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bDecomp Laboratory, Université Libre de Bruxelles, Belgium

Abstract

In pure object-oriented languages, classes are objects, instances of other classes
called metaclasses. In the same way as classes define the properties of their in-
stances, metaclasses define the properties of classes. It is therefore very natural to
wish to reuse class properties, utilizing them amongst several classes. However this
introduced metaclass composition problems, i.e., code fragments applied to one class
may break when used on another class due to the inheritance relationship between
their respective metaclasses.

Numerous approaches have tried to solve metaclass composition problems, but
they always resort to an ad-hoc manner of handling conflicting properties, alien-
ating the meta-programmer. We propose a uniform approach that represents class
properties as traits, groups of methods that act as a unit of reuse from which classes
are composed. Like all the other classes in the system, metaclasses are composed
out of traits. This solution supports the reuse of class properties, and their safe and
automatic composition based on explicit conflict resolution. The paper discusses
traits and our solution, shows concrete examples implemented in the Smalltalk en-
vironment Squeak, and compares our approach with existing models for composing
class properties.
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1 Reusing class properties

In class-based object-oriented programming, classes are used as instance gen-
erators and to implement the behavior of objects. In object-oriented languages
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such as CLOS, Smalltalk or Ruby, classes themselves are first-class objects,
and instances of so-called metaclasses [1,2,?,5,7]. In the same way that classes
define the properties for their instances (objects), metaclasses implement the
properties for their instances (classes). Examples of class properties are Sin-
gleton, Final, Abstractness . . . [8].

Treating classes as first-class objects and having metaclasses is important for
two main reasons:

• Uniformity and Control. In a pure object-oriented language it is natural for
classes to be instances of metaclasses. The uniformity defines metaclasses
as the natural place to specify and control object creation and other class
behavior.

• Reuse of Class Behavior. Since a metaclass is just like any other class, class
behavior is reused and conventional reuse and decomposition techniques are
applied to the metaclasses [8]. Hence the same techniques that are available
for base classes (inheritance and overriding of methods, for example) are
applicable at the meta level.

When a language has metaclasses, those metaclasses can be implicit or explicit.
With implicit metaclasses the programmer cannot specify the metaclass for a
class [9]. As such, implicit metaclasses successfully address the goal of “unifor-
mity and control”, but they fall short for achieving “reuse of class behavior”.
Explicit metaclasses avoid this limitation because the programmer can explic-
itly state from which metaclass his or her classes are instances [1,2,4,5].

Languages without explicit metaclasses suffer from the fact that class proper-
ties cannot be reused across classes, and that they cannot be combined. For
example, every time one needs a class with the Singleton behavior, the same
code needs to be implemented over and over again. With explicit metaclasses
the singleton class property can be factored out to a Singleton metaclass, which
can then be used to instantiate classes that exhibit the Singleton behavior.
However languages with explicit metaclasses suffer from the fact that com-
position can be unsafe [2,10] or are based on non-uniform mechanisms i.e.,
the meta-programmer cannot use the same composition mechanism used for
programming at the base level than for programming at the meta level. This
is clearly a problem, since metaclasses originate from the wish of uniformity
in OOP (see Section 2).

To address these problems we propose to use the general-purpose object-
oriented language feature traits [11]. Traits are composable units of behavior
that close the large conceptual gap between a single method and a complete
class. Our approach models class properties with traits, and uses trait com-
position to safely combine and reuse properties in metaclasses. Consequently,
metaclass composition (like class composition) enjoys all the conceptual ben-

2



efits of the traits composition model. In particular, composition conflicts that
occur when composing two properties that do not quite fit together are de-
tected automatically and the conflict resolution is explicit and under control
of the composing entity.

As we will show in the rest of the paper, our solution supports the reuse
of class properties, their safe and automatic composition with explicit conflict
resolution, and the usage of the same mechanism (traits) for both the base and
metalevel. As safety is a broad term we follow the definition of safe metaclass
composition as defined in [12] and that we present in the following section.
Now we start by identifying precisely

2 Explicit Metaclass Problems

Having explicit metaclasses promotes reuse but introduces several problems
summarized in this section and detailed in the rest of the paper.

Unsafe Composition. Some approaches sacrifice the compatibility between
the class and the metaclass level [2,10]. Unsafe metaclass composition means
that code fragments applied to a class may break when used on another one
due to the inheritance relationship between the metaclasses of the classes
involved (See section 3).

Ad-Hoc and Non-Uniformity. There are some approaches that are specif-
ically designed to avoid the compatibility problems raised in the first point.
Their solutions, however, rely on ad-hoc composition mechanisms that are
based on automatic code generation and dynamically changing the meta-
metaclass [12]. Not only does this make it hard to understand the resulting
code, it also leads to problems in case of conflicting properties and results in
hierarchies that are fragile with respect to changes. Note that MetaclassTalk
by using mixin composition at the metalevel is the only solution that solves
this problem [15].

The solutions are not satisfactory from a conceptual point of view either,
because the meta level (or meta meta level) does not employ object-oriented
techniques (such as inheritance or instantiation) but ad-hoc mechanisms
only applicable for metaclass composition. This breaks the fundamental idea
of reflective programming that uses the available features of a language to
define and control the behavior of the language itself [4].

Limited Composition. Other approaches used in the specific context of
metaobjects use chain of responsibility [13] or composite metaobjects [14]
to compose metaobjects. The first approach does not provide full control
over the composition. The second approach forces the programmer to de-
velop specific metaobjects to compose others, even when the reuse of these
composite metaobjects is unclear.
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Upward Compatibility

Meta A>>c-foo
^ self new i-bar

Meta A
c-bar

A
i-foo

Meta B

B

A>>i-foo
^ self class c-bar

? Meta A
c-foo

A
i-bar

Meta B

B?
Downward Compatibility

inherits from
instance of

Fig. 1. Left: Upward compatibility - dependencies on the base level need to be
addressed at the meta level. Right: Downward compatibility - dependencies on the
meta level need to be addressed at the base level.

