Logic and Trace-based Object-Oriented Application Testing

Stephane Ducasse Michael Freidig Roel Wuyts

Abstract In the specific context of reengineering legacy object-
oriented applications, one of the few trustable sources of
Due to the size and the extreme complexity of legacy sysinformation is the execution of the application itself. The
tems, it is nearly impossible to write from scratch tests be- approach presented in this article is based on the logic rep-
fore refactoring them. In addition object-orientéegacy resentation of program execution and the specification of
systems present specific requirements to test them. Indeetests as logic queries. This work is related to the use of
late-binding allow subclasses to change fundamental as-logic queries for advanced debugging [15].
pects of the superclass code and in particular call flows. This article is structured as follows. Section 1 stresses
Moreover Object-oriented programming promotes a distri- the specific problems encountered when testing legacy
bution of the responsibilities to multiple entities leading to object-oriented applications. Section 2 presents our ap-
complex scenario to be tested. proach. Sections 3, 4 arkP presents frequently occuring
In such a context one of the few trustable source of infor- Patterns to test in object-oriented applications. Sections 6
mation is the execution of the application itself. Traditional @nd 7 present the validation of the approach on two bigger
forward engineering approaches such as unit testing do not ¢ase studies. Section 8 presents the implementation details
really provide adequate solution to this problem. There- Of the approach.
fore there is a need for a more expressive way of testing the
execution of object-oriented applications. We propose to 1. Testing Object-Oriented Programs
represent the trace of object-oriented applications as logic
facts and express tests over the trace. This way complex se- Object-oriented programming promotes a distribution of
guences of message exchanges, sequence matching, or esesponsibilities among multiple interacting objects. In addi-
pression of negative information are expressed in compacttion to this spatial repartition a temporal repartition occurs
form. We validated our approach by implementing TestLog because of the presence of late-binding. The fact that the
a prototype tool and testing the Moose reengineering envi- message receiver is late-bound and always represents the
ronment and a meta-interpreter. receiver of the current method is extremely powerful and is
the basis for building frameworks. As such it introduces an-
Keywords: Legacy System, Testing, Dynamic Infor- other dimensions as it opens the door to the introduction of
mation, Logic Programming new behavior or modifications of behavior defined in super-
During reengineering, it is crucial to write tests to make classes [22]. A subclass can easily customize locally funda-
sure that the changes made do not affect the overall be/nental aspects of its superclasses by changing the sequence
havior of the system. Since reengineering is typically app- of messages and calling relationships between the methods,
plied to large, complex and badly understood systems, itleading to the fragile class problem [19].
is extremely hard to write such tests from scratch. This is Unit testing, incarnated recently by the flurry of *Unit
especially true since reengineers most of the time do notframeworks, supports object-oriented testing very well [1].
know the system they are working on, and face a lot of A context is built, within this context methods are invoked
time pressure [6]. The situation is even worse in the case ofand their result or changes on the tested objects are checked.
object-orientedegacysystems. Indeed late-binding allow Even if unit testing is powerful and has proven to be valu-
subclasses to change fundamental aspects of the superclad®le, there are some situations that are difficult to express
code, in particular control flow. Moreover object-oriented With such an approach.
programming promotes a distribution of the responsibilities L€t us consider that we want to test the application of an

to multiple entities leading to complex scenario to be tested. OPServer pattern. In such a case one must verify the collabo-
rations between a subject andriggisteredobservers. Only

*Software Composition Group, University of Bern, Switzerland registered objects should receive an update message, when
tDecomp Laboratory, UnivergitLibre de Bruxelles, Belgium a subject receives a change message, it responses with an

updated message to every registered observers that in tur
takes an appropriate action. A test of this collaboration re-
quires an analysis of messages exchanged between objec
that is not easily feasible with a unit test.

Requirements for Testing Run-Time Information. Be-
cause it is painful to manually analyze a behavior that
spawns over many steps of an execution, there is a nee(
to create a language that enables a tester to formally spec
ify a test and automatically evaluate whether it passes or
fails. Moreover, the solution should support the expressions
of query on objects that amot in the scope of each other
[14]. Here is a non-exhaustive list of actions that a tester
would like to be able to use to express tests:

Because it is painful to manually analyze a behavior that

—
instrumented == ==
A
and executed
A >
E trace reified
1 — =3

tests definition

ObserverNotifies(?0b, ?I)
if forAll...

tests definition
Tests
> ObserverNotifies(object1,(object2, object3, object4)).
> true

Figure 1. The principle of logic trace-based

spawns over many steps of an execution, there is a need to testing.
create a language that enables a tester to formally specify
a test and automatically evaluate whether it passes or fails.

Here is a non-exhaustive list of actions that a tester would
like to be able to use to express tests:

e |dentification of a message based on its name, its
sender, its receiver or its arguments,

identification of object creation,

identification of specific message sequences within
complex interactions,

identification of messages inclusion, i.e., that a se-
guence of messages is included in another one,

received by an object,

access to the state of an object at a given point in time
such as before and after an invocation,

detection of state changes,
observation of the history of an object as it is created,

identification that certain messages are not sent or not

Within this context, program execution is a trustable source

of information that can be used to develop tests. The ap-
proach proposed in the paper is to specify tests based on
the execution trace of the application and to express tests
as logic predicates over the trace. Figure 1 describes our
two-step approach.

1. First the source code is instrumented using some li-
braries [4]. This phase creates a program trace com-
posed of events anobject states The trace is repre-
sented under the form of logic facts.

2. Tests are then expressed as logic queries over the trace,
using a library of logic rules that facilitate the manipu-

lation of the trace.

Figure 1 describes our approach: first the source code
is instrumented using some libraries [4]. This phase cre-

passed around as argument or serves as sender or reates a specific program trace composed of eventshjedt

ceiver,

another object.

access whether a reference between two objects exist
is established or detached.

