
JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58
Published online 1 November 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr.317

Research

On the effectiveness of clone
detection by string matching

Stéphane Ducasse, Oscar Nierstrasz and Matthias Rieger∗,†

Software Composition Group, Institute for Applied Mathematics and
Computer Science, University of Berne, Neubrückstrasse 10,
CH-3012 Berne, Switzerland

SUMMARY

Although duplicated code is known to pose severe problems for software maintenance, it is difficult to
identify in large systems. Many different techniques have been developed to detect software clones, some
of which are very sophisticated, but are also expensive to implement and adapt. Lightweight techniques
based on simple string matching are easy to implement, but how effective are they? We present a simple
string-based approach which we have successfully applied to a number of different languages such COBOL,
JAVA, C++, PASCAL, PYTHON, SMALLTALK, C and PDP-11 ASSEMBLER. In each case the maximum
time to adapt the approach to a new language was less than 45 minutes. In this paper we investigate a
number of simple variants of string-based clone detection that normalize differences due to common editing
operations, and assess the quality of clone detection for very different case studies. Our results confirm that
this inexpensive clone detection technique generally achieves high recall and acceptable precision. Over-
zealous normalization of the code before comparison, however, can result in an unacceptable numbers of
false positives. Copyright c© 2005 John Wiley & Sons, Ltd.

KEY WORDS: software maintenance; duplicated code; string matching; clone detection

1. INTRODUCTION

Duplicated code arises naturally during the development and evolution of large software systems for a
variety of reasons. Duplication can have a severely negative impact on the maintenance of such systems
due to code bloat, added complexity, missing abstraction, and the need to maintain multiple copies of
nearly identical code [1]. Although duplicated code is conceptually simple, it can be surprisingly hard
to detect in large systems without the help of automated tools.

∗Correspondence to: Matthias Rieger, Software Composition Group, Institute for Applied Mathematics and Computer Science,
University of Berne, Neubrückstrasse 10, CH-3012 Berne, Switzerland.
†E-mail: rieger@iam.unibe.ch

Contract/grant sponsor: Swiss National Science Foundation and Swiss Federal Office for Education and Science; contract/grant
numbers: ESPRIT Project 21975/Swiss BBW 96.0015; 20-53711.98; 20-61655.00; 2000-061655.00/1

Received 7 January 2005
Copyright c© 2005 John Wiley & Sons, Ltd. Revised 3 May 2005

Accepted 16 May 2005

38 S. DUCASSE, O. NIERSTRASZ AND M. RIEGER

Various approaches have been applied in practice with good results [2–11]. The main technical
difficulty is that duplication is often masked by slight differences: reformatting, code modifications,
changed variable names and inserted or deleted lines of code all make it harder to recognize software
clones. One approach to combat this effect is to parse the code and compare the parsed structures.

Although this technique avoids certain problems, it is heavyweight—meaning that it requires a large
upfront investment in complicated technology—and, more importantly, it is fragile with respect to
differences in syntax, since a parser must be adapted to every programming language and dialect under
consideration [7]. This is clearly reflected in the following quotation:

‘Parsing the program suite of interest requires a parser for the language dialect of interest.
While this is nominally an easy task, in practice one must acquire a tested grammar for
the dialect of the language at hand. Often for legacy codes, the dialect is unique and the
developing organization will need to build their own parser. Worse, legacy systems often
have a number of languages and a parser is needed for each. Standard tools such as Lex
and Yacc are rather a disappointment for this purpose, as they deal poorly with lexical
hiccups and language ambiguities’. [7].

In summary, many of the approaches [4,6,7,9,10] are based on parsing techniques and thus rely on
having the right parser for the right dialect for every language that is used within an organization.

Instead, we propose a lightweight approach based on the minimal use of parsing methods and
simple string matching for comparison [8]. We cope with differences in formatting by means of a
pre-filtering stage that can easily be adapted to different languages and conventions. Sensitivity to
smaller changes in the duplicated code segments is targeted by normalizing certain elements of the
source code, such as identifiers and string constants, using lexical analysis. Comparison by string
matching is straightforward, and is readily implemented by standard libraries and tools. Larger changes
to duplicated code segments are dealt with by taking gaps into consideration when filtering the result
of the comparison.

It has previously been established that string matching offers an effective way to detect duplicated
code [8,11,12]. The key question, however, is how good is it in comparison with more sophisticated
approaches? In particular, can a ‘cheap’ solution based on string matching be used to detect the
difficult-to-recognize clones that are addressed by the parser-based methods? How do recall (ratio
of detected to actual clones) and precision (ratio of detected to candidate clones) of our lightweight
approach compare with that of more heavyweight techniques?

