the source code is instrumented using some li-
braries [4]. This phase creates a program trace com-
posed of events andobject states. The trace is repre-
sented under the form of logic facts.

2. Tests are then expressed as logic queries over the trace,
using a library of logic rules that facilitate the manipu-
lation of the trace.

Figure 1 describes our approach: first the source code
is instrumented using some libraries [4]. This phase cre-
ates a specific program trace composed of events andobject
states. This trace is represented as logic facts. Using a logic
library that manipulates the trace tests are then expressed
as logic queries over the trace. As explain below, the logic
facts are represented as objects that represent logically the
code of the applications under study. Note that other ap-
proaches used the trace of program but in the context of de-
bugging procedural languages [8], or exploring and reverse
engineering object-oriented applications [5],[12], [18]. In
the context of debugging object-oriented program, query-
based debugging has been proposed which combine condi-
tional breakpoints with query-based [13][14]. A query-like

2

expression is evaluated each time a conditional breakpoint
is reached.

We validated our approach on several smaller examples,
and on two complex systems: the MOOSEreengineering en-
vironment and the meta-interpreter [20]. While performing
these experiments we noticed that similar situations occur
frequently while testing. We captured this information un-
der the form of patterns and explicitly supported them with
predicates in our library of logic predicates. Sections 3, 4
and 5 describe the patterns we found in detail, categorized
in three kinds. However, before we discuss the patterns in
detail we first explain the logic language Soul that we used
throughout the experiments to reprent and query the traces,
and then the example that we will use to illustrate the pat-
terns.

2.1. Logic Programming in SOUL

We give a short introduction into SOUL because it is
necessary to understand its concepts for the following sec-
tions where different types of queries are introduced. SOUL
is a full prolog with several syntactical and semantical en-
hancements that allows a tight integration with an object-
oriented language. As in prolog, we specify rules and per-
form logic queries. The extension over standard prolog is
that logic variables can be unified with objects. This means
that there exists a binding of a logic variable to an object as
it exist in the virtual machine.

The following query binds the classObject the root of
the Smalltalk class hierarchy to the variable?c. The term in
angle brackets is evaluated by the Smalltalk compiler and
the result is passed as argument to the query.

classWithName(?c, [’Object’])

classWithName(?Class, ?ClassName) if
not(and(var(?Class),string(?ClassName))),
class(?Class),
equals(?ClassName, [Soul.MLI current classNameOf: ?Class])

The implementation of the ruleclassWithName shows
the syntax of rules where the head is separated from the
body by word’if’. On the third line of the body we again see
a term in square brackets. It contains Smalltalk code that is
evaluated by the Smalltalk VM. In the Smalltalk code the
logic variable?Class is also used. This mechanism allows
a programmer to pass variables from a logic environment to
the Smalltalk environment.

The query succeeds because a message path can be found
in the trace and the SOUL query interpreter produces the
following result.

SOUL found
1 solutions in 101 ms for:
if event(?e) messagePath(
<event(?e1, selector(?e1, [#a:])),
event(?e2, selector(?e2, [#b:])),

:R1 :R2 :R3

a:
b:

:R3

c:
d:

Figure 2. A simple scenario

event(?e3, selector(?e3, [#d:]))>
)
[?e1-->[#a:]]
[?e2-->[#b:]]
[?e3-->[#d:]]

2.2. Example

This example shows a scenario based test implemented
as a logic query that takes into account multiple message
sends and states. In addition to validate a postcondition,
this test also targets the correct message exchange among
multiple collaborators. In order to test the postcondition a
reference to an object at an intermediate step of the com-
putation is obtained and later used to perform a check. In
order to test whether an object is included in the recursive
state of another object, that state is reconstructed from the
recorded trace so that the same objects with the same iden-
tities are accessible. This example shows general process
when performing trace-based test.

Scenarios. A scenario is a sequence of interactions be-
tween multiple objects. A scenario starts with an initial
event upon which a cascade of events are produced. Sce-
narios are behavioral archetypes that occur frequently in
object-oriented systems because OOP distributes the imple-
mentation of a service between different classes, each with
its own responsibility. Numerous design patterns are based
on scenarios.

3. Interaction Testing

The first test pattterns provide a mechanism to match
message sequences in the interaction diagram. This is fre-
quently done to express patterns of object interactions, as
will be illustrated on the example described in Section 2.2.

Message Implication. Message implication tests whether
a message send implies another message send in its context.

For example, when adding an element to a classification,
a messageadd: is sent, resulting in a send ofbasicAdd: and,

3

later on, in a send ofsetParent:. This chain of messages
implying each other can be expressed by nesting the events
(the sends of messages) that occur by using the predication
contains. We express this chain as:

if event(?addEvent,
selector(?addEvent, [#add:]),
contains(<event(?basicAddEvent,

selector(?basicAddEvent, [#basicAdd:]),
contains(<event(?setParentEvent,

selector(? setParentEvent, [#setParent:]))
>))

>))

The query finds our desired message sequence. Note
how the pattern that we expressed did not includeall the
messages that were being sent: it just expressed those mes-
sages that interested us. This feature allows us to express
the important parts of the message sequence that we want
to express, while not cluttering it with noise about messages
we do not necessarily care about.