The ideal metaclass composition solution would make composition be auto-
matic. However, as we will discuss in Section 11 a simple solution does not
exist in a context where new properties can be defined and composed, and
where their semantics can severely conflict. So the solution is a mechanism
that is both safe and uniform i.e., one that does not require the developer to
make a paradigm shift and where the development of base-level applications
and meta-level applications is the same.

3 Qualifying Composition

Offering explicit metaclasses is a way to reuse class properties but it also
opens the door for metaclass compatibility problems [10]. This section defines
criteria by which approaches that solve metaclass composition problems can
be characterized and distinguished. We start by listing two criteria that were
already identified in [12] (upward, downward compatibility and per class prop-
erty), and then introduce three new ones that were not previously considered
(property composition, property application, and control of the composition),
but that qualify the problem in a more detailed way.

Upward Compatibility. The fact that classes are instances of other classes
which define their behavior introduces hidden dependencies in the inheritance
relationships between the classes and their metaclasses. Careless inheritance
at one level (be it the class or metaclass level), can break inter-level communi-
cation. N. Bouraqadi et al. [12] refined the metaclass compatibility problems
in two precise cases named upward and downward compatibility.

Let B be a subclass of A, MetaB the metaclass of B, and MetaA the metaclass
of A. Upward compatibility is ensured for MetaB and MetaA iff: every possible
message that does not lead to an error for any instance of A, will not lead to
an error for any instance of B.
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Figure 1 left illustrates upward compatibility. When an instance of B receives
the message i-foo, the message c-bar is sent to B. The composition of A and B

is upward compatible, if B understands the message c-bar, i.e., MetaB should
implement it or somehow inherit it from MetaA.

Downward Compatibility. Let MetaB be a subclass of the metaclass MetaA.
Downward compatibility is ensured for two classes B, instance of MetaB and
A, instance of MetaA iff: every possible message that does not lead to an error
for A, will not lead to an error for B.

Downward compatibility is illustrated in Figure 1 right. When B receives the
message c-foo, the message i-bar is sent to a newly created instance of B. The
composition of MetaA and MetaB is downward compatible, if that new instance
of B understands the message i-bar, i.e., B should implement it or somehow
inherit it from A.

Definition. Metaclass composition is safe when it supports downward and
upward compatibility.

Per Class Property. Different metaclass properties can be assigned to differ-
ent classes in an inheritance hierarchy. Some systems such as NeoClasstalk and
MetaClasstalk allow one to assign a property to a single class without it being
inherited by its subclasses [12,15]. The authors of NeoClasstalk and Meta-
Classtalk, N. Bouraqadi et al. defined class property propagation as follows:
“A property assigned to a class is automatically propagated to its subclass.”.
We name this criteria per class property. For example it is possible to define
that a class is abstract and its subclasses are not abstract and this without
having to redefine the property at the subclasses level.

Final
Singleton

FinalSingleton

MetaA

Class Property
Composition

Class Property
Application

A 

(MetaA may not be
explicit)

Instantiation

Fig. 2. Property Composition and Property Application: two different stages in the
process of reusing class properties.

Property Composition. One of the main motivations for having explicit
metaclasses is to combine class properties, as shown in Figure 2, so that one
class can for example be both a Singleton and Final. Hence a mechanism
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is needed that supports such property composition. This can be a general-
purpose language mechanism such as multiple inheritance [4,5], mixin com-
position [15], chain of responsibility [13], or an ad-hoc mechanism such as
generation of new classes and methods [12].

Property Application. Property application is the mechanism by which the
composed properties are applied to classes. As shown in Figure 2 we distin-
guish the composition of properties from the application of a property to a
specific class because some approaches employ different techniques for these
two purposes. As an example, SOM uses ordinary multiple inheritance to com-
pose class properties but it employs a combination of multiple inheritance and
code generation to apply a class property to a class.

Control. The mechanism used to apply and combine class properties can be
implicit or explicit. We call the mechanism implicit if the system automatically
combines or applies the class properties and implicitly resolves conflicts in a
way that may or may not be what the programmer intends. We call the mecha-
nism explicit if the system gives the programmer explicit control over how the
properties are combined and applied. In particular, the programmer should
have explicit control over how conflicts are resolved. For many approaches,
this is not the case because the composition of properties is based on a chain
of responsibility which does not provide full control of the composition.

4 Traits in a Nutshell

Traits [11] are an extension of single inheritance with a similar purpose as
mixins but avoiding their problems. Traits are essentially groups of methods
that serve as building blocks for classes and are primitive units of code reuse.
As such, they allow one to factor out common behavior and form an inter-
mediate level of abstraction between single methods and complete classes. A
trait consists of provided methods that implement its behavior, and of required
methods that parameterize the provided behavior. Traits cannot specify any
instance variables, and the methods provided by traits never directly access
instance variables. Instead, required methods can be mapped to state when
the trait is used by a class.

With traits, the behavior of a class is specified as the composition of traits
and some glue methods that are implemented at the level of the class. These
glue methods connect the traits together and can serve as accessor for the
necessary state. The semantics of such a class is defined by the following three
rules:

• Class methods take precedence over trait methods. This allows the glue meth-
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ods defined in the class to override equally named methods provided by the
traits.

• Flattening property. A non-overridden method in a trait has the same se-
mantics as the same method implemented in the class.

• Composition order is irrelevant. All the traits have the same precedence,
and hence conflicting trait methods must be explicitly disambiguated.