Note that message sequences identification is particularly

important in presence of late-binding as a subclass may re
define a method and introduce new method invocations.

2. Logic and Trace-Based Testing

Reengineering object-oriented legacy applications is a
challenging task as legacy applications traditionally lack
tests, documentation and are generally very complex.

S,

states This trace is represented as logic facts. Using a logic

access the state of an object in the recursive state ofibrary that manipulates the trace tests are then expressed

as logic queries over the trace. As explain below, the logic
facts are represented as objects that represent logically the
code of the applications under study. Note that other ap-
proaches used the trace of program but in the context of de-
bugging procedural languages [8], or exploring and reverse
engineering object-oriented applications [5],[12], [18]. In

the context of debugging object-oriented program, query-
based debugging has been proposed which combine condi-
tional breakpoints with query-based [13][14]. A query-like
expression is evaluated each time a conditional breakpoint
is reached.

We validated our approach on several smaller examples,
and on two complex systems: thed@sEereengineering en-
vironment and the meta-interpreter [20]. While performing

these experiments we noticed that similar situations occur | Feil | |
frequently while testing. We captured this information un-

der the form of patterns and explicitly supported them with a:
predicates in our library of logic predicates. Sections 3, 4 I
and 5 describe the patterns we found in detail, categorized | E——
in three kinds. However, before we discuss the patterns in
detail we first explain the logic language Soul that we used
throughout the experiments to reprent and query the traces ﬁ ——— ﬁ ﬁ
and then the example that we will use to illustrate the pat-

terns.

A 4

Figure 2. A simple scenario

2.1. Logic Programming in SOUL
2.2. Example

We give a short introduction into SOUL because it is
necessary to understand its concepts for the following sec- This example shows a scenario based test implemented
tions where different types of queries are introduced. SOUL as a logic query that takes into account multiple message
is a full prolog with several syntactical and semantical en- sends and states. In addition to validate a postcondition,
hancements that allows a tight integration with an object- this test also targets the correct message exchange among
oriented language. As in prolog, we specify rules and per- multiple collaborators. In order to test the postcondition a
form logic queries. The extension over standard prolog is reference to an object at an intermediate step of the com-
that logic variables can be unified with objects. This means putation is obtained and later used to perform a check. In
that there exists a binding of a logic variable to an object as order to test whether an object is included in the recursive
it exist in the virtual machine. state of another object, that state is reconstructed from the

The following query binds the clas3bject the root of recorded trace so that the same objects with the same iden-
the Smalltalk class hierarchy to the variabée The term in tities are accessible. This example shows general process
angle brackets is evaluated by the Smalltalk compiler andwhen performing trace-based test.
the result is passed as argument to the query.

Scenarios. A scenario is a sequence of interactions be-
tween multiple objects. A scenario starts with an initial
classWithName(2Class, ?ClassName) if evelnt upon WhICh. a cascade of events are produced. Sc;e—
not(and(var(?Class),string(?ClassName))), narios are behavioral archetypes that occur frequently in
class(?Class), inetoAri iotri ; _
equals(?ClassName, [Soul.MLI current classNameOf: ?Class]) ObJeCt eremed syst.ems because QOP distributes the Imp_le
mentation of a service between different classes, each with
its own responsibility. Numerous design patterns are based
on scenarios.

classWithName(?c, ['Object])

The implementation of the rulelasswithName shows
the syntax of rules where the head is separated from th
body by wordif’. On the third line of the body we again see
a term in square brackets. It contains Smalltalk code that is3. Interaction Testing
evaluated by the Smalltalk VM. In the Smalltalk code the
logic variable?Class is also used. This mechanism allows

a programmer to pass variables from a logic environment to message sequences in the interaction diagram. This is fre-

the Smalltalk environment. guently done to express patterns of object interactions, as

_ The query succeeds because a message path can be foug 1)e'ijjystrated on the example described in Section 2.2.
in the trace and the SOUL query interpreter produces the

following result.

The first test pattterns provide a mechanism to match

Message Implication. Message implication tests whether

SOUL found a message send implies another message send in its context.
 evonto mesaaepath For example, when adding an element to a classification,
<event°(?e1, selecto[)(?el, #a)), a messagedd: is sent, resulting in a send béisicAdd: and,
ppanscbenend el d later on, in a send ofetParent:. This chain of messages

)7 _ implying each other can be expressed by nesting the events
{Q;Z{iﬁﬂ (the sends of message§) that. occur by using the predication
[?e3-->[#d]] contains. We express this chain as:

if event(?addEvent, Context. There are many forms of behavior that can be

ig'ri‘;fﬁ's(;ae‘f/‘éﬁ‘t’(‘?jggfggdgvem tested by inspecting the state of one or more objects. One
seIect_or(?basicAddEve'nt, [#basicAdd:]), is the change of an object’s state after the execution of an
Coma'”s(<§‘§gggf(itzg{ggixfgfé i, fsetParent) operation. State changes manifest themselves in establish-
>) ment and detachment of links between objects instances or
2l the change of primitive type values. In contrast to focus

on a single operation the change of state of a single ob-
The query finds our desired message sequence. Notgect through its lifetime can also be tested by asserting a
how the pattern that we expressed did not inclatliehe sequence of states.
messages that were being sent: it just expressed those mes- The errors that state testing covers are: violations of
sages that interested us. This feature allows us to expresa pre-postcondition, incorrect initialization of objects after
the important parts of the message sequence that we wangreation, return of a wrong object from a method.
to express, while not cluttering it with noise about messages

we do not necessarily care about. . .
Pre- and Postconditions. Trace-based testing is also effe-

cient to validate that a postcondition holds when examining

Scenario The first example showed how to express a mes- [€gacy code, because with a single logic query it shows that
sage sequence, where one message implies the sending & Postcondition holds for every method execution that sat-
another message (and so on). This can be extended to exsfies a precondition. To validate postconditions we need
press trees of message sends instead of simply sequence® @ccomplish the following steps: Identify the execution of