Scenario The first example showed how to express a mes-
sage sequence, where one message implies the sending of
another message (and so on). This can be extended to ex-
press trees of message sends instead of simply sequences.
Because the argument of thecontains predication is a list,
we can express n-ary trees, and match these against the ex-
pression.

As a concrete example we see a recurring pattern in the
trace when we ask the current service for a particular regis-
tered name. For example, while adding an object, the classi-
fication where we add the object needs to know its children
(so that it can insert the element to be added). Because the
root needs to know its children, it sends the messageser-
viceFor: to the classServicesConfiguration to retrieve the
service that it will use to get its children. This class acts
as a singleton, and get its sole instance (by sending itself
the messagecurrent) for the registered service (using the
messagecurrentServiceFor:, which results in some internal
messages to be sent, which does not interest us. Once the
root classification has the service it needs,doExtentional-
Classification will get called. We can express this tree of
messages as follows:

if event(?serviceForEvent,
selector(?serviceForEvent, [#serviceFor:]),
contains(< event(?currentEvent,

selector(?currentEvent, [#current])),
event(?currentServiceForEvent,

selector(?currentServiceForEvent, [#cur-
rentServiceFor:]),

contains(< event(?basicServiceEvent,
selec-

tor(?basicServiceEvent, [#basicServiceInformationFor:do:]))
>))

>))

4. State Testing

The second category of patterns deals with the change of
object state during the execution of a program.

Context. There are many forms of behavior that can be
tested by inspecting the state of one or more objects. One
is the change of an object’s state after the execution of an
operation. State changes manifest themselves in establish-
ment and detachment of links between objects instances or
the change of primitive type values. In contrast to focus
on a single operation the change of state of a single ob-
ject through its lifetime can also be tested by asserting a
sequence of states.

The errors that state testing covers are: violations of
a pre-postcondition, incorrect initialization of objects after
creation, return of a wrong object from a method.

Pre- and Postconditions. Trace-based testing is also effe-
cient to validate that a postcondition holds when examining
legacy code, because with a single logic query it shows that
a postcondition holds for every method execution that sat-
isfies a precondition. To validate postconditions we need
to accomplish the following steps: Identify the execution of
an operation that is a target for postcondition validation. en-
sure the precondition and validate the postcondition, actions
that are reflected in the following code:

validatePostcondition(
event(?e, ?eventQuery),
precondition(?e, ?preState, ?preconditionQuery),
postcondition(?e, ?preState, ?postState, ?postconditionQuery))

Three queries are passed as arguments. The first query
identifies the event for which pre- and postconditions should
be ensured. The second argument is the precondition and
the third argument is the postcondition.

Let us imagine a simple example of incrementing a
bounded counter. The precondition asserts that the counter
has not yet reached its upper bound. The postcondition as-
serts that the counter value has been incremented by one. A
query to validate this postcondition looks as follows.

validatePostcondition(
event(?e, selector(?e, [#increment:]),
precondition(?e,

?preState,
not(greatherThan([?preState value], ?upperBound)))

postcondition(?e, ?preState, ?postState,
equals([?preState value + 1], [?postState value])))

On a hypothetical bank application, testing that a debit
account is debited if the balance is greater than the amount
to be transferred, is expressed as follow:

validatePostcondition(
event(?e, selector(?e, [#transferamount:to:]),
precondition(?e,

?preState,

4

and(argument(?e, [1], ?amount), greatherThan([?preState balance],
?amount))),

postcondition(?e, ?preState, ?postState,
and(argument(?e, [1], ?amount), equals([?postState balance],

[?preState balance - ?amount]))))

Encapsulated States. When testing states there are vari-
ous situations where we need to break up encapsulation as
the internal state of an object may be encapsulated,i.e., not
accessible through a public interface.

To check the state of an encapsulated object we specify
an expression that is similar to an OCL navigation expres-
sion. The navigation expression consists of a sequence of
instance variable names that is used to stepwise access ob-
jects1. We call the sequence of instance variables used to
access a nested state anaccesspathfrom a root object to a
nested object. Here is the definition of the query that given
an accesspath accesses a nested object.

nestedObjectAt(<>, ?s, ?s).
nestedObjectAt(<?firstInstVar | ?restInstVar>, ?object, ?nestedObject) if

objectAt(?object, ?firstInstVar, ?includedObject),
nestedStateAt(?restInstVar,?includedObject, ?nestedObject)

For example in order to access an nested path through an
access path #a, #b, #c we write the following query

event(?e, selector(?e, [#xyz])),
ressurectReceiverBeforeEvent(?e, ?receiver),
nestedObjectAt(<[#a], [#b], [#c]>, ?rootObject, ?nestedObject)

If we know an access path we can query an object at the
specified position, but sometimes we would like to know
whether an object is included in the recursive state of an-
other object and retrieve its accesspath. For example if we
want to know where or wether an object passed as argument
to the methodaddObject: has been added, we write the fol-
lowing query:

event(?e, selector(?e, [#addObject:])),
argument(?e, [1], ?addedObject),
ressurectReceiverAfterEvent(?e, ?rootObject),
includesObject(?rootObject, ?addedObject, ?accessPath)