Because the composition order is irrelevant, a conflict arises if we combine two
or more traits that provide identically named methods that do not originate
from the same trait. Traits enforce explicit resolution of conflicts by imple-
menting a glue method at the level of the class that overrides the conflicting
methods, or by method exclusion, which allows one to exclude the conflicting
method from all but one trait. In addition traits allow method aliasing. The
programmer can introduce an additional name for a method provided by a
trait to obtain access to a method that would otherwise be unreachable, for
example, because it has been overridden. Traits can be composed from sub-
traits. The composition semantics is the same as explained above with the
only difference being that the composite trait plays the role of the class.

5 Using Traits to Reuse and Compose Class Properties

Our approach is based on using traits to compose and reuse class proper-
ties within the traditional parallel inheritance schema proposed by Smalltalk
(See Figure 8 left). Therefore our approach is safe i.e., it supports downward
and upward compatibility. But on top of that it promotes the reuse of class
properties. Composition and application of class properties are based on trait
composition, which gives the programmer explicit control in a uniform man-
ner.

A B

inherits from
instance of

Meta A
Class

Property2

Meta B
Class

Property1

Fig. 3. Metaclasses are composed from traits representing class properties. Traits
supports upward and downward compatibility.

We represent class properties as traits, which are then used to compose meta-
classes as shown in Figure 3. Since traits have been fully implemented in
the open-source Squeak Smalltalk environment [19], we implemented all the
examples shown here in Squeak. During our refactoring of Squeak code we
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identified the following class properties: TAbstract, TSingleton, TRememberIn-

stances, TCreator, and TFinal which we explain below. We start with a simple
example illustrating how a class is composed by reusing a class property, then
we look how the traditional Boolean hierarchy [8,12] is re-expressed with traits
and finally Section 6 shows that traits provide a good basis to engineer the
meta level.

5.1 Singleton

To represent the fact that a class is a Singleton, we define the trait TSingle-

ton. This trait defines the following methods: default which returns the default
instance, new which raises an error, and reset which invalidates the current sin-
gleton instance. It requires basicNew which returns a newly created instance 1 ,
and the methods uniqueInstance and uniqueInstance:. Note that these accessors
methods are needed because traits cannot contain instance variables. Figure 4,
left, shows the trait TSingleton.

Trait named: #TSingleton uses: {} category: ’Traits-Example’
TSingleton�default

self uniqueInstance isNil
ifTrue: [self uniqueInstance: self basicNew].

↑ self uniqueInstance
TSingleton�new

self error: ’You should use default’
TSingleton�reset

self uniqueInstance: nil

As an example, suppose that we want to specify that a certain class WebServer

is a Singleton. First of all we define the class WebServer in the traditional
Smalltalk way as shown in 4. Then we specify at the metaclass level i.e., in the
class WebServer class, that the class is a Singleton by specifying that the class
is composed from the trait TSingleton. The metaclass defines state needed to
keep an instance around, under the form of the instance variable uniqueInstance.
It also defines two glue methods uniqueInstance and uniqueInstance: as accessors
methods for the instance variable uniqueInstance. These two glue methods fulfill
the required methods with the same name of the trait TSingleton. Note that the
required method basicNew is provided by the class Behavior, of which WebServer

class, is an indirect subclass (see Figure 4, right).

1 Using basicNew is the traditional way to implement Singleton in Smalltalk when
we want to forbid the use of the new method [20]. basicNew allocates objects without
initializing them. It is a Smalltalk idiom to never override methods starting with
‘basic’ names.
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ultimately inherits 
from Behavior

Behavior
TCreator

new
basicNew

WebServer class
uniqueInstance
uniqueInstance:

TSingleton
new
default
reset

basicNew
uniqueInstance
uniqueInstance:

TSingleton
new
default
reset

basicNew
uniqueInstance
uniqueInstance:

Object subclass: #WebServer    
   instanceVariableNames: ” 
   classVariableNames: ” 
   poolDictionaries: ” 
   category: ’Traits-Example’ 

WebServer class uses: {TSingleton } 
     instanceVariableNames: ’uniqueInstance’ 

WebServer class>>uniqueInstance 
      ↑ uniqueInstance

 WebServer class>>uniqueInstance: anObject    
      uniqueInstance := anObject 

Fig. 4. Left. The trait TSingleton. Right. The class Behavior, the root of metaclasses
in Smalltalk, is composed from the trait TCreator and as such provides the method
basicNew.

5.2 The Boolean Hierarchy Revisited

The Smalltalk Boolean hierarchy consists of the abstract class Boolean, that
has two subclasses True and False that are singleton classes. Traits allow the
boolean hierarchy to be refactored as shown in Figure 5. Note that the refac-
tored solution is backwards compatible with the idioms existing in the current
Smalltalk implementation and literature [20]. So we assume that a method
basicNew is defined on the class Behavior that can always be invoked to allocate
instances and that should not be overridden.

Boolean. The class Boolean is an abstract class, so we compose its class Boolean

class from the trait TAbstract.

Trait named: #TAbstract uses: {} category: ’Traits-Example’
TAbstract�new

self error: ’Abstract class. You cannot create instances’
TAbstract�new: size

self error: ’Abstract class. You cannot create instances’

False and True. The classes False and True are Singletons so their classes
False class and True class are composed from the trait TSingleton which is then
reused in the two classes.

As mentioned above, the trait TSingleton requires the methods basicNew, unique-

Instance, and uniqueInstance:. Therefore the class False class (resp. True class) has
to define an instance variable uniqueInstance and the two associate accessors
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methods uniqueInstance and uniqueInstance:. Note that the method basicNew does
not have to be redefined locally in the class False or True class as it is inherited
ultimately from the class Behavior, the inheritance root of the metaclasses [9]
(see Figure 5 right). This example shows that class properties are reused over
different classes and that metaclasses are composed from different properties.

False class
uses: {TSingleton }
instanceVariableNames: ’uniqueInstance’

False class�uniqueInstance
↑ uniqueInstance

False class�uniqueInstance: anObject
uniqueInstance := anObject

Boolean

False

True

False class

True class

TSingleton

Boolean class

TAbstract
TSingleton

Behavior
TCreator

new
basicNew

Boolean class
TAbstract

new

False class
TSingleton

new
default
reset

basicNew
uniqueInstance
uniqueInstance:

Fig. 5. Left: Boolean hierarchy refactored with traits. Right: The complete picture
for the Boolean hierarchy solution.