Because the argument of thentains predication is a list, ~ @n operation thatis a target for postcondition validation. en-

we can express n-ary treeS, and match these against the e)‘éllre the precondition and validate the pOStCOﬂdition, actions
pression. that are reflected in the following code:

As a concrete example we see a recurring pattern in thevali datePostcondiion(
trace when we ask the current service for a particular regis- event(ze, 2eventQuery),

tered name. For example, while adding an object, the classi- Precondition(?e, ?preState, 2preconditionQuery),
fication where we add the object needs to know its children P°%¢""o(?e: 7Prestate, ZpostState, FpostconditonQuery)
(so that it can insert the element to be added). Because the
root needs to know its children, it sends the message
viceFor: to the classServicesConfiguration to retrieve the
service that it will use to get its children. This class acts
as a singleton, and get its sole instance (by sending itsel
the messageurrent) for the registered service (using the
messageurrentServiceFor:, which results in some internal
messages to be sent, which does not interest us. Once th
root classification has the service it needsExtentional-
Classification will get called. We can express this tree of
messages as follows:

Three queries are passed as arguments. The first query
identifies the event for which pre- and postconditions should
be ensured. The second argument is the precondition and
fthe third argument is the postcondition.

Let us imagine a simple example of incrementing a
bounded counter. The precondition asserts that the counter
gas not yet reached its upper bound. The postcondition as-
serts that the counter value has been incremented by one. A
query to validate this postcondition looks as follows.

validatePostcondition(
event(?e, selector(?e, [#increment:]),
precondition(?e,

if event(?serviceForEvent, ?preState

selector(?serviceForEvent, [#serviceFor:]), not(greatherThan([?preState value], ?upperBound)))
contains(< event(2currentEvent, postcondition(?e, ?preState, ?postState,
selector(?currentEvent, [#fcurrent])), equals([?preState value + 1], [?postState value])))
event(?currentServiceForEvent,
selector(?currentServiceForEvent, [#cur-
rentServiceFor:]), H i H i i
contains(< event(2basicServiceEvent, On a _hypothetlcfal bank apphcgtlon, testing that a debit
selec- account is debited if the balance is greater than the amount
tor(?basicServiceEvent, [#basicServicelnformationFor:do:])) to be transferred. is expressed as follow:
>)) ’ ’
>))
validatePostcondition(
event(?e, selector(?e, [#transferamount:to:]),
. recondition(?e,
4. State Testing P atiate
and(argument(?e, [1], 7amount), greatherThan([?preState balance],
?amount))),

. postcondition(?e, ?preState, ?postState,
The second category of patterns deals with the change of and(argument(2e, [1], 2amount), equals([?postState balance],

object state during the execution of a program. [?preState balance - 2amount]))))

Encapsulated States. When testing states there are vari- existsLink(?fromObject, ?toObject, ?rootObject) if
; P H includesObject(?rootObject, ?fromObject),
ous'snuatlons where we need to break up encqpsulatlon 8S|CludesObject(2fromObject, 2t00bject)
the internal state of an object may be encapsulatednot
accessible through a public interface. This rule gives us the basis to create two new rules that
To check the state of an encapsulated object we specifywe use for testing whether a link is established or detached
an expression that is similar to an OCL navigation expres- by a single operation defined as follows:
.SIOI’]. The n.a\”gatlon express'lon consists of a sequence OEstablishesLink(?event, ?fromObject, ?toObject) if
instance variable names that is used to stepwise access obvessurectReceiverBeforeEvent(?event, 2rl),
: : . ressurectReceiverAfterEvent(?event, ?r2),
jects. We call the sequence of instance variables used 10, eyistsLink(2fromobject, 2toObject, 2r1))
access a nested state artesspatlirom a root object to a existsLink(?fromObject, ?toObject, ?r2)

nested object. Here is the definition of the query that given jeachestink(2event, 2fromobject, 2to0bject) if

an accesspath accesses a nested object. ressurectReceiverBeforeEvent(?event, ?rl),
ressurectReceiverAfterEvent(?event, ?r2),

nestedObjectAt(<>, ?s, ?s). existsLink(?fromObject, ?toObject, ?rl),

nestedObjectAt(<?firstinstVar | ?restinstVar>, ?object, ?nestedObject) if not(existsLink(?fromObject, ?toObject, ?r2))

objectAt(?object, ?firstinstVar, ?includedObject),
nestedStateAt(?restinstVar,?includedObject, ?nestedObject)

. 5. Recursion Testin
For example in order to access an nested path through an 9

access path #a, #b, #c we write the following query The third category of patterns that we identified during

event(?e, selector(?e, [#xyz])), . our experiences is linked to the recursive traversal of struc-
ressurectReceiverBeforeEvent(?e, ?receiver), . . .
nestedObijectAt(<[#a], [#b], [#c]>, ?rootObject, ?nestedObject) ture as examplified by the Visitor pattern. It contains one

pattern that expresses queries to test the traversal of a com-
posite object structure with a visitor. Identify and test single
or composite events that occur during recursion.