Note that the use of the ressurectReceiverAfterEvent
query is necessary because we have multiple states for the
?rootObject but are only interested in his state after

Now we can test whether the object passed as an argu-
ment is the same object accessible by a given access path.

event(?e, selector(?e, [#addObject])),
argument(?e, [1], ?addedObject),
ressurectReceiverAfterEvent(?e, ?rootObject),
nestedObjectAt(<[#a], [#b], [#c]>, ?rootObject, ?nestedObject),
equals(?addedObject, ?nestedObject)

1This access use the reflective API of Smalltalk but can be find in other
languages such as Java.

Links between Objects. An object has a link to another
object whenever it is possible to access an object through
navigation along a path of instance variables. Frequent tests
are based on the existence, the creation or the destruction of
a link between objects.

To test the existence of a link or a linkpath between a
first and a second object accessible from a root when can
test whether the first object is included in the recursive state
of the root and if the first object includes the second object
in its recursive state.

existsLink(?fromObject, ?toObject, ?rootObject) if
includesObject(?rootObject, ?fromObject),
includesObject(?fromObject, ?toObject)

This rule gives us the basis to create two new rules that
we use for testing whether a link is established or detached
by a single operation defined as follows:

establishesLink(?event, ?fromObject, ?toObject) if
ressurectReceiverBeforeEvent(?event, ?r1),
ressurectReceiverAfterEvent(?event, ?r2),
not(existsLink(?fromObject, ?toObject, ?r1)),
existsLink(?fromObject, ?toObject, ?r2)

detachesLink(?event, ?fromObject, ?toObject) if
ressurectReceiverBeforeEvent(?event, ?r1),
ressurectReceiverAfterEvent(?event, ?r2),
existsLink(?fromObject, ?toObject, ?r1),
not(existsLink(?fromObject, ?toObject, ?r2))

5. Recursion Testing

The third category of patterns that we identified during
our experiences is linked to the recursive traversal of struc-
ture as examplified by the Visitor pattern. It contains one
pattern that expresses queries to test the traversal of a com-
posite object structure with a visitor. Identify and test single
or composite events that occur during recursion.

Context. Recursion in object-oriented systems is often
concerned with traversing hierarchical object structures of-
ten realized by a composite pattern and a visitor that vis-
its every element. The visitor performs node type specific
operations that are either independent of other nodes or de-
pend on the result produced while visiting child nodes in
the composite tree. A typical example for the second case
is when an interpreter evaluates an expression and the re-
sult from evaluating subexpression is used to compute the
expressions result.

Basically the following errors can be identified. A recur-
sive structure is not properly traversed when nodes in the
composite structure are not visited or the sequence of nodes
visited does not conform to a specified traversal scheme.
For a visitor the wrong method in the visitor may be ex-
ecuted or the double dispatch with the object could fail if
the visitor does not send the message back to the object.
Furthermore results produced in intermediate steps of the
recursion could be wrong and lead to an abnormal behavior.

5

Visitor testing. Although different visitors and compos-
ite structures produce different behaviors we can abstract
from them and write generic queries which tests whether
the structure is properly traversed or not or for identifying
event patterns during recursion that are representing a cer-
tain behavior. The task of testing a recursive traversal is
composed of the following tasks: ensuring a complete tree
traversal, ensuring correct operation on nodes and specify-
ing behavioral assertions for operations that are performed
on the composite structure. First we must make sure that
every node that have to be traversed by a visitor, is really
traversed. Then we require that the correct node type de-
pendent operations are performed by a visitor. Finally, to
test the behavior that emerges from recursing a composite
structure we identify a set of events and express a predicate
over that event set.

Testing the traversal of composite structures is expressed
as a query with two parts: First we define a query that tests
whether every object in the recursive state of a root object
is traversed in the recursion. We do this by identifying an
event for the start of the recursion and then query every ob-
ject in the recursive state of the receiver that belongs to a
class in a composite hierarchy,e.g., in the ProgramNode hi-
erarchy for abstract syntax trees.

In a second part of the query we test whether every node
receives a recursive selector. A recursive selector is a selec-
tor that is recursively called for every object in the compos-
ite structure such aseval: or acceptVisitor:. For every event
with a recursive selector we require that it contains the re-
cursive events to the components of the receiver. . If this
was not the case the recursion would not be isomorphic to
the composite structure such that recursive events could be
missing or occur in the wrong order.

Check if the tree traversal is properly performed. The
rule objectsInRecursiveState binds the variable?objects to
every object found in the recursive state of another object
belonging to a given set of classes.

recursesCompositeStructure(?root, ?recSelector, ?compositeClasses) if
objectsInRecursiveState(?object,

member([?object class], ?compositeClasses),
?root),

event(?e, selectorAndReceiver(?e, ?recSelector, ?object)),
ressurectReceiverBeforeEvent(?e, ?receiver),
forall(objectsInState(?component,

member([?object class], ?compositeClasses),
?receiver)),

event(?e,
contains(event(?ei,

selectorAndReceiver(?ei, ?recSelector, ?component)
)))

Now that we can verified that the object structure is prop-
erly traversed, we test method executions during the traver-
sal. We classify methods whether they are executed on
a single node and or wether they depend on the previous
traversal of sub nodes. As a visitor traverses objects a type
dependent method is called on the visitor by performing a

double dispatch between the node and the visitor. In im-
plementations, the method that is associated with a type is
often based on a method naming convention.