We aim to answer this question by applying several variants of the string-matching approach to case
studies with varying characteristics. Note that our goal is not to identify clones that can be directly
refactored by a refactoring engine, but rather to identify code duplication in the larger context of
reverse engineering and code understanding. Therefore we favor high recall at the possible cost of
low precision.

The contributions of this paper are: (1) a presentation of our approach and its comparison with
related work; and (2) the analysis of the impact of normalizations on string-based approaches.

We first describe our line-based string-matching approach (Section 3). We review the results of
an independent evaluation [12] that indicate that our approach is comparable to that of Baker [2],
i.e., it exhibits good recall and average precision (Section 4). Next, we consider a variant of our
approach in which code is normalized by systematically renaming variables, literals and function
names. We consider six different degrees of code normalization and measure their impact on the

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58

CLONE DETECTION BY STRING MATCHING 39

A = Actual clones C = Candidates

D = Detected clones
False

negatives
False

positives

Recall =
| D |

| A |
Precision =

| D |

| C |

Figure 1. Recall and precision.

performance of the string-matching approach to clone detection. We have selected two significant
case studies from Bellon’s comparative analysis [12] for their different characteristics. The case
studies show that, as expected, recall improves at the cost of precision when code is normalized.
We also observe that normalizing function names generally reduces precision without any significant
improvement in recall. The COOK case study demonstrates that the line-based approach suffers when
coding conventions require syntactic elements such as function parameters and arguments to be listed
on separate lines. Nevertheless, the case studies offer convincing evidence that a simple string-matching
approach to detecting duplicated code offers excellent results and performance in return for a minimal
investment in tool development.

2. DUPLICATION DETECTION CHALLENGES

Before we present the details of our string-matching approach to detecting duplicated code, it is
important to understand the challenges that any approach must cope with.

Although the notion of duplicated code is intuitively clear, the problem of detecting it is not so well-
defined. In Figure 1 we illustrate the key issues. Let us suppose that there exists some ideal set A of
actual clones, which can only be assessed by inspection. In practice, it is too expensive to determine A

by manual inspection, and in any case the results will depend heavily on the subjective opinion of the
person performing the inspection.

An automated tool will identify some set C of candidate clones. Clearly we would like C to be as
close as possible to the ideal set A. D is the set of candidates that would reasonably be accepted as
being actual clones. Recall measures the fraction of actual clones that are identified as candidates, and
precision measures the fraction of candidates that are actually clones. A good technique should exhibit
both high recall and precision, but depending on the context and the numbers of candidates returned,
one might accept, for example, better recall in return for poorer precision.

Consider the following requirements for detecting duplicated code.

• Avoid false positives. False positives occur when code is marked as duplicated that should not be.
This impacts precision. Programming language constructs, idioms and recurring statements

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58

40 S. DUCASSE, O. NIERSTRASZ AND M. RIEGER

should not normally be considered as duplicated code, since they do not indicate copy-and-paste
problems.

• Avoid false negatives. False negatives arise when code is duplicated, but slightly altered in such
a way that it is no longer recognized as being a clone. This will impact recall. A good clone
detection tool will be robust in the face of insignificant or minor alterations in the duplicated
code. The real difficulty is to be precise about when two similar pieces of code should be
considered duplicates of one another or not.

• Scalability. Duplicated code is most problematic in large, complex software systems. For this
reason, a useful tool must be able to cope with very large code bases.

• Multiple languages and dialects. There are hundreds of programming languages in use today, and
dozens of dialects of the most popular languages (such as C++) without counting the language
extensions based on macros. A useful duplicated code detector must be robust in the face of
syntactic variations in programming languages, and should be configurable with a minimum
of effort. In particular, a tool that can only be configured by an expert in parser technology is
unlikely to be used.

Some of these challenges conflict with one another. To avoid false negatives we must be able to
ignore some of the superficial differences between copied fragments. However, to distinguish the
superficial from the essential differences we need some sort of code analysis, i.e., some amount of
parsing. Whereas deeper code analysis improves the ability to overlook superficial differences to avoid
false negatives, it, however, also means increased dependence on a particular language.

3. OUR APPROACH: DETECTING DUPLICATED CODE BY STRING MATCHING

Preferring language independence over parsing accuracy, we employ parsers only to the extent that
they can be adapted to another programming language by simple reconfiguration. Instead of treating
every token in the entire source text, we use a fuzzy approach to parsing [13] that recognizes only a
restricted set of syntactic elements and ignores the rest. Recognition of partial structures is triggered
by unique anchor tokens that can be found via regular expression matching, for example. Adaption to
another programming language then means merely configuring the anchor tokens.

