
Moose: an Agile Reengineering Environment

Stéphane Ducasse
Software Composition Group

University of Berne
Switzerland

ducasse@iam.unibe.ch

Tudor Gı̂rba
Software Composition Group

University of Berne
Switzerland

girba@iam.unibe.ch

Oscar Nierstrasz
Software Composition Group

University of Berne
Switzerland

oscar@iam.unibe.ch

ABSTRACT
Software systems are complex and difficult to analyze. Reengi-
neering is a complex activity that usually involves combin-
ing different techniques and tools. Moose is an reengineer-
ing environment designed to provide the necessary infras-
tructure for building new tools and for integrating them.
Moose centers on a language independent meta-model, and
offers services like grouping, querying, navigation, and meta-
descriptions. Several tools have been built on top of Moose
dealing with different aspects of reengineering like: visual-
ization, evolution analysis, semantic analysis, concept anal-
ysis or dynamic analysis.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Maintenance—Restructur-
ing, reverse engineering, and reengineering

General Terms
Measurement, Design

1. INTRODUCTION
Reengineering is a complex activity usually consisting of a

combination of techniques such as: parsing the code, build-
ing a model of the code, measuring the code, visualizing,
etc. For different techniques we need different tools, but we
need these tools to collaborate and complement each other.
In the same time we need to not pre-impose the sequence of
using these tools and techniques.

We present Moose - an agile reengineering environment
that allows tools to collaborate. Moose is driven by three
principles: extensibility, exploration and scalability.

Moose is extensible to allow for different tools to imple-
ment different analyses. For example, as the different analy-
ses need different meta-models, we built our environment to
provide for an extensible meta-model. We accomplish this
by providing a meta-description mechanism based on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC-FSE’05,September 5–9, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-014-0/05/0009 ...$5.00.

MOF. Every entity in our meta-model has a correspond-
ing meta-description. A tool can add its own entity to the
meta-model along with its description, and the environment
interprets the description.

Moose enables the exploration because reengineering is
not a linear task. For example, each entity in the meta-
model has associated a menu, and each tool can register
itself to the menu. Thus, no matter where we are in the
environment we can invoke a tool that can be applied to the
selected entity.

Reengineering can only be studied if we are able to analyze
real-life systems. Real-life systems come in different shapes
and sizes, therefore we need our tools to scale [6].

Further we talk about Moose overall architecture. We
briefly describe the underlying meta-model and describe the
tools built on top of Moose. Before concluding we mention
the availability of Moose.

2. THE ARCHITECTURE OF MOOSE

Baobab

CodeCrawler

ConanVanChronia

External Parser

Smalltalk

Java C++ Cobol

VisualWorks Interface CDIF/XMI Interface

CDIF XMI

Model
Repository

Meta
Model

Basic
Analysis

Tools
Meta

Descriptions

Moose

data flow

Tools

uses
uses and extends

Haoax

Figure 1: The architecture of Moose.

Moose uses a layered architecture (see Figure 1). Infor-
mation is transformed from source code into a source code

Model Manager manages the multi-models repository A Browser with
classes and a property

Filtering Tool

Entity Inspector on a class and its properties .
An entity can be interacted with

using the contextual menu

Figure 2: Moose

model. The models are based on the FAMIX language in-
dependent meta-model [3]. The information in this model,
in the form of entities representing the software artifacts of
the target system, can be analyzed, manipulated and used to
trigger code transformations by means of refactorings. We
will describe the architecture of Moose starting from the
bottom.

Export/Import. Moose supports multiple languages
via the FAMIX meta-model. Source code can be imported
into the meta-model in two different ways. In the case
of VisualWorks Smalltalk the language in which Moose
is implemented models can be directly extracted via the
meta-model and the parser of the Smalltalk language.For
other source languages Moose provides an import interface
for CDIF and XMI files based on our FAMIX meta-model.
Over this interface Moose uses external parsers for languages
other than Smalltalk. Currently C++, Java, COBOL, and
other Smalltalk dialects are supported.

Core. In the center of Moose is the FAMIX meta-model.
Every model contains entities representing the software arti-
facts of the target system. Every entity is represented by an
object, which allows direct interaction and querying of en-
tities, and consequently an easy way to query and navigate
the model. Moose can maintain and manipulate several
models in memory at the same time via a model repository.
Every entity is described by a meta-description, which is
then used by the environment to display user interfaces or
load/save entities. These meta-descriptions are extensible
by other tools and are used by different tools. Examples of
the supported meta-descriptions are:

• Navigation. Given an entity we describe what are the
associated entities. For example, a class has multiple
methods.

• Menu. Every entity has a menu attached to it, and
the tools can register menu actions to a particular kind
of entity and this action can be triggered from every-
where in the environment.

• Properties. Every entity is annotated with the proper-
ties that can be computed on that entity. For example,
given a class we can compute its number of methods,
or denote whether the class is abstract, etc.

• Load/Save. Every entity can be saved in flat file for-
mat (such as CDIF or XMI). This conversion from
complex entity with relation-ships into a flat represen-
tation is based on the entity meta-description.

Moose also provides basic tools that use the are generic
by using the meta-descriptions (see Figure 2):

• Browser. With the browser we can navigate the con-
tents of the model.

• Entity Inspector. The Inspector shows all properties
of a given en-tity.

• Filtering Tool. It selects all entities that conform to a
certain rule specified by an expression. The Filtering
Tool is part of the Browser, but it can also be used as
a stand-alone tool.

CodeCrawler displaying a System Complexity View.