Together with a query that checks if a double dispatch
between an object and a visitor is done, we can check
whether ever an object in a composite structure performs
a double dispatch with a visitor.

visitorDoubleDispatchEvent(?e, ?selector) if
nonvar(?e),
receiver(?e, ?r),
argument(?e, [1], ?arg),
event(?e,

implies(event(?ei,
selectorReceiverArguments(?ei, ?selector, ?arg, <?r>))))

The event?e is representing the execution of the#ac-
cept: method of an object that is visited. The first argument
to the accept is the visitor. The visitor is then the receiver of
the next message that performs an operation dependent of
the type of the visited object. This message is denoted by
?ei. The first argument to this message is the object that was
originally visited. The variable?selector holds the selector
name for carrying out the type dependent operation.

When recursing object structures we many times observe
dependencies between operations on a specific node and its
sub nodes. For example when an interpreter is interpret-
ing a message expression in Smalltalk all argument expres-
sions are evaluated first and the results of the evaluation are
passed as arguments to the message expression evaluation.
Another example is a bottom up tree pattern matching pro-
cess such that a pattern node is only matched if all of the
child nodes have been matched before.

To identify a set of events on a composite substructure
we can write a pattern matching expression that matches
events with receiver objects of the recursive selectors. A
test is then expressed as predicate over the matched events.

For better understandability of this concept we show an
example of an interpreter that evaluates a simple arithmetic
expressions consisting of the product and sum operators and
constants. The interpreter is implemented as a visitor that
traverses the arithmetic expression and evaluates it. Below
we show the code for the visitor.

EvalVisitor>>forConst: aConst
ˆaConst value

EvalVisitor>>forProduct: aProduct
ˆ((aProduct left accept: self) *

(aProduct right accept: self))

EvalVisitor>>forSum: aSum
ˆ((aSum left accept: self) +
(aSum right accept: self))

Let us imagine that we have the following arithmetic ex-
pression that is evaluated(3 + 4) ∗ 5 ∗ 6. Within the ex-
pression evaluation the term3 + 4 is evaluated. Instead of
debugging the visitor traversal we would like to write an ex-
pression on the trace that checks whether the result of evalu-
ating3 + 4 is correct. To do that we write a pattern matching

6

expression that matches the evaluation of a Sum term, query
the returned values from evaluating the constant expressions
and then check whether the result returned from evaluation
the Sum equals the sum of the constant expressions.

event(?e, and(selectorAndClass(?e, [#accept:], [Sum]),
ressurectReceiverBeforeEvent(?e, ?r))),
event(?e, selectorAndReceiver(?e, [#accept:], ?r),

contains(<event(?e1,
selectorAndReceiver(?e1, [#accept:], [?r left])),

event(?e2, selectorAndReceiver(?e2, [#accept:], [?r right]))>)),
add([?e1 return], [?e2 return], ?sum),
equals(?sum, [?e return])

For this simple example, we can also test whether the
visitor recurses the composite structure of the arithmetic ex-
pression.

arithmeticRecursesComposite if
getExpression(?r),
allSubclassesList([ArithmeticExpression], ?subclassList),
recursesCompositeStructure(?r, [#accept:], ?subclassList)

The rulegetExpression returns the root object?r of the
composite structure. The variable?subclassList is unified
with the classesSum, Prod and Const. The last line of
the rule the performs the check whether every object of the
composite structure starting from?r is visited.

Here is the example whether for every node of the arith-
metic expression adoubleDispatch with the visitor is per-
formed.

arithmeticVisitorDoubleDispatch if
getExpression(?r),
allSubclassesList([ArithmeticExpression], ?subClasses),
objectsInRecursiveState(?o, member([?o class], ?subClasses), ?r),
getVisitorSelector([?o class name], ?vSelector),
event(?e, and(selectorAndReceiver(?e, [#accept:], ?o),
visitorDoubleDispatchEvent(?e, ?vSelector)))

First every object of the composite structure is queried
and bound to the variable?o. Then for every event?e that is
representing an acceptance of a visitor it is checked whether
?e initiates a double dispatch event with the visitor. The
querygetVisitorSelector returns the selector of a visitor that
performs a type dependent operation.

6. Case Study: Verifying MOOSE Models

The MOOSE reengineering environment supports code
representation and analysis. This code representation is
based on the FAMIX model is similar to the UML but
with extensions representing method invocations and at-
tribute accesses [16]. To fill up models, MOOSE has im-
porters for various source code languages such as C++, Java
or Smalltalk. The task of an importer is to parse source
code entities and to reified them in a MOOSE model. A
MOOSEimporter exposes interesting and complex behavior
that is produced after calling theimportModel method on
the importer facade. It defines method parse tree traversal,

Smalltalk meta-model access, object creation, model en-
tity reification and the establishment of links between them.
The complete behavior of an import of a small model pro-
duces more than ten thousand message sends.