6 Engineering The Meta Level

So far we presented simple examples that show how traits are well-suited to
model class properties, which can then be combined or applied to arbitrary
classes. In this section, we show that traits also allow more fine-grained archi-
tectures of class properties. We also want to stress that the techniques used
here at the meta level are exactly the same as those used at the base level. As
such, traits provide a uniform model.

Since many of these properties are related to instance creation, and we per-
form our experiments in Smalltalk, we first clarify the basic instance creation
concept of Smalltalk. In Smalltalk, creation of a new instance involves two
different methods, namely basicNew and new 2 . The method basicNew is a low-

2 Note that there are also the methods basicNew: and new:, which are used to create
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level primitive which simply allocates a new instance of the receiver class.
The method new stands at a conceptually higher level and its purpose is to
return a usable instance of the receiver class. For most classes, new therefore
calls basicNew to obtain a new instance and then initializes it with reasonable
default values.

TRememberInstances
new
rememberInstance
instances
reset

rememberedInstances
rememberedInstances:

TInstantiator
new

TAllocate
basicNew

TInitInstantiator
new initialize

TAbstract
new

TFinal
subclass:

TSharedInstance
reset
sharedInstance

directSharedInstance
directSharedInstance:

TDefault TSingleton
new

sharedNew → new

default → 
sharedInstance uniqueInstance → 

sharedInstance

nonRememberingNew → new

is composed from
TSingleton
new

Trait

m1 → m2
creates an alias 

m2 referring to m1

Legend

Fig. 6. A fine-grained architecture of class properties based on traits

6.1 Class Properties

Figure 6 gives an overview of the class properties we identified (see Section 10
for a deeper discussion). Note that all of these properties are traits, and that
they are therefore composed using trait composition.

Allocation. As indicated by its name, the trait TAllocator provides the be-
havior to allocate new instances. In our case, this is the standard Smalltalk
basicNew method, but of course we could also create another trait with an
alternative allocation strategy.

Instantiation. The traits TInstantiator and TInitInstantiator are two class prop-
erties for instance creation. The trait TInstantiator uses the trait TAllocator and
implements the method new in the traditional Smalltalk manner, which means
that it does not initialize the newly created instance. The trait TInitInstantiator

uses the trait TAllocator. However, as suggested by its name, it actually ini-

objects with indexed fields (i.e., arrays). For sake of simplicity, we do not take these
methods into account here.
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tializes the newly created instance by calling the method initialize before the
instance is returned.

TInstantiator�new
↑self basicNew

TInitInstantiator�new
↑self basicNew initialize

Note that the method initialize is called on the new instance, which means
that the requirement for initialize in the trait TInitInstantiatior is actually a
requirement for the instance side.

Remembering Instances. The trait TRememberInstances represents an in-
stance creation property that remembers all the instances created by a class.
It uses the trait TInitInstantiator and aliases the method new of the traits TInitIn-

stantiator which is then available as nonRememberingNew. This aliasing allows
one to access the original new method of the trait TInitInstantiator while leaving
the option to override the method new in the trait TInitInstantiator. It requires
the methods rememberedInstances and rememberedInstances: to access a collection
storing the created instances. Then, it implements the methods new, remem-

berInstance:, instances, and reset as follows:

TRememberInstances�new
↑ self rememberInstance: self nonRememberingNew

TRememberInstances�rememberInstance: anObject
↑ self instances add: anObject

TRememberInstances�instances
self rememberedInstances ifNil: [self reset].
↑ self rememberedInstances

TRememberInstances�reset
self rememberedInstances: IdentitySet new

Note that another implementation could be to define the methods reset and
rememberedInstances: as trait requirements. This would leave the class with the
option to use other implementations for keeping track of the created instances.

Default and Singleton. The traits TDefault and TSingleton implement the
class properties corresponding to the Default Instance and Singleton design
patterns. Whereas a Singleton can only have one single instance, a class ad-
hering to the Default Instance pattern has one default instance but can also
have an arbitrary number of other instances.

Since these two properties are very similar, we factored out the common code
into the trait TSharedInstance. To get the basic instantiation behavior, this trait
uses the property TInitInstantiator and again applies an alias to ensure that the
method new is available under the name sharedNew. Then, it implements the
methods reset and sharedInstance as follows:
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TSharedInstance�reset
self directSharedInstance: self sharedNew.

TSharedInstance�sharedInstance
self directSharedInstance ifNil: [self reset].
↑ self directSharedInstance.

The property TDefault is then defined as an extension of the trait TSharedIn-

stance that simply introduces the alias default for the method sharedInstance.
Similarly, the property TSingleton introduces the alias uniqueInstance for the
same method. In addition, TSingleton overrides the method new so that it can-
not be used to create a new instance:

TSingleton�new
self error: ’Cannot create new instances of a Singleton.

Use uniqueInstance instead’.

Another useful class property popularized by Java is the class property TFinal

which ensures that a class cannot have subclasses. In Smalltalk, this is achieved
by overriding the message subclass: 3 . Note that unlike all the other properties
presented in this section, TFinal is not concerned with instance creation and
therefore is entirely independent of the other properties. In Section 10 we
discuss the relevance of the class properties we presented.

6.2 Advantages for the Programmer

Having an architecture of class properties has many advantages for a pro-
grammer. Whenever a new class needs to be created, a choice can be made
regarding the creation of instances, and whether or not the class should be
final. Besides having the obvious advantage of avoiding code duplication, it
also makes the design much more explicit and therefore facilitates understand-
ability of the class. The level of abstraction of the trait design is at the right
level: the traits correspond to the class properties, and the class properties
can be combined into metaclasses.