If we know an access path we can query an object at the
specified position, but sometimes we would like to know
whether an object is included in the recursive state of an-
other object and retrieve its accesspath. For example if we
want to know where or wether an object passed as argumen
to the methodhddObject: has been added, we write the fol-
lowing query:

ontext. Recursion in object-oriented systems is often
concerned with traversing hierarchical object structures of-
ten realized by a composite pattern and a visitor that vis-
_ its every element. The visitor performs node type specific
g‘r’gﬂﬁit(ﬁ,ﬂe[Clt;’rgf;%l}zgg‘:)%@gmD) operations that are either independent of other nodes or de-
ressurectReceiverAfterEvent(?e, ?rootObject), pend on the result produced while visiting child nodes in
includesObject(?rootObject, ?addedObject, ?accessPath) the Composite tree. A typical example for the second case
Note that the use of the ressurectReceiverAfterEventis when an interpreter evaluates an expression and the re-
query is necessary because we have multiple states for th&ult from evaluating subexpression is used to compute the
2rootObject but are only interested in his state after expressions result.
Now we can test whether the object passed as an argu- Basically the following errors can be identified. A recur-
ment is the same object accessible by a given access path.Sive structure is not properly traversed when nodes in the

event(2e, selector(2e, [#addObject]), composite structure are not visited or the sequence of nodes

argument(?e, [1], ?addedObject), visited does not conform to a specified traversal scheme.
ressurectReceiverAfterEvent(?e, ?rootObject), i H i _
nestedObjectat(<[#al, [#b], [#c]>. ZrootObject. 2nestedObject), For a visitor the wrong method in the VISIT[Of may be ex
equals(?addedObject, ?nestedObiject) ecuted or the double dispatch with the object could fail if

the visitor does not send the message back to the object.

Links between Objects. An object has a link to another ~Furthermore results produced in intermediate steps of the
object whenever it is possible to access an object throughrecursion could be wrong and lead to an abnormal behavior.
navigation along a path of instance variables. Frequent tests
are based on the existence, the creation or the destruction o¥isitor testing. Although different visitors and compos-
a link between objects. ite structures produce different behaviors we can abstract

To test the existence of a link or a linkpath between a from them and write generic queries which tests whether
first and a second object accessible from a root when canthe structure is properly traversed or not or for identifying
test whether the first object is included in the recursive stateevent patterns during recursion that are representing a cer-
of the root and if the first object includes the second object tain behavior. The task of testing a recursive traversal is

in its recursive state. composed of the following tasks: ensuring a complete tree
1This access use the reflective API of Smalltalk but can be find in other Fraversal, ensuring qureCt operat|or_1 on nodes and specify-
languages such as Java. ing behavioral assertions for operations that are performed

on the composite structure. First we must make sure that receiver(?e, 1),
every node that have to be traversed by a visitor, is really g{/ge‘;’t?jgt("e [, 7arg),
traversed. Then we require that the correct node type de- implies(event(2ei,

pendent operations are performed by a visitor. Finally, to ~ SelectorReceiverArguments(?ei, ?selector, ?arg, <?r>))))
test the behavior that emerges from recursing a composite The event?e is representing the execution of thac-
structure we identify a set of events and express a predicat@ept: method of an object that is visited. The first argument
over that event set. to the accept is the visitor. The visitor is then the receiver of
Testing the traversal of composite structures is expresseghe next message that performs an operation dependent of
as a query with two parts: First we define a query that teststhe type of the visited object. This message is denoted by
whether every object in the recursive state of a root object 7¢j. The first argument to this message is the object that was
is traversed in the recursion. We do this by identifying an originally visited. The variabl@selector holds the selector
event for the start of the recursion and then query every ob-pname for carrying out the type dependent operation.
ject in the recursive state of the receiver that belongs to a \when recursing object structures we many times observe
class in a composite hierarcleyg, in the ProgramNode hi- dependencies between operations on a specific node and its
erarchy for abstract syntax trees. sub nodes. For example when an interpreter is interpret-
In a second part of the query we test whether every nodejng a message expression in Smalltalk all argument expres-
receives a recursive selector. A recursive selector is a selecCsjons are evaluated first and the results of the evaluation are
tor that is recursively called for every object in the compos- passed as arguments to the message expression evaluation.
ite structure such asval: or acceptVisitor:. For every event Another examp|e is a bottom up tree pattern matching pro-
with a recursive selector we require that it contains the re- cess such that a pattern node is only matched if all of the
cursive events to the components of the receiver. . If this child nodes have been matched before.
was not the case the recursion would not be isomorphic to To identify a set of events on a composite substructure
the composite structure such that recursive events could b&gye can write a pattern matching expression that matches

missing or occur in the wrong order. events with receiver objects of the recursive selectors. A
Check if the tree traversal is properly performed. The test is then expressed as predicate over the matched events.
rule objectsinRecursiveState binds the variabl@objects to For better understandability of this concept we show an
every object found in the recursive state of another objecte€xample of an interpreter that evaluates a simple arithmetic
belonging to a given set of classes expressions consisting of the product and sum operators and
constants. The interpreter is implemented as a visitor that
recursesCompositeStructure(?root, ?recSelector, ?compositeClasses) if traverses the arithmetic eXPKGSS'O” and evaluates it. Below
objectsIinRecursiveState(?object, we show the code for the visitor.
"r)nrgrc‘rjlier([?object class], ?compositeClasses), EvalVisitor>>forConst: aConst

event(?e, selectorAndReceiver(?e, ?recSelector, ?object)), aConst value

ressurectReceiverBeforeEvent(?e, ?receiver),

forall(objectsInState(?component,
member([?object class], 2compositeClasses),
?receiver)),

event(?e, . .
contains(event(?ei, EvalVisitor>>forSum: aSum

selectorAndReceiver(?ei, ?recSelector, 2component) “((@Sum _Ieft accept: seff) +
» (aSum right accept: self))

EvalVisitor>>forProduct: aProduct
“((aProduct left accept: self) *
(aProduct right accept: self))