In VisualWorks Smalltalk classes are organized in pack-
ages. Therefore, MOOSE imports a model from the set of
classes that are located in a package.
Checking Class Import. The first fact that we would like
to verify is that when a class is imported it is effectively
created and added into the current model and if other de-
pendent entities such as instance variables and methods are
also imported.

We have to identify a location in the trace where FAMIX
model entities of a certain type are created. For example, we
learned browsing the code that a FAMIX class is created by
the method#ensureClassEntityFor: which takes a Smalltalk
class and returns a FAMIX entity.

Then we query the trace to observe the creation of a new
entities and finally check if the set of classes is properly im-
ported. Finally we check if other entities that are dependent
of classes are properly imported.

Below are two queries that test whether every class in
a package is imported in a MOOSE model. The first one
performs a check for a single class. The second performs
the test for every classes in a set using aforall query.

classEntityReifiedAndInModel(?c)if
nonvar(?c),
event(?e, and(selector(?e, [#ensureClassEntityFor:]),
argument(?e, [1], ?c))),
includesInRecursiveState([MSEModel currentModel], [?e return])

The variable?c is bound to a class that exists in the
Smalltalk image. We find the execution of the method
#ensureClassEntityFor: in the trace so that the argument
matches the value of the variable#?c. After that we test
whether the imported MOOSE model contains the newly
created entity. The expression[#MSEModel currentModel]
refers to the current model in which imported entities will
be added.

testEveryClassInPackage(?packageName, ?test(?c)) if
forall(classInPackage(?packageName, ?c),
?test(?c))

testEveryClassInPackage([ReferenceModel],
classEntityReifiedAndInModel(?c))

In the testtestEveryClassInPackage, we check whether
the queryclassEntityReifiedAndInModel(?) succeeds for ev-
ery class in a package. The queryclassInPackage(?c) uni-
fies ?c with every class belonging to?packageName. The
query forall checks whether a predicate passed as a second
argument is true for every solution passed by the first query.
The term?test(?c) is a higher order query that is passed as
an argument to the rule above and can express any predicate
dependent on the set of classes.

7

Checking Metaclass Import. The importer should make
sure that a class and its metaclass are imported. The follow-
ing rule specifies this constraint by simply composing twice
the previous query#classEntityReifiedAndInModel(?x) once
for the class and a second time for its meta-class.

classAndMetaClassReifiedAndInModel(?c) if
classEntityReifiedAndInModel(?c),
classEntityReifiedAndInModel([?c class])

Now we can perform the test for whether every class
and its meta class are imported in the model by passing
the queryclassAndMetaClassReifiedAndInModel(?c) as ar-
gument.

testEveryClassInPackage([ReferenceModel],
classAndMetaClassReifiedAndInModel(?c))

Checking Class Composite Entity Representation.Rep-
resenting a class implies representing its instance variables
and its methods. Here we show how we test that a link be-
tween a reified class and its reified instance variables. First
we query every reified instance variable entity and class
entity and then check whether there exists a link between
them.

In MOOSE instance variables are reified by calling the
method[#ensureInstVarFor:] where the first argument is the
class and the returned object is the reified instance variable.
We bind the reified class entity to the variable?cEntity and
the reified instance variable to the variable?ivEntity for all
execution of[#ensureInstVarFor:].

classAndInstanceVarEntity(?c, ?cEntity, ?ivEntity) if
event(?e, and(selector(?e, [#ensureClassEntityFor:]),
argument(?e, [1], ?c))),
event(?e1, and(selector(?e1, [#ensureInstVarFor:]),
argument(?e1, [1], ?c))),
equals(?cEntity, [?e return]),
equals(?ivEntity, [?e1 return])

We now check whether for every pair?cEntity and?ivEn-
tity a link exists between those two objects within the
MOOSEmodel. This must be true according to the FAMIX
model. Finally we perform the test again for every class.

existsLinkBetweenClassAndInstanceVariables(?c) if
nonvar(?c),
classAndInstanceVarEntity(?c, ?cEntity, ?ivEntity),
existsLink(?cEntity, ?ivEntity, [MSEModel currentModel])

testEveryClassInPackage([ReferenceModel],
existsLinkBetweenClassAndInstanceVariables(?c))

7. Case Study: Testing a Meta Interpreter

A meta interpreter for a language is an interpreter writ-
ten in the same language that the language it interprets. A
meta interpreter for Smalltalk is an interpreter written in
Smalltalk that interprets Smalltalk code. Such an interpreter
is useful to develop coverage tools and fine grained dynamic
analysis [20]. But to be able to use a meta interpreter we

should be sure that it is correctly implemented,i.e., if a code
fragment is correctly executed when interpreted. This case
study show how our approach allows one to test complex
recursive behavior. Basically the meta interpreter parses the
source code and creates an abstract syntax tree. Then each
node recursively receives the messageeval: with evaluation
context as argument.