In addition, factoring out the properties in such a fine-grained way still gives
the user a lot of control about some crucial parts of the system. Suppose for
example that at first we would have decided to use the trait TInitInstantiator as
the basis for all the other instance creation properties. If later on, we would
decide to comply to the Smalltalk standard to create uninitialized instances by
default, then we could make this change without modifying any of the involved
methods. We would just need to make sure that the traits TRememberInstances

3 In reality, the method to create a subclass takes more arguments but this is not
relevant here
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and TSharedInstance use the trait TInstantiator instead of TInitInstantiator.

Explicit Composition Control Power. By providing several different prop-
erties that are all related to instance creation behavior, this example also
shows why it is so important to have explicit control over composition and
application of class properties. In our example, there are many different prop-
erties which essentially introduce variants of the method new, and therefore,
combining these properties typically leads to conflicts that can only be re-
solved in a semantically correct manner if the user has explicit control over
the composition. In case of traits, this is ensured by allowing partially ordered
compositions, exclusions, and aliases.

As an example, imagine that we want to combine the properties TDefault and
TRememberInstances to get a property that allows both a default instance and
also remembers all its instances. With our trait-based approach, we do this by
creating a new trait TDefaultAndRememberInstances which uses TRememberIn-

stances and TDefault as follows:

Trait named: TDefaultAndRememberInstances
uses: { TDefault @ {#defaultReset → #reset}.

TRememberInstances − {#new}
@ {#storeNew → #new.

#storeReset → #reset}}

TDefaultAndRememberInstances�sharedNew
↑self storeNew

TDefaultAndRememberInstances�reset
self storeReset.
self defaultReset

Since both traits provide a method new, we exclude this method from the trait
TRememberInstances when it is composed. As a consequence the trait contains
the new method provided by TDefault, which uses sharedNew to create a new
instance. Since we want to make sure that each new instance is also stored,
we override sharedNew so that it calls storeNew, which is an alias for the new

method provided by TRememberInstances.

Because the method reset is also provided by both traits, we use aliasing to
make sure that we can access the conflicting methods. Then, we resolve the
conflict by overriding the method reset so that it first removes the stored
instances (by calling storeReset) and then creates a new default instance (by
calling defaultReset). Note that the newly created instance will be remembered
as the default instance and will also be stored in the collection with all the
instances of the class.
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PureBehavior

BehaviorTraitBehavior

Class
Description

Class Metaclass

Trait
Description

Trait ClassTrait

Fig. 7. The hierarchy of the new Smalltalk kernel supporting traits.

7 A New Kernel

In this section we present briefly the key implementation aspects of the new
Smalltalk kernel that is bootstrapped with traits. The Figure 7 shows the new
class hierarchy that we obtain. As the new kernel with traits is an extension
of the traditional Smalltalk kernel, we get the traditional classes: Behavior,
ClassDescription, Metaclass, and Class which now deal with the fact that a class
may be composed of traits.

To model traits we then follow the previous design of the kernel and mimic
the classes Behavior, ClassDescription and Class. Three classes TraitBehavior, Trait-

Description, and Trait are introduced. Trait represents a trait and is applied to
both the class and instance side. In addition the class Behavior, root of the in-
stantiation graph, uses two important traits: TInstantiator and TInitInstantiator

as presented in previous section. The class Behavior in Smalltalk also defines
information about the state and behavior related to superclass and instance
variables (format). As this is not needed for traits, we introduce a new abstract
superclass PureBehavior, which factors out the common code between Behavior

and TraitBehavior.

Some Traits. The traits we identified and used in this new kernel are not
really remarkable in the sense of new MOP entries. In fact we mainly use traits
to reuse code between the classes TraitsDescription and ClassDescription for the
following reasons.

• The new kernel is based on the traditional Smalltalk kernel, which uses
inheritance as the primary reuse mechanism. A lot of polymorphic methods
are used among the classes Behavior and ClassDescription, and the classes Class

and Metaclass. As a consequence, there is not much need for introducing
traits to share this functionality.

• In the traditional Smalltalk kernel, the class Behavior only defines the mini-
mal state and behavior to support classes as run-time entities. For example
Behavior does not define the notion of named instance variables but just
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knows the format of the instances the class will create in terms of the num-
ber and kind of instance variables [9]. Support for named instance variables
is (amongst other things) implemented by ClassDescription, a subclass of the
class Behavior. Because of this inheritance structure, some code that is imple-
mented in ClassDescription (and uses state defined in ClassDescription) cannot
and should not be reused by pushing it up to PureBehavior. Instead, we use
traits to share behavior between ClassDescription and TraitDescription.

The class PureBehavior uses the following traits:

• TBasicCompile supports the compilation and decompilation of methods in a
class.

• TTestingSelector supports the testing of selectors of methods (e.g., canUnder-

stand:, . . . ).
• TCompiledMethodAccess supports the access into the method dictionary and

source code access.
• TMethodIterating supports the iteration over compiled methods.

The class Behavior uses the following traits:

• TInstantiator and TInitInstantiator implement the creation of objects as de-
scribed in the previous section.

• TFamilyAccess supports the access and enumeration of superclasses and sub-
classes.

• TInstanceEnumerator supports the enumeration of instances of the class.
• TMethodTesting supports the querying of methods.

The traits resulting from the decomposition of the classes PureBehavior and
Behavior are not currently used by any other classes. In contrast, the following
traits are used to share behavior between the two classes TraitsDescription and
ClassDescription.

• TClassComment supports the management of comments.
• TMethodDictionaryManagement supports the management of methods cate-

gories.
• TOrganization supports how methods are sorted into method categories.
• TCodeReformatting supports reformatting of source code.
• TCodeFileOut supports filing-out (saving) of classes.
• TBehaviorCopy supports the copying of methods and their organization.
• TOrganizedCompilation supports the compilation of methods within the con-

text of categories.