Figure 3: CodeCrawler

3. TOOLS BUILT ON TOP OF MOOSE
CodeCrawler. CodeCrawler is a visualization tool im-

plementing polymetric views [10, 5] which is based on a
graph notion where the nodes and edges in the graph can
wrap the entities in the model. For example, in Figure 3
we see a screenshot of CodeCrawler displaying a hierarchy
of a system called Jun. Although CodeCrawler was first de-
veloped as a visualization tool for software systems, in its
latest implementation it turned into a general-purpose visu-
alization tool, which can accommodate different needs. For
example, in Figure 1 it is shown that CodeCrawler is used
by different tools for different visualizations.

ConAn. ConAn is a concept analysis tool that manip-
ulates concepts as first class entities [1, 2]. Its target is to
detect different kinds of patterns in the model based on com-
bining elements and properties. ConAn uses CodeCrawler
for visualization purposes and supports analyses like: X-Ray
views for understanding the internal of classes, identification
of recurring code patterns, and views for hierarchy under-
standing.

Van. Van is a tool for analyzing the evolution of systems.
At its core, it defines the Hismo meta-model which is based
on the notion of history [4]. Hismo is independent from
FAMIX, but it works closely with it. Based on Hismo differ-
ent evolution analyses are defined. For example, in Figure 4
we show how Van uses CodeCrawler to display the evolution
of the class hierarchies in the Jun system [8]. In the same
figure we see two other tools: the Diagram Viewer and the
History Inspector. Van offers other analyses like: history
measurements, changes characterization, hidden dependen-
cies detection based on change information, past refactorings
detection.

Chronia. Chronia is a tool that bridges Van with version-
ing systems like CVS. It enables analyses of how developers
change the system [7].

TraceScraper. TraceScraper analyzes the dynamic traces
from different perspectives. For example it offers measure-
ments and visualizations for dynamic traces [9]. Trace-

Scraper also uses Van to analyze the evolution of dynamic
traces.

Baobab. Baobab is a tool to understand dependencies
between modules. It extends FAMIX with the notion of de-
pendency between different parts of the system and provides
various measurements for these dependencies.

Hapax. Hapax is a semantic analysis tool. It makes use
of the comments and names of the identifiers from the code
to recover the domain information. It also offers clustering
of different parts of the system based on how they use the
same terms.

4. MOOSE AVAILABILITY
Moose is completely implemented in Smalltalk under the

BSD license: it is free and open source software. Moose
runs on every major platform (Windows, Mac OS, Linux,
Unix). Moose is freely available for download. The current
webpage of Moose is located at:

http://www.iam.unibe.ch/ scg/Research/Moose/.

Moreover, Moose is also available as free goodie on the
VisualWorks Smalltalk CD, a professional, commercial de-
velopment environment developed and sold by the Cincom
company which also exists in a non-commercial version freely
available for download at:

http://www.cincomsmalltalk.com/

5. CONCLUSIONS
Reverse engineering is a complex task and requires com-

bining different techniques and tools. We presented Moose,
a reengineering environment designed to be: (i) extensible -
to support unexpected needs, (ii) exploratory - to allow for
flexible sequence of actions, and (iii) scalable, to cope with
large systems.

On top of Moose several tools were built, each of them
having its own focus: dependency analysis, visualization,
concept analysis, version analysis, semantic analysis. These

CodeCrawler displaying a Hierarchy Evolution View.

Diagram Viewer showing
the evolution of two properties.

History Inspector viewing the versions of a class andhow a property evolved

Figure 4: Van and CodeCrawler

tools extend Moose and collaborate with each other using
meta-descriptions.

Acknowledgments
We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project and “RECAST:
Evolution of Object-Oriented Applications” (SNF Project
No. 620-066077, Sept. 2002 - Aug. 2006).

6. REFERENCES
[1] G. Arévalo, F. Buchli, and O. Nierstrasz. Detecting

implicit collaboration patterns. In Proceedings of
WCRE ’04 (11th Working Conference on Reverse
Engineering), pages 122–131. IEEE Computer Society
Press, Nov. 2004.

[2] G. Arévalo, S. Ducasse, and O. Nierstrasz. Discovering
unanticipated dependency schemas in class hierarchies.
In Proceedings of CSMR ’05 (9th European Conference
on Software Maintenance and Reengineering), pages
62–71. IEEE Computer Society Press, Mar. 2005.

[3] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1
— The FAMOOS Information Exchange Model.
Technical report, University of Bern, 2001.

[4] S. Ducasse, T. Gı̂rba, and J.-M. Favre. Modeling
software evolution by treating history as a first class
entity. In Workshop on Software Evolution Through
Transformation (SETra 2004), pages 71–82, 2004.

[5] S. Ducasse and M. Lanza. The class blueprint:
Visually supporting the understanding of classes.
IEEE Transactions on Software Engineering,
31(1):75–90, 2005.

[6] S. Ducasse and S. Tichelaar. Dimensions of
reengineering environment infrastructures.
International Journal on Software Maintenance:
Research and Practice, 15(5):345–373, Oct. 2003.

[7] T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse.
How Developers Drive Software Evolution. In
Proceedings of International Workshop on Principles
of Software Evolution (IWPSE). IEEE Computer
Society Press, 2005. to appear.

[8] T. Gı̂rba, M. Lanza, and S. Ducasse. Characterizing
the evolution of class hierarchies. In Proceedings of
European Conference on Software Maintenance
(CSMR 2005), 2005.

[9] O. Greevy and S. Ducasse. Correlating features and
code using a compact two-sided trace analysis
approach. In Proceedings of CSMR 2005 (9th
European Conference on Software Maintenance and
Reengineering. IEEE Computer Society Press, 2005.

[10] M. Lanza and S. Ducasse. Polymetric views — a
lightweight visual approach to reverse engineering.
IEEE Transactions on Software Engineering,
29(9):782–795, Sept. 2003.

	Introduction
	The Architecture of Moose
	Tools Built on Top of Moose
	Moose Availability
	Conclusions
	References