Let us take as example the following Smalltalk method.
It stores in the instance variablelastIndex the result of the
invocation of the methodmakeRoom: sent to the instance
variablespace with the result of the messageextraSpace as
argument.

makeRoom

lastIndex := space makeRoom: self extraSpace.

We then instrument the meta interpreter and generate a
trace for the evaluation of the methodmakeRoom. Then we
define a query that

Get references to the node objects in the parse tree:

getParseTreeNodes(?assignment, ?messageExpression, ?argument) if
event(?methodEval, selector(?methodEval, [#valueWithReceiver:])),
ressurectReceiverBeforeEvent(?methodEval, ?methodExpression),
equals(?assignment, [?methodExpression statements at: 1]),
equals(?messageExpression, [?assignment value]),
equals(?argument, [?messageExpression arguments at: 1])

Passing argument.The following test verifies that the re-
sult of the argument expressionself extraSpace evaluation
is passed as argument to the expressionspace makeRoom::

testArgumentEvaluation if
getParseTreeNodes(?assignment, ?messageExpression, ?argument),
event(?evalSelfSpace, selectorAndReceiver(?evalSelfSpace, [#eval:], ?ar-

gument),
event (?perform,

selectorAndReceiver(?perform, [#perform:receiver:arguments:class)),
argument(?perform, [3], ?messageArguments),

includes(?messageArguments, [?evalSelfSpace return])

The following test checks whether after the method execu-
tion the instance variable?lastIndex has the result returned
by the expressionx doSomething evaluation.

testAssignement if
getParseTreeNodes(?assignment, ?messageExpression, ?argument),
event(?evalMessageExpression,

selectorAndReceiver(?evalMessageExpression, [#eval:], ?message-
Expression)),

event(?makeRoom, selector(?makeRoom, [#makeRoom])),
ressurectReceiverAfterEvent(?makeRoom, ?receiver),
instVarValue(?receiver, [’lastIndex’], ?lastIndex),
equals(?lastIndex, [?evalMessageExpression return])

Test if the receiver of the messagemakeRoom: is the
value of the instance variablespace.

testReceiverEvaluation if
getParseTreeNodes(?assignment, ?messageExpression, ?argument),
event(?foo, selector(?makeRoom, [#makeRoom])),
ressurectReceiverBeforeEvent(?makeRoom, ?receiver),
event (?perform, selectorAndReceiver(?perform,

[#perform:receiver:arguments:class)),
argument(?perform, [2], ?performOnReceiver),
instVarValue(?receiver, [’space’], ?space),
equals(?space, ?performOnReceiver)

8

8. Implementation and Trace Representation

TESTL OG. The approach presented has been fully im-
plemented in a tool called TESTLOG whose computational
model is that of a logic query. A logic query is composed of
logic terms and unifies logic variables with events from the
trace. The semantics of a logic query expresses the pass or
fail semantics of a test: If a logic query fails then a test fails
and if a logic query produces at least one result then the test
succeeds.

The terms and logic rules are expressed in SOUL
(Smalltalk Open Unification Language) [23]. SOUL is an
extended prolog-engine written in Smalltalk which allows
a programmer to integrate Smalltalk expressions within the
logic rules themselves and use logic variables in Smalltalk
expressions, creating a symbiotic relationship between the
logic engine and the object-oriented language. TESTLOG is
implemented on top of SOUL in a layered architecture that
spawns different levels of describing behavior from single
events to high level behavior of a whole application system.

SOUL

ST

Domain Specific Queries

Behavioral Archetypes

Basic Event Queries

Event Reification

Reified Events and States

Tree Pattern Matcher

Figure 3. The Architecture of TESTLOG

The bottom layer comprises an object-oriented model
that represents the event trace. A trace is stored as an ob-
ject in the Smalltalk image and accessible via a singleton
pattern. At the next abstraction level TESTLOG provides
queries to access single events and states. This layer serves
two purposes: First it reifies layer the object-oriented model
into to the logic environment of SOUL by binding objects
to logic variables. Second it provides basic queries on the
event trace for querying events according to their attributes.
This layer also defines queries based on state properties
such as whether an object is included in the recursive state
of the events receiver object.

The pattern matching layer supports the execution of a
pattern matching query on the event tree. As tree pattern
matching we understand the process of checking the occur-
rence of a substructure, the pattern tree, in a larger structure,
the target tree. The primary usage of tree pattern matching
is to test for expected collaboration patterns at different ab-

straction levels.

Events. Based on the recorded execution trace we reify an
event model that allows us to express ordering and contain-
ment relations between events. As shown in the Figure 4, an
event contains the following information: the sender object
of a message, the receiver object of a message, the message
name, a list of arguments that are passed and snapshot of
the complete recursive state of the receiver before and after
a method execution so that we are capable of reasoning on
state changes.