It should be noted that in the Smalltalk metaclass kernel, identifying traits
that can be reused independently of each others is difficult because the be-
havior of the kernel is based on inheritance and the code was tightly coupled.
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up down per class application composition control

Smalltalk Yes Yes No No No No

CLOS Yes Yes No multiple inheri-
tance

multiple inheri-
tance

explicit + lin-
earization

SOM Yes No No multiple inher-
itance + code
generation

multiple inheri-
tance

implicit

NeoClasstalk Yes Yes Yes inheritance +
generation

inheritance +
code generation

implicit

MetaclassTalk Yes Yes Yes inheritance mixin composi-
tion

mixin lin-
earization

Traits Yes Yes No trait composi-
tion

trait composi-
tion

explicit

Table 1
Comparison of the models from Section 8 on how they handle the composition
problems described in Section 2.

8 Related Work

This section shows how the main approaches that support explicit metaclasses
address the problems described in Section 2. We also discuss the solution
offered by Smalltalk (although it has implicit metaclasses) since it forms the
basis for the NeoClasstalk solution and our own solution. Table 1 summarizes
the comparison of these approaches. Note that the table shows the influence
of the CLOS approach based on multiple inheritance to support metaclass
composition in SOM.

8.1 Metaclass Composition

Smalltalk. In Smalltalk (and more recently in Ruby), metaclasses are implicit
and created automatically when a class is created [9]. Each class is the sole
instance of its associated metaclass. This way the two hierarchies are parallel
(see Figure 8 left). Hence the architecture is safe as it addresses compatibility
issues but completely prevents class property reuse between several hierarchies.

CLOS. CLOS’s approach could be summarized as “do it yourself”. Indeed
by default in CLOS, a class and its subclasses must be instances of the same
metaclass, prohibiting classes in the same hierarchy from having different class
properties. For example, in Figure 8 right, class B has by default the same
metaclass as its superclass A, and this cannot be changed. So class B always
has the same class properties as class A. Note that since CLOS has explicit
metaclasses, multiple inheritance can be used for composing class properties.
For example, in the context described by Figure 2 it is possible to use mul-
tiple inheritance to explicitly combine the two properties Final and Singleton

expressed as metaclasses into a new class SingletonFinal. Note that such an
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Meta A>>c-foo
^ self new i-bar Meta A

c-bar
c-foo

A
i-foo
i-bar

Meta B

B

A>>i-foo
^ self class c-bar

inherits frominstance of

Meta A
c-bar
c-foo

A
i-foo

B

Meta A>>c-foo
^ self new i-barA>>i-foo

^ self class c-bar

Smalltalk CLOS

Fig. 8. Left: Smalltalk addresses compatibility issues by preventing reuse using im-
plicit metaclasses and parallel hierarchies. Right: By default CLOS addresses com-
patibility issues by preventing subclasses to have different metaclasses than their
superclasses.

implementation suffers from the same problems as multiple inheritance based
on linearization occurring at the base level [16].

The general CLOS rule that a class and its subclasses must be instances of
the same metaclass can be circumvented using CLOS’s metaobject proto-
col (MOP). Indeed, the generic function validate-superclass [4] offers a meta-
programmer the possibility to specify that a class and its subclasses can be
instances of different classes. However, this comes at a very high price because
the CLOS MOP does not provide predefined strategies for avoiding compati-
bility problems or for dealing with possible conflicts. Hence the semantics of
the composition has to be implemented manually, a far from trivial undertak-
ing.

This means that by default CLOS is upward and downward compatible but
it prevents usage of different metaclasses within an inheritance hierarchy and
reuse of class properties. Both the composition of class properties and the
application of properties are done with multiple inheritance. The control of
the composition is explicit, because the user has to use multiple inheritance
to create a new metaclass. However, since multiple inheritance in CLOS uses
implicit linearization, the well-known problems associated with this form of
conflict resolution also apply to the meta level [16].

SOM. The solution proposed by SOM (System Object Model) [7] is based on
the automatic generation of derived metaclasses, that inherit multiply from
the metaclasses to compose class properties. When at compile time a class
is specified to be an instance of a certain metaclass, SOM automatically de-
termines whether upward compatibility is ensured and if necessary creates
a derived metaclass. In Figure 9 left, the class B (originally an instance of
MetaB), inheriting from class A (instance of MetaA) finally becomes an in-
stance of a derived metaclass inheriting from MetaA and MetaB. Note that
SOM ensures that the existing metaclass MetaB takes precedence over MetaA

in case of multiple inheritance ambiguities (since B is a subclass of A).
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Meta A
c-bar

A
i-foo

Derived

B

A>>i-foo
^ self class c-bar

inherits from

instance of

Meta B

SOM Automatic 
Upward Compatibility

SomClass

SomObject

Meta A
c-foo

A
i-bar

Meta B

B

Meta A>>c-foo
^ self new i-bar

SOM Downward
 Compatibility Failure

Fig. 9. Left: SOM supports upward compatibility by automatically deriving new
metaclasses and changing the class of the inheriting class B. Right: SOM downward
compatibility failure example.

While SOM supports upward compatibility as shown in Figure 9 left, it does
not support downward compatibility [12] as shown in Figure 9 right. When
the class B receives the c-foo message, a run-time error will occur because its
instances do not understand the i-bar message. However, in SOM, contrary
to CLOS, two distinct classes need not have the same metaclass. But as in
CLOS, the composition of class properties is based on multiple inheritance.
The application of a class property is done by a combination of multiple inher-
itance and automatic class generation. This happens at compile time, and the
programmer has no explicit control over how possible conflicts are resolved.

NeoClasstalk. NeoClasstalk’s approach is interesting since it supports both
downward and upward compatibility and enables class property reuse between
different hierarchies [17,12,18]. NeoClasstalk uses two techniques to accomplish
this: dynamic change of classes and the composition of metaclasses by code
generation. It generalizes the parallel inheritance solution of Smalltalk by en-
abling class properties reuse, but it also introduces some problems of its own
that we discuss in detail after explaining the basic principles.