.) . Let us imagine that we have the following arithmetic ex-
Now that we can verified that the object structure is prop- pression that is evaluatd@d + 4) = 5 + 6. Within the ex-

erly traversed, we test method executions during the traver- ession evaluation the tertn+ 4 is evaluated. Instead of
sal. We classify methods whether they are executed ongepgging the visitor traversal we would like to write an ex-

a single node and or wether they depend on the previousyression on the trace that checks whether the result of evalu-
traversal of sub nodes. As a visitor traverses objects & tyPey(ing3 + 4 is correct. To do that we write a pattern matching

dependent method is called on the visitor by performing a gy yression that matches the evaluation of a Sum term, query
double dispatch between the node and the visitor. In im- e retyrned values from evaluating the constant expressions
plementations, the method that is associated with a type isyn then check whether the result returned from evaluation

often based on a method naming convention. _ the Sum equals the sum of the constant expressions.
Together with a query that checks if a double dispatch
event(?e, and(selectorAndClass(?e, [#accept:], [Sum]),

between an object and a visitor is done, we can check i rectreceiverBeforeEvent(2e, 7)),

whether ever an object in a composite structure performs event(?e, selectorAndReceiver(?e, [#accept], ?r),
contains(<event(?el,

a double dlspatch with a visitor. selectorAndReceiver(?el, [#accept:], [?r left])),
event(?e2, selectorAndReceiver(?e2, [#accept:], [?r right]))>)),
visitorDoubleDispatchEvent(?e, ?selector) if add([?el return], [?e2 return], ?sum),
nonvar(?e), equals(?sum, [?e return])

For this simple example, we can also test whether the We have to identify a location in the trace where FAMIX
visitor recurses the composite structure of the arithmetic ex-model entities of a certain type are created. For example, we

pression. learned browsing the code that a FAMIX class is created by
I o the methodtensureClassEntityFor: which takes a Smalltalk
arithmeticRecursesComposite if)
getExpression(?r), class and returns a FAMIX entity.
allSubclassesList([ArithmeticExpression], ?subclassList), Then we query the trace to observe the creation of a new

recursesCompositeStructure(?r, [#accept:], ?subclassList) . ' K X)
entities and finally check if the set of classes is properly im-

The rulegetExpression returns the root objectr of the ported. Finally we check if other entities that are dependent
composite structure. The varialbteubclassList is unified of classes are properly imported.

with the classesum, Prod and Const. The last line of Below are two queries that test whether every class in
the rule the performs the check whether every object of thea package is imported in a ®ose model. The first one
composite structure starting fropnis visited. performs a check for a single class. The second performs

Here is the example whether for every node of the arith- the test for every classes in a set usirfgrall query.

metic expression doubleDispatch with the visitor is per- o _
classEntityReifiedAndInModel(?c)if

formed. nonvar(?c),
event(?e, and(selector(?e, [#ensureClassEntityFor:]),
arithmeticVisitorDoubleDispatch if argument(?e, [1], ?c))),
getExpression(?r), includesIinRecursiveState((MSEModel currentModel], [?e return])
allSubclassesList([ArithmeticExpression], ?subClasses),
objectsIinRecursiveState(?0, member([?0 class], ?subClasses), ?r),
getVisitorSelector([?0 class name], ?vSelector), The variable?c is bound to a class that exists in the
eveni(?e, and(selectorAndRecelver(?e, [#accept], 70), Smalltalk image. We find the execution of the method

visitorDoubleDispatchEvent(?e, ?vSelector))) . .
#ensureClassEntityFor: in the trace so that the argument

First every object of the composite structure is queried matches the value of the variabec. After that we test
and bound to the variabt. Then for every everte thatis ~ whether the imported Mose model contains the newly
representing an acceptance of a visitor it is checked whethercreated entity. The expressi@#MSEModel currentModel]

?e initiates a double dispatch event with the visitor. The refers to the current model in which imported entities will
querygetVisitorSelector returns the selector of a visitor that be added.

performs a type dependent operation. ,
testEveryClassinPackage(?packageName, ?test(?c)) if

forall(classIinPackage(?packageName, ?c),
?test(?c))

6. Case Study: Verifying MoOSE Models

testEveryClassinPackage([ReferenceModel],
. . . classEntityReifiedAndIinModel(?c))
The MooSE reengineering environment supports code

representation and analysis. This code representation is | the testiestEveryClassinPackage, we check whether
based on the FAMIX model is similar to the UML but the queryclassEntityReifiedAndinModel(?) succeeds for ev-
with extensions representing method invocations and al-ery class in a package. The quetyssinPackage(?c) uni-
tribute accesses [16]. To fill up models,ddsehas im- fies2c with every class belonging tepackageName. The
porters for various source code languages such as C++, Javgeryforall checks whether a predicate passed as a second
or Smalltalk. The task of an importer is to parse source grgument is true for every solution passed by the first query.
code entities and to reified them in addsemodel. A The termatest(2c) is a higher order query that is passed as
Mooseimporter exposes interesting and complex behavior 5 argument to the rule above and can express any predicate
that is produced after calling thenportModel method on dependent on the set of classes.

the importer facade. It defines method parse tree traversaIChecking Metaclass Import. The importer should make
Smalltalk meta-model access, object creation, model en-gyre that a class and its metaclass are imported. The follow-
tity reification and the establishment of links between them. ing rule specifies this constraint by simply composing twice
The complete behavior of an import of a small model pro- the previous queryclassEntityReifiedAndinModel(?x) once

duces more than ten thousand message sends. for the class and a second time for its meta-class.

In VisualWorks Smalltalk classes are organized in pack-
ages. Therefore, Moseimports a model from the set of classAndMetaClassReifiedAndinModel(?c) if

. cIassEm!tyRe!f!edAndInModeI(?c),

classes that are located in a paCkage- classEntityReifiedAndinModel([?c class])
Checking Class Import. The first fact that we would like
to verify is that when a class is imported it is effectively Now we can perform the test for whether every class
created and added into the current model and if other de-and its meta class are imported in the model by passing
pendent entities such as instance variables and methods aithe queryclassAndMetaClassReifiedAndinModel(?c) as ar-

also imported. gument.

testEveryClassinPackage([ReferenceModel], makeRoom
classAndMetaClassReifiedAndinModel(?c))
lastindex := space makeRoom: self extraSpace.