3.1. A three-step approach

Our goal is to arrive at a cheap, effective technique for clone detection that can easily be adapted to
new contexts and programming languages, while exhibiting high recall and acceptable precision.

Our approach consists of the following three steps.

1. Eliminate noise. Transform source files into effective files by removing comments, white space,
and other uninteresting artifacts.
We also consider optional code normalizations (Section 3.5) in order to improve recall of clones
with slight variations. This is not part of the basic technique, but it is nevertheless a necessary
refinement to avoid false negatives.

2. Compare the transformed code. Compare effective files line-by-line.
3. Filter and interpret the results. Apply some simple filters to extract just the interesting patterns

of duplicated code.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58

CLONE DETECTION BY STRING MATCHING 41

False positives are avoided by removing certain kinds of noise and by filtering. False negatives are
similarly avoided by removing noise that perturbs the comparisons. The approach scales well (in time)
due to its simplicity.

Finally, the approach is easily adapted to different languages since it does not rely on parsing.
We have applied it to applications written in COBOL, JAVA, C++, PASCAL, PYTHON, SMALLTALK,
C and PDP-11 assembler [14]. The time required to adapt the lexer never exceeded 45 minutes [8].
Noise reduction may have to be adapted for each language, which, since it basically consists in
preparing a list of tokens to be removed, is much simpler than adapting a parser.

The results of the clone detection can be reported in various ways. Duploc is a platform that
visualizes the comparison matrix as a dotplot [8]. These visual displays are linked to the source
code to support navigation in a reverse engineering activity. The results can also be used as input
to a refactoring engine that eliminates duplicated code by introducing the missing normalizations [15].

In the rest of this section we provide some details concerning the technique.

3.2. Noise elimination

Noise elimination serves two purposes. It reduces false positives by eliminating common constructs
and idioms that should not be considered duplicated code. It also reduces false negatives by eliminating
insignificant differences between software clones.

What should be considered noise depends not only on the programming language, but also on what
information you want to extract. Typical operations include:

• eliminating all white space and tabulation to compensate for reformatting;
• eliminating comments to improve the focus on functional code; and
• converting all characters to lower case in languages that do not distinguish case.

Other operations that could be performed, depending on the programming language in question,
include:

• removing uninteresting preprocessor commands such as #include;
• removing all block and statement delimiters; and
• removing common and uninteresting language constructs such as else, break, or type

modifiers such as const.

Noise elimination is easily specified as a short program in a dedicated text manipulation language,
such as Perl [16]. An example for the filtering process is shown in Figure 2.

The noise reduction operations may introduce some false positives since some of the removed
entities carry semantics, e.g., block delimiters. Since we generally value false positives over false
negatives we do not consider this a serious drawback. We therefore sacrifice some precision to obtain
better recall.

The required noise reductions and transformations are implemented with moderate effort. It suffices
to build a small tokenizer/lexer with a lookahead of one using regular expressions. In this way, we
determine for each token to which class it belongs and to which normalized replacement we have
to change it. This approach is generic and is easily adapted for different languages (we have done so
for C, C++, JAVA, COBOL, SMALLTALK, PDP-11 and PYTHON). From this perspective, parameterized

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58

42 S. DUCASSE, O. NIERSTRASZ AND M. RIEGER

#include <stdio.h>
static int stat=0;

staticintstat=0
int main(argc, argv) intmain(argc,argv)

int argc; intargc
char **argv; char**argv

{ ++argv,--argc
/* skip program name */ if(argc>0)
++argv, --argc;

if (argc > 0) {

Figure 2. Filtering the code snippet on the left yields the result shown on the right.

string matching realized by the combination of normalization and simple string matching is still largely
language-independent.

As in any information-retrieval task, when increasing recall one has to pay the price of reduced
precision (see Section 5). Parameterized string matching not only detects more duplication than simple
string matching, but it also produces more false positives.

3.3. Effective line comparison

Once we eliminate noise and normalize the code, effective files are compared with each other line-
by-line. The naive comparison algorithm is O(n2), but this is easily improved by hashing lines into B

buckets, and then comparing only lines in the same bucket [7].
Lines are compared for exact string matches. The result of the comparison is a matrix of hits and

misses that can be visualized as a dotplot [8,17,18].
Exact clones are not the norm. Instead, code is more typically duplicated and then modified in various

ways. Figure 3 graphically illustrates some typical duplication scenarios: (a) pure duplication results in
unbroken diagonals; (b) modified lines appear as holes in the diagonals; (c) deletions and inserts result
in broken, displaced diagonals; and (d) case statements and other repetitive structures yield grid-like,
rectangular blocks.