NeoClasstalk allows properties to be assigned to classes. Figure 10 shows what
happens when assigning a property to Meta B. B inherits from class A and
is an instance of the class Meta B before the new property is assigned to
Meta B. When assigning the property, the system automatically creates a new
metaclass Property m + Meta B (called a property metaclass), which inherits
from the metaclass Meta B and defines the property code. It then changes the
class of B to be that newly created metaclass. NeoClasstalk supports also per
class property, i.e., a property added to a class does not get automatically
propagated to its subclasses.

To be able to reuse the property classes, NeoClasstalk stores the class prop-
erties in strings on methods of so-called meta-metaclasses. The actual meta-
classes are then generated from these strings, as shown for our example in
Figure 10. For example, the Property m represented by a meta-metaclass is
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compatibility
metaclasses

property
metaclasses

Meta A
c-bar
c-foo

A>>i-foo
^ self class c-bar

A
i-foo
i-bar

B

Meta B

Meta A>>c-foo
^ self new i-bar

Property 
Metaclass

Property m

Property n

Property n
+ Meta A

Property m
+ Meta B

inherits from
instance of

inherits from
instance of

generated from

Fig. 10. Assigning the property m to class Meta B and property n to the class Meta
A in NeoClasstalk. The light grey area denotes the metaclass area. The dark grey
area is the realm of the class properties.

used to generate a new metaclass named Property m + Meta B from the meta-
class Meta B and the Property m.

Besides the intrinsic complexity of NeoClasstalk’s approach, it has the follow-
ing drawbacks:

Dynamic class creation and dynamic change of class. The approach
relies on the dynamic creation of classes and the dynamic changing of classes.
It induces a complex management of meta-metaclass changes that should
be propagated to the generated instances. Moreover as programming at
the meta meta level is based on manipulating the strings that represent
bodies of methods of metaclasses, it is not the same as programming at
the metaclass or the base level. Basically, despite the name, the property
metaclasses are not really at the meta-metaclass level, but merely storage
holders for strings. The relation between the meta-metaclass level and the
metaclass level is therefore not instantiation, as one would expect, but code
generation. This breaks the uniformity of the model.

Ad-hoc and Implicit Composition. Property metaclasses are composed
by code generation and applied implicitly by defining them in an inheritance
chain. The composition is based on the assumption that a metaclass is
designed to be plugged in this inheritance chain and that other composed
behavior can be reached via super invocations. The composite metaclass
has only limited control over the composed behavior as it can only invoke
overridden behavior but does not have the full composition control.

As a summary, NeoClasstalk provides both downward and upward compat-
ibility, and it allows one to assign class properties on a per-class basis. The
composition of class properties is implicit and based on code generation and
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chain of responsibility. The application of class properties is based on dynamic
class changes and code generation.

MetaclassTalk. MetaclassTalk follows the architecture of NeoClasstalk by
offering compatibility and property metaclasses. MetaclassTalk uses mixin
composition to compose metaclass properties [15]. This experiment makes
MetaclassTalk the closest model to our own approach as it supports both
downward and upward compatibility while allowing the reuse of class proper-
ties. However MetaclassTalk composition is based on mixin linearization. As
such it has the same problems as the ones we present in [11]: the composite
entities do not have the full control of the composition, and the glue code is
spread over multiple classes. These problems are solved by traits.

8.2 Metaobjects

Other approaches such as CodA [23], Moostrap [13], Iguana/J [24] support
the composition and reuse of metaobjects. Such a composition is often based
on chain of responsibility [13] i.e., a metaobject is designed to be composed
in a chain of metaobjects by invoking the overridden functionality. The prob-
lem with chain of responsibility is that it forces all the metaobjects to follow
a certain architecture. It more importantly gives the composing metaobject
only a very limited control over the composition: it can invoke the rest or do
nothing. In contrast, traits composition is automatic when there is no conflict,
and when conflicts arise, the composing metaclass has complete control over
all the composed class properties.

The authors of Guarana [14] and Reflex [25], introduce composite metaobjects
i.e., a metaobject that define the composition semantics of several metobjects.
This approach works well for coarse-grained composition, such as for making
changes to the message passing semantics (broadcast, concurrent dispatch, or
remote invocations). However, it is too heavyweight to compose class proper-
ties, since it would force the developer to define an explicit composite metaclass
for all simple conflicts whose reuse is even questionable.

CodA [23] structures the meta-level architecture around several metaobjects
responsible for the different actions. However it raises the issue of compatibil-
ity between all the metaobjects associated to a given object. The solution is
to manually define a semantically coherent configuration of metaobjects im-
plementing the desired semantics [23]. This solution shows again that there is
no magic and that composing operations with conflicting semantics cannot be
achieved in an automatic fashion.
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9 Advantages and Disadvantages

Advantages. Traits support the decomposition of class properties as reusable
units of behavior. Since metaclasses are composed of traits and the model is
based on the parallel hierarchy of Smalltalk, it is upward and downward com-
patible and supports the reuse of class properties across different hierarchies.

In addition the proposed model is uniform with respect to the concepts used
at the base level and the meta level (like CLOS). Both levels use the same
concepts (traits and inheritance). Furthermore, the model is simple, and there
is no need for on-the-fly code generation (as in SOM or NeoClasstalk) or for
dynamic changes to classes (as in NeoClasstalk).

Class properties can be composed of traits that represent those properties. The
application of the properties to an actual metaclass is accomplished by using
the appropriate composite trait in the metaclass definition. The composing
metaclass has complete control of the composition, and possible conflicts are
resolved explicitly when the property is applied to a metaclass.