Checking Class Composite Entity RepresentationRep- We then instrument the meta interpreter and generate a

rese_ntlng a class implies representing its instance varlable%race for the evaluation of the methothkeRoom. Then we
and its methods. Here we show how we test that a link be- " ~~
define a query that

tween a reified class and its reified instance variables. First . . .
e . . Get references to the node objects in the parse tree:
we query every reified instance variable entity and class

entity and then check whether there exists a link betweengetparseTreeNodes(?assignment, ?messageExpression, ?argument) if
them event(?methodEval, selector(?methodEval, [#valueWithReceiver:])),
’ ressurectReceiverBeforeEvent(?methodEval, ?methodExpression),
In MoosEinstance variables are reified by calllng the equals(?assignment, [?methodExpression statements at: 1]),

. f R equals(?messageExpression, [?assignment value]),
method[#ensurelnstVarFor.]_ Wh_ere the f_|r_st a_rgument is the equals(?argument, [?messageExpression arguments at: 1])
class and the returned object is the reified instance variable.
We bind the reified class entity to the variableEntity and Passing argument. The following test verifies that the re-

the reified instance variable to the variaBleEntity for all sult of the argument expressisalf extraSpace evaluation
execution of#ensurelnstVarFor:]. is passed as argument to the expressj@ee makeRoom::
classAndinstanceVarEntity(?c, ?cEntity, ?ivEntity) if testArgumentEvaluation if
event(?e, and(selector(?e, [#ensureClassEntityFor:]), getParseTreeNodes(?assignment, ?messageExpression, ?argument),
argument(?e, [1], ?c))), event(?evalSelfSpace, selectorAndReceiver(?evalSelfSpace, [#eval:], ?ar-
event(?el, and(selector(?el, [#ensurelnstVarFor:]), gument),
argument(?el, [1], ?c))), event (?perform,
equals(?cEntity, [?e return]), selectorAndReceiver(?perform, [#perform:receiver:arguments:class)),
equals(?ivEntity, [?el return]) argument(?perform, [3], ?messageArguments),

includes(?messageArguments, [?evalSelfSpace return])

We now check whether for every paitEntity and?ivEn-
tity a link exists between those two objects within the
Moosemodel. This must be true according to the FAMIX
model. Finally we perform the test again for every class.

The following test checks whether after the method execu-
tion the instance variabl®astindex has the result returned
by the expressior doSomething evaluation.

testAssignement if

existsLinkBetweenClassAndInstanceVariables(?c) if getParseTreeNodes(?assignment, ?messageExpression, ?argument),
nonvar(?c), event(?evalMessageExpression,
classAndInstanceVarEntity(?c, ?cEntity, ?ivEntity), selectorAndReceiver(?evalMessageExpression, [#eval:], ?message-
existsLink(?cEntity, ?ivEntity, [MSEModel currentModel]) Expression)),
event(?makeRoom, selector(?makeRoom, [#makeRoom])),
testEveryClassinPackage([ReferenceModel], ressurectReceiverAfterEvent(?makeRoom, ?receiver),
existsLinkBetweenClassAndInstanceVariables(?c)) instVarValue(?receiver, ['lastindex’], ?lastindex),

equals(?lastindex, [?evalMessageExpression return])

7. Case Study: Testing a Meta Interpreter Test if the receiver of the messagekeRoom: is the
value of the instance variab$pace.

A meta interpreter for a language is an interpreter Writ- ocireceiverEvaluation if
ten in the same language that the language it interprets. A getParseTreeNodes(?assignment, ?messageExpression, ?argument),
meta interpreter for Smalltalk is an interpreter WHtten N fceyccesonorboioretvon(omekoReom Sremsiver).
Smalltalk that interprets Smalltalk code. Such an interpreter event (?perform, selectorAndReceiver(?perform,
is useful to develop coverage tools and fine grained dynamic agumentzperorm. (21, 2pednmonmocanen oo oo
analysis [20]. But to be able to use a meta interpreter we instvarValue(?receiver, ['space’], ?space),
should be sure that it is correctly implementee, if a code equals(zspace, ?performOnReceiver)
fragment is correctly executed when interpreted. This case
study show how our approach allows one to test complex 8. Implementation and Trace Representation
recursive behavior. Basically the meta interpreter parses the
source code and creates an abstract syntax tree. Then eachesTL0G. The approach presented has been fully im-
node recursively receives the messag#: with evaluation plemented in a tool calledd5TL 0G whose computational
context as argument. model is that of a logic query. A logic query is composed of
Let us take as example the following Smalltalk method. logic terms and unifies logic variables with events from the
It stores in the instance variablestindex the result of the trace. The semantics of a logic query expresses the pass or
invocation of the methodhakeRoom: sent to the instance fail semantics of a test: If a logic query fails then a test fails
variablespace with the result of the messaggtraSpace as and if a logic query produces at least one result then the test

argument. succeeds.