Trace

Event
receiver
selector
argumentObjects
returnedObject

EventTree

ObjectState
Snapshot

receiver
return
arguments

What is the difference between return and returnObject

1 0..* 1 0..*

2..* 1

1
1

1
1

post pre

0..*

0..1

includes

included

Figure 4. The TESTLOG event and trace model

On the set of events two basic relations exist which may
hold between two arbitrary events. An event mayprecede
another event and an event may beincluded in another
event. Event precedence is established by a temporal order-
ing of event and event containment is defined by the nesting
of message sends.

e < e1 expresses that an evente precedes another event
e1, while e1 in e expresses the fact that an evente1 is in-
cluded within another evente. Here are the general axioms
that are satisfied by any eventsa, b, c in the set of events:
Mutual exclusion of relations (a < b → not(a in b)), Non
commutativity (a < b → not(b < a) a in b → not(b ina)),
Transitivity: ((a < b) and (b < c) → (a < c)),
and Distributivity: ((a in b) and (b < c) → (a < c)
(a < b) and (c in b) → (a < c)).

The classTrace is the root of the model and serves as sin-
gle access point for reification in the logic layer. The trace
can contain many event trees, because the trace may not be
recorded within a single calling context but within different
ones. As experienced by trying out on realistic instrumen-
tation scenario the number of event trees is one order of
magnitude smaller than the set of messages recorded.

Reification of Object States. In addition to the attributes
we described earlier, every event refers the events it includes

9

at the next level of the call tree. To make a statement about
object states that occurred during an execution a snapshot
of the receivers recursive state before and after the event is
taken (instance of the classObjectState). Object states and
object identity are completely separated in the model. An
object identity remains the same during the whole lifetime
of an object, however its object state may change.

For each event we reify the complete recursive state of
the receiver before and after a method execution as a new
object. In this reified state we preserve the structure of
the recursive state and the identity of the object that are in-
cluded in it. This supports the possibility to identify an ob-
ject in the recursive state of another. However the recursive
state of an object can change during an execution, therefore
we need to preserve it.

One strategy to preserve object states is to create a deep
copy of an object with the same structure but with new ob-
jects in it. However we loose the ability to make a statement
about objects in different events and states. For example we
can no longer express that this is thesameobject that is
passed as an argument that is added to the recursive state
of another object by comparing the two object identities.
Therefore we chose the following strategy: we build a graph
that is isomorphic to the recursive state of the receiver and
at each node of this graph a reference to the original object
is maintained.

We define now two operations. The first operation is the
operation we described above we callreificationof a recur-
sive state. The inversion of reification restores the recursive
state of the receiver exactly as it was a certain point of the
execution, such that messages can be sent to it. We call
this operationresurrectionof an object state from its rei-
fied state, because we bring back to life the original object.
Figure 5 shows the class model for reified object states.

ObjectState
object
value

VariableObjectState
1
1

values

Figure 5. Reified State Model

Event Tree Pattern Matching. The requirement for hav-
ing a tree pattern matching facility emerges from the fact
that in object-oriented systems the message structure is
deeply nested because of complex collaborations between
objects. However, to test whether an expected collaboration

pattern occurs, there is a need for having a formalism that
allows a specification of an expected pattern and an algo-
rithm to perform a tree pattern matching as the hierarchy of
events is represented as a tree, a form of tree pattern match-
ing is used to locate event patterns that take into account the
event hierarchy.

Because the general tree pattern matching problem with
variables is NP-complete and would no be usable for pattern
matching an execution trace consisting of several thousand
messages theleft order embedding algorithmdescribed in
[11] is used to pattern match an execution trace. The left-
order embedding algorithm has a time complexity of O(mn)
where m is the number of pattern nodes and n is the number
of tree nodes. Informally the leftorder embedding algorithm
finds the first instance of the pattern if the tree is traversed
in postorder.

9. Related Work

There is few work on dynamic analysis focusing on
testing of object-oriented systems. In a pioneering paper
[10] the authors argue that testing object-oriented software
should not focus on units but on the message exchange be-
tween them in a scenario, however they do not provide a
computational infrastructure to do this.

Caffeine [9] is a Java-based tool that uses the debug API
to capture execution events and uses also a Prolog variant to
express and execute queries on a dynamic trace. The main
difference with TESTLOG is that Caffeine has a linear rep-
resentation of a trace such that it is not possible reason about
nested events. Caffeine is also missing state reification such
that constraints on state cannot be expressed. Its main con-
text is not testing but reasoning about dynamic properties in
reverse engineering.

A second similar tool is OPIUM [8] that allows a user
to validate a prolog trace using a set of debugging queries.
Prolog is used as a base language and as meta language to
reason about events. The main usage scenario of OPIUM
is the implementation of a high level debugger for Prolog
that allows forward navigation to the next event that satis-
fies a certain condition. Coca [7] supports the debugging
of C program based on events. Lewis and Ducassé in [15]
proposes to merge the approach of omniscient debuggers
which collect all the run-time information and supports the
exploration of the history and event-based tools that moni-
tors program execution and allow the expression of sophis-
ticated queries. However, the approach supports the ex-
ploration of the trace history but is not intended to express
tests.