Having explicit control over the composition is especially important because it
allows a programmer to freely adapt the behavior of the composite metaclass
and to compose class properties that may not quite fit together. This means
that our approach lets system designers ship their class hierarchies together
with a set of prefabricated class properties in the form of traits, which can
then be used and combined by the programmers. In case some class properties
built by different vendors do not quite fit together, the traits model not only
indicates the resulting conflicts, but also provides the programmer with the
necessary means to resolve the conflicts to achieve the expected semantics.

Disadvantages. Glue methods and state have to be redefined in the metaclass
where a property is applied. For example, the instance variable uniqueInstance

and the two accessors methods have to be defined in all classes that implement
a Singleton. We consider this to be a limit of the traits model and the price
to pay to have the minimal mechanism supporting traits composition. Intro-
ducing state into traits would solve this but would introduce other problems,
such as the well-known diamond problem of multiple inheritance [21], where
state gets inherited through different paths.

It may happen that instance variables defined in a superclass are not necessary
in the subclasses. For example, if the superclass implements a Singleton and
the subclasses do not, then the instance variable that holds the Singleton
instance as well as the methods to access it will be inherited by the subclasses.
However, this problem is not due to traits by itself but is a result of using the
inheritance mechanism in general. Table 1 compares the approaches.
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10 Class Properties

Traits let us decide if a given functionality is defined as a trait or as a class.
When defining functionality as a trait we automatically offer the possibility
for future classes to use the identified behavior. One might wonder why we
have so few class properties. First of all we chose to reengineer the current
implementation of Squeak and not to design a new metaobject protocol. In
this article we present the main class properties that we identified during our
implementation, and we did not invent new ones. Secondly, we deliberately
took heavily conflicting class properties, so that we could could clearly show
the conflict resolution advantage of traits. Composing non-conflicting prop-
erties is trivial. Thirdly, other important efforts to build metaclass libraries,
such as SOM [7], present nearly the same set of class properties.

Another point to consider is the role of the classes in the context of a metaob-
ject protocol [4]; we believe that a lot of class properties identified in [8] are
due to the fact that the classes were the single entry point in their MOP,
while certain responsibilities are definitely the responsibilities of other meta-
entities such as methods. It is also out the scope of this paper to present a
new metaobject protocol based on traits, even if this is definitely future work.

Class Property Propagation Our approach does not support per class
property because we did not want to change the class creation protocol of
Smalltalk-80. However, there is nothing in our approach that prevents us to
support per class property in a similar way than the compatibility model does
[12,15]. Figure 11 shows that the intermediate metaclasses Boolean class +

Abstract, False class + Singleton, and True class + Singleton are composed of traits
and that properties such abstractness of the class Boolean, are not propagated
to its subclasses. Note that metaclasses such as Boolean class could also be
composed of traits if the property have to be propagated to the subclasses.

False
True

Boolean class False class
True class

Boolean

Boolean class 
+ Abstract

TAbstract

True class 
+ Singleton

TSingleton

False class 
+ Singleton

TSingleton

Fig. 11. Controlling class property propagation and trait composition.
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11 Automatic Composition

An important difference between traits and most other approaches lies in the
fact that traits have automatic conflict detection but expect explicit conflict
resolution controlled by the programmer. Most approaches aim for a com-
pletely automatic resolution of conflicts, where possible conflicts are resolved
according to some automatic scheme. If such schemes would work in all pos-
sible situations and in such a way that the programmer can easily foresee the
result of a composition, developing software would be much easier. However,
fully automatic resolution of conflicts is no panacea. It is only trivial when
the composed semantics are orthogonal, so that conflicts can simply not oc-
cur. But it becomes extremely complex or even impossible when the semantics
overlaps, which is the case for class properties. Looking in other areas such as
multiple inheritance conflicts resolution we see that techniques based on au-
tomatic linearization techniques are not always satisfying [16] and often lead
to unpredictable method invocations. The same applies here.

Nowadays the problems of composition of services or overlapping aspects is
difficult and nearly impossible without the use of meta-data. For example
Kienzle and Guerraoui demonstrates that trying to automatically compose
transactions with other simpler aspects such as notification is doomed to fail-
ure [22]. In a similar vein authentication and encryption composition can only
be a success when the encryption is invoked first, but authentication should
take precedence over persistency and transactions.

Note that in the context of metaclass composition, the set of metaclass be-
havior is not predefined and fixed, as such it is possible to load a package
in which another meta-programmer has developed new class properties with
sensible composition exigence. Therefore any clever composition engine based
on meta-information would have to deal with the openness of the set of class
properties. Our solution, based on traits, differs from the other approaches
since trait composition is automatic as long as there are no conflicts. Conflicts
are detected automatically. When there is a conflict, then the traits model
offers mechanisms to solve the conflict. This contrasts with the approaches
that use an automatic scheme to handle conflicts.

12 Conclusion and Future Work

The need to reuse class properties led to meta-level architectures based on
explicit metaclasses [1,2]. While offering reuse of class properties, such models
introduced metaclass composition problems [10]. Different approaches exist
that try to solve metaclass compositions problems, based on multiple inheri-
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tance, code generation or automatically changing metaclasses [5,12,15]. How-
ever, the definition, the composition and the application of the class property
were not controllable by the developer or meta programmer.

Our solution models class properties with traits (first class groups of methods),
and uses trait composition to safely combine and reuse them. Using traits to
compose class properties first of all solves the metaclass composition problems
(upward and downward compatibility is ensured) while supporting the reuse
of class properties. In addition, composition and conflict resolution are explicit
and under control of the composing entity. Thirdly, traits is a general-purpose
composition mechanism for object-oriented languages that we have already
applied successfully at the base level (for example to refactor the Smalltalk
collection hierarchy [26]).

We implemented all the examples shown in this article using the Squeak im-
plementation of traits and we started to refactor the kernel of Squeak using
traits. Our next step is to use traits to define a new metaobject protocol for
Smalltalk.
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