The terms and logic rules are expressed in SOUL state changes.
(Smalltalk Open Unification Language) [23]. SOUL is an
extended prolog-engine written in Smalltalk which allows

includes
a programmer to integrate Smalltalk expressions within the 0.
logic rules themselves and use logic variables in Smalltalk _Event included
expressions, creating a symbiotic relationship between the soloctor 0.1
logic engine and the object-oriented languagesm. oGis argumentObjects
. . . returnedObject
implemented on top of SOUL in a layered architecture that "]
spawns different levels of describing behavior from single post{| pre 4
events to high level behavior of a whole application system. X Snapshot

[ObjectState -~ receiver
arguments

Domain Specific Queries What is the difference between return and returnObject

Behavioral Archetypes

SouL
Tree Pattern Match ,
ree rafiern Matcher Figure 4. The TESTLOG event and trace model
Basic Event Queries
Event Reification On the set of events two basic relations exist which may
ST

Reified Events and States hold between two arbitrary events. An event nmgcede
another event and an event may ipeluded in another
event. Event precedence is established by a temporal order-
ing of event and event containment is defined by the nesting
Figure 3. The Architecture of TESTLOG of message sends.
e < el expresses that an evenprecedes another event
The bottom layer comprises an object-oriented model el, while el in e expresses the fact that an eveitis in-
that represents the event trace. A trace is stored as an obeluded within another evert Here are the general axioms
ject in the Smalltalk image and accessible via a singletonthat are satisfied by any eventsb, c in the set of events:
pattern. At the next abstraction leveESTLOG provides Mutual exclusion of relationsa(< b — not(a in b)), Non
gueries to access single events and states. This layer servessmmutativity ¢ < b — not(b < a) ainb — not(bina)),
two purposes: First it reifies layer the object-oriented model Transitivity: ((a < b) and (b < ¢) — (a < ¢)),
into to the logic environment of SOUL by binding objects and Distributivity: ((a in b) and (b < ¢) — (a < ¢)
to logic variables. Second it provides basic queries on the(a < b) and (cinb) — (a < ¢)).
event trace for querying events according to their attributes. The clasSrace is the root of the model and serves as sin-
This layer also defines queries based on state propertiegle access point for reification in the logic layer. The trace
such as whether an object is included in the recursive statecan contain many event trees, because the trace may not be
of the events receiver object. recorded within a single calling context but within different
The pattern matching layer supports the execution of aones. As experienced by trying out on realistic instrumen-
pattern matching query on the event tree. As tree patterntation scenario the number of event trees is one order of
matching we understand the process of checking the occurmagnitude smaller than the set of messages recorded.
rence of a substructure, the pattern tree, in a larger structure,
fche target tree. The primary usage of tree patter_n matChingReification of Object States.
is to test for expected collaboration patterns at different ab-
straction levels.

In addition to the attributes

we described earlier, every event refers the events itincludes
at the next level of the call tree. To make a statement about
object states that occurred during an execution a snapshot
Events. Based onthe recorded execution trace we reify an of the receivers recursive state before and after the event is
event model that allows us to express ordering and contain-taken (instance of the clagbjectState). Object states and
ment relations between events. As shown in the Figure 4, anobject identity are completely separated in the model. An
event contains the following information: the sender object object identity remains the same during the whole lifetime
of a message, the receiver object of a message, the messagéd an object, however its object state may change.

name, a list of arguments that are passed and snapshot of For each event we reify the complete recursive state of
the complete recursive state of the receiver before and aftethe receiver before and after a method execution as a new
a method execution so that we are capable of reasoning omobject. In this reified state we preserve the structure of

the recursive state and the identity of the object that are in-[11] is used to pattern match an execution trace. The left-

cluded in it. This supports the possibility to identify an ob- order embedding algorithm has a time complexity of O(mn)

ject in the recursive state of another. However the recursivewhere m is the number of pattern nodes and n is the number

state of an object can change during an execution, thereforef tree nodes. Informally the leftorder embedding algorithm

we need to preserve it. finds the first instance of the pattern if the tree is traversed
One strategy to preserve object states is to create a deem postorder.

copy of an object with the same structure but with new ob-

jectsinit. However we loose the ability to make a statement 9 Related Work

about objects in different events and states. For example we

can no longer express that this is th@meobject that is There is few work on dvnamic analvsis focusing on

passed as an argument that is added to the recursive statte y Y 9

. . S o esting of object-oriented systems. In a pioneering paper
of another object by comparing the two object identities. . .)
Therefore we Jchose){che folrl)owin% strategy: wJe build a graph [10] the authors argue that testing object-oriented software

that is isomorphic to the recursive state of the receiver andShOUId not fo-cus on un|t§ but on the message exchange be-
tween them in a scenario, however they do not provide a

at each node of this graph a reference to the original object . . .
. I grap g) computational infrastructure to do this.
is maintained. . .
. . , Lo Caffeine [9] is a Java-based tool that uses the debug API
We define now two operations. The first operation is the : -
. . L to capture execution events and uses also a Prolog variant to
operation we described above we aelficationof a recur- ; : .

! ; ; o . _express and execute queries on a dynamic trace. The main
sive state. The inversion of reification restores the recursweOlifference with TESTLOG is that Caffeine has a linear re
state of the receiver exactly as it was a certain point of the . L . P

: . esentation of a trace such that it is not possible reason about
execution, such that messages can be sent to it. We cal S - .
. nested events. Caffeine is also missing state reification such
this operatiorresurrectionof an object state from its rei- : :

) : . - . . that constraints on state cannot be expressed. Its main con-
fied state, because we bring back to life the original object. . : . . L

: " X text is not testing but reasoning about dynamic properties in
Figure 5 shows the class model for reified object states. ; :

reverse engineering.
A second similar tool is OPIUM [8] that allows a user
values to validate a prolog trace using a set of debugging queries.
Prolog is used as a base language and as meta language to