Other work that is based on event models and compu-
tations over an event trace to test program behavior can be
found in [3] [2]. However it is based on procedural pro-
gramming languages and does not take into account the spe-

10

cific behavioral aspects of object-oriented languages such
object creation and the state of objects. Furthermore the au-
thor does not reason about the kind of behavior can occur in
a program and how to test them.

While not exactly related to testing object-oriented ap-
plications, enhancements of traditional debuggers uses dy-
namic information to display traces. Visualizing debuggers
can work directly via instrumentation on the program been
executed or based on post-mortem traces [5], [12]. Visual-
ization of dynamic information is also related to our work
in the sense that it is based on a program trace. DePauw et
al. [17] and Walker et al. [21] use program events traces to
visualize program execution patterns and event-based ob-
ject relationships such as method invocations and object
creation.

Hart et al. use Pavane for query-based visualization of
distributed applications. However Pavane only displays se-
lected attributes of different processes and the does not al-
low complex queries.

Acknowledgments. We gratefully acknowledge the fi-
nancial support of the Swiss National Science Foundation
for the project Recast: Evolution of Object-Oriented Appli-
cations (SNF 2000-061655.00/1).

References

[1] D. Astels. Test-Driven Development - A Practical Guide.
Prentice Hall, 2003.

[2] M. Auguston. Program behavior model based on event
grammar and its application for debugging automation. In
2nd International Workshop on Automated and Algorithmic
Debugging, Saint-Malo, France, May 1995.

[3] M. Auguston. Building program behavior models. InEuro-
pean Conference on Artificial Intelligence ECAI-98, Work-
shop on Spatial and Temporal Reasoning, Brighton, Eng-
land, Aug. 1998.

[4] J. Brant, B. Foote, R. Johnson, and D. Roberts. Wrappers
to the Rescue. InProceedings ECOOP ’98, volume 1445 of
LNCS, pages 396–417. Springer-Verlag, 1998.

[5] M. Consens, M. Z. Hazan, and A. Mendelzon. Debug-
ging distributed programs by visualizing and querying event
traces. InProceedings 1st. International Conference on Ap-
plications of Databases, LNCS 819, 1994.

[6] S. Demeyer, S. Ducasse, and O. Nierstrasz.Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002.

[7] M. Ducasśe. Coca: An automated debugger for c. 1999.
[8] M. Ducasśe. Opium: An extendable trace analyser for pro-

log. The Journal of Logic programming, 1999.
[9] Y.-G. Gúeh́eneuc. Un cadre pour la traçabilit́e des motifs

de conception. PhD thesis, cole des Mines de Nantes, juin
2003.

[10] P. C. Jorgenson and C. Erickson. Object-oriented integration
testing.CACM, 37(9):30–38, Sept. 1994.

[11] P. Kilpelinen. Tree Matching Problems with Applications
to Structured Text Databases. PhD thesis, University of
Helsinki, Departement of Computer Science, Nov. 1992.

[12] D. B. Lange and Y. Nakamura. Interactive visualization of
design patterns can help in framework understanding. In
Proceedings of OOPSLA ’95, pages 342–357. ACM Press,
1995.

[13] R. Lencevicius, U. Ḧolzle, and A. K. Singh. Query-based
debugging of object-oriented programs. InProceedings
OOPSLA ’97, ACM SIGPLAN, pages 304–317, Oct. 1997.

[14] R. Lencevicius, U. Ḧolzle, and A. K. Singh. Dynamic
query-based debugging. In R. Guerraoui, editor,Proceed-
ings ECOOP ’99, volume 1628 ofLNCS, pages 135–160,
Lisbon, Portugal, June 1999. Springer-Verlag.

[15] B. Lewis and M. Ducasśe. Using events to debug java pro-
grams backwards in time. InOOPSLA 03 but in something
strange to check, 2003.

[16] Object Management Group. Unified Modeling Language
(version 1.3). Technical report, Object Management Group,
June 1999.

[17] W. D. Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Exe-
cution patterns in object-oriented visualization. InProceed-
ings Conference on Object-Oriented Technologies and Sys-
tems (COOTS ’98), pages 219–234. USENIX, 1998.

[18] T. Richner. Using recovered views to track architectural evo-
lution. In ECOOP ’99 Workshop Reader, number 1743 in
LNCS. Springer-Verlag, June 1999.

[19] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse con-
tracts: Managing the evolution of reusable assets. InPro-
ceedings of OOPSLA ’96 Conference, pages 268–285. ACM
Press, 1996.

[20] M. Tilman. Building run-time analysis tools by means of
pluggable interpreters.ESUG 2000 Summer School, 2000.

[21] R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wright,
D. Swanson, and J. Isaak. Visualizing dynamic software sys-
tem information through high-level models. InProceedings
OOPSLA ’98, pages 271–283. ACM, Oct. 1998.

[22] N. Wilde and R. Huitt. Maintenance support for object-
oriented programs.IEEE Transactions on Software Engi-
neering, SE-18(12):1038–1044, Dec. 1992.

[23] R. Wuyts.A Logic Meta-Programming Approach to Support
the Co-Evolution of Object-Oriented Design and Implemen-
tation. PhD thesis, Vrije Universiteit Brussel, 2001.

11