ObjectState - -
object reason about events. The main usage scenario of OPIUM
value is the implementation of a high level debugger for Prolog

that allows forward navigation to the next event that satis-
fies a certain condition. Coca [7] supports the debugging
of C program based on events. Lewis and Dueasg15]
proposes to merge the approach of omniscient debuggers
which collect all the run-time information and supports the
exploration of the history and event-based tools that moni-
tors program execution and allow the expression of sophis-
ticated queries. However, the approach supports the ex-
ploration of the trace history but is not intended to express
Event Tree Pattern Matching. The requirement for hav- tests.
ing a tree pattern matching facility emerges from the fact Other work that is based on event models and compu-
that in object-oriented systems the message structure igations over an event trace to test program behavior can be
deeply nested because of complex collaborations betweerfound in [3] [2]. However it is based on procedural pro-
objects. However, to test whether an expected collaborationgramming languages and does not take into account the spe-
pattern occurs, there is a need for having a formalism thatcific behavioral aspects of object-oriented languages such
allows a specification of an expected pattern and an algo-object creation and the state of objects. Furthermore the au-
rithm to perform a tree pattern matching as the hierarchy of thor does not reason about the kind of behavior can occur in
events is represented as a tree, a form of tree pattern matcha program and how to test them.
ing is used to locate event patterns that take into account the While not exactly related to testing object-oriented ap-
event hierarchy. plications, enhancements of traditional debuggers uses dy-
Because the general tree pattern matching problem withnamic information to display traces. Visualizing debuggers
variables is NP-complete and would no be usable for patterncan work directly via instrumentation on the program been
matching an execution trace consisting of several thousandexecuted or based on post-mortem traces [5], [12]. Visual-
messages thieft order embedding algorithrdescribed in ization of dynamic information is also related to our work

]
1
[variableObjectState

Figure 5. Reified State Model

10

in the sense that it is based on a program trace. DePauw ef15] B. Lewis and M. Ducass Using events to debug java pro-
al. [17] and Walker et al. [21] use program events traces to

visualize program execution patterns and event-based ob-

grams backwards in time. I@OPSLA 03 but in something
strange to check003.

ject relationships such as method invocations and object[16] Object Management Group. Unified Modeling Language
creation.
Hart et al. use Pavane for query-based visualization of

distributed applications. However Pavane only displays se-
lected attributes of different processes and the does not al-

low complex queries.

Acknowledgments. We gratefully acknowledge the fi-
nancial support of the Swiss National Science Foundation
for the project Recast: Evolution of Object-Oriented Appli-
cations (SNF 2000-061655.00/1).

References

(1]
(2]

(3]

(4]

(5]

(6]

[7]
(8]
9]

(10]

(11]

(12]

(13]

(14]

D. Astels. Test-Driven Development - A Practical Guide
Prentice Hall, 2003.

M. Auguston. Program behavior model based on event
grammar and its application for debugging automation. In

2nd International Workshop on Automated and Algorithmic [22]

Debugging, Saint-Malo, Frangdlay 1995.

M. Auguston. Building program behavior models.HBaro-
pean Conference on Atrtificial Intelligence ECAI-98, Work-
shop on Spatial and Temporal Reasoning, Brighton, Eng-
land, Aug. 1998.

J. Brant, B. Foote, R. Johnson, and D. Roberts. Wrappers
to the Rescue. IRroceedings ECOOP '9&olume 1445 of

LNCS pages 396-417. Springer-Verlag, 1998.
M. Consens, M. Z. Hazan, and A. Mendelzon. Debug-

ging distributed programs by visualizing and querying event
traces. InProceedings 1st. International Conference on Ap-

plications of Databases, LNCS 81994.
S. Demeyer, S. Ducasse, and O. Nierstr@izect-Oriented

Reengineering Patterndlorgan Kaufmann, 2002.
M. Ducasé&. Coca: An automated debugger for c. 1999.
M. Ducasg&. Opium: An extendable trace analyser for pro-

log. The Journal of Logic programming.999.

Y.-G. Gueheneuc. Un cadre pour la tragabilié des motifs

de conception PhD thesis, cole des Mines de Nantes, juin
2003.

P. C. Jorgenson and C. Erickson. Object-oriented integration
testing. CACM, 37(9):30-38, Sept. 1994.

P. Kilpelinen. Tree Matching Problems with Applications
to Structured Text DatabasesPhD thesis, University of

Helsinki, Departement of Computer Science, Nov. 1992.
D. B. Lange and Y. Nakamura. Interactive visualization of
design patterns can help in framework understanding. In
Proceedings of OOPSLA '9pages 342-357. ACM Press,
1995.

R. Lencevicius, U. l8lzle, and A. K. Singh. Query-based
debugging of object-oriented programs. Mroceedings
OOPSLA '97 ACM SIGPLAN, pages 304-317, Oct. 1997.
R. Lencevicius, U. HKlzle, and A. K. Singh. Dynamic
query-based debugging. In R. Guerraoui, ediRmceed-
ings ECOOP 99 volume 1628 ofLNCS pages 135-160,
Lisbon, Portugal, June 1999. Springer-Verlag.

11

(version 1.3). Technical report, Object Management Group,
June 1999.

7] W. D. Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Exe-

cution patterns in object-oriented visualization.Aroceed-
ings Conference on Object-Oriented Technologies and Sys-
tems (COOTS '98pages 219-234. USENIX, 1998.

T. Richner. Using recovered views to track architectural evo-
lution. In ECOOP '99 Workshop Readenumber 1743 in
LNCS. Springer-Verlag, June 1999.

P. Steyaert, C. Lucas, K. Mens, and T. D’'Hondt. Reuse con-
tracts: Managing the evolution of reusable assetsPri
ceedings of OOPSLA '96 Conferenpages 268-285. ACM
Press, 1996.

M. Tilman. Building run-time analysis tools by means of
pluggable interpreter&£SUG 2000 Summer SchpaD00.

R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wright,
D. Swanson, and J. Isaak. Visualizing dynamic software sys-
tem information through high-level models. Rroceedings
OOPSLA '98 pages 271-283. ACM, Oct. 1998.

N. Wilde and R. Huitt. Maintenance support for object-
oriented programs.|[EEE Transactions on Software Engi-
neering SE-18(12):1038-1044, Dec. 1992.

R. Wuyts.A Logic Meta-Programming Approach to Support
the Co-Evolution of Object-Oriented Design and Implemen-
tation. PhD thesis, Vrije Universiteit Brussel, 2001.