The comparison matrix typically contains many hits, some of which are significant, and others which
are not. To extract the significant hits, we perform a third, filtering pass.

3.4. Filtering

In general, we are not interested in individual duplicated lines of code, but in blocks of code that contain
‘significant’ duplication. We call these blocks comparison sequences. In order for such blocks to be
considered clones, they should be of a ‘significant’ size, and they must contain a ‘significant’ amount
of duplication. We therefore quantify the duplication in two comparison sequences by considering their
gap size, i.e., the length of non-duplicated subsequences. For example, if we compare the sequences
‘abcduvwefg’ and ‘abcdxyzefg’, we find a gap of length 3.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58

CLONE DETECTION BY STRING MATCHING 43

a
b
c
d
e

f
g
h
a
b
c
d

e
f
g
h

a b c d e f g h a b c d e f g h

Unbroken diagonals

a
b
c
d
e

f
g
h
a
b
x
d

y

z
g
h

a b c d e f g h a b x d y z g h

Diagonals with holes

a
b
c
d
e

f
g
h
a
b
c
x

y

d
e

f

a b c d e f g h a b c x y d e f

Broken diagonals

a
b
c
d
b

c
e

f
b
c
g
h

b

c
i
j

a b c d b c e f b c g h b c i j

Rectangles

Figure 3. Dotplot visualization of typical duplication scenarios.

This leads us to the following filter criteria.

1. Minimum length. This is the smallest length for a comparison sequence to be considered
‘significant’.

2. Maximum gap size. This is the largest allowable gap size for sequences to be considered
duplicates of one another.

Filtering is purely an issue of eliminating false positives, since filters only remove candidates
identified in earlier phases. The algorithm that performs the filtering is linear in the amount of
single matches computed in the comparison phase. Note that we do not detect broken diagonals.
Ueda et al. [19] proposed an O(n log n) algorithm for this problem.

3.5. Code normalization to improve recall

Although simple string matching can detect a great deal of duplication, it is clear that, in certain cases,
it will miss code that has been edited after being copied. Parsing code and comparing the resulting
abstract syntax trees, however, is an approach that is more heavyweight than we wish to consider, for
reasons we have already outlined.

Instead, we propose to add a second pre-processing phase which normalizes variable language
constructs, and then performs simple string matching on the transformed programs. A simple way
to achieve this normalization is to use regular expressions to match elements of the source code
that belong to a common syntactic category, and replace them by a string representing that category.
For example, all identifiers may be replaced by a generic name such as p (see [2,11]). See Table I for
a list of other code elements that can be normalized. In Section 5 we analyze the impact of certain
combinations of these normalization operations.

Note that in most languages it is simple to distinguish between function names and variable names
by the (token starting the parameter list of a function declaration or invocation. The reason for not
normalizing the key words of the language is the assumption that language key words, which give the
code its basic structure, must be the same in two code fragments if they are to be considered clones.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58

44 S. DUCASSE, O. NIERSTRASZ AND M. RIEGER

Table I. Normalization operations on source code elements.

Operation Language element Example Replacement

1 Literal string "Abort" "..."
2 Literal character ’y’ ’.’
3 Literal integer 42 1
4 Literal decimal 0.314159; 1.0
5 Identifier counter p
6 Basic numerical type int, short, long, double num
7 Function name main() foo()

def manage_first(self, selected=[]): def manage_first(P, P=[]):
options=self.data() P=P.data()
if not selected: if not P:
message="No views to be made first." P="..."

elif len(selected)==len(options): elif len(P)==len(P):
message="No making all views first." P="..."

else: else:
options=self.data() P=P.data()

Figure 4. Python source code from the Zope Application Server before and after normalizing all
identifiers except function names.

We can now define different degrees of normalization by selecting which elements to normalize.
A particularly useful degree is that which normalizes every element in Table I except function and
method names. See Figure 4 for an example of this kind of transformation.

Now that our approach is described, we analyze how it compares with other approaches.

4. BELLON’S COMPARATIVE STUDY

The large variety of clone detection techniques that have been developed in recent years has spurred
interest in comparing their effectiveness. Bellon [12] has conducted a comparative case study with
the goal of establishing the relative advantages and disadvantages of the different approaches.
We summarize here Bellon’s results concerning the string-matching approaches.

4.1. Bellon’s experimental setup

• Reference set construction. To compare the different approaches, Bellon built a reference set by
manually confirming a set of candidates to be clones. However, it is important to note that this

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58

CLONE DETECTION BY STRING MATCHING 45

reference set was (1) based on candidates identified by tools participating in the comparison, and
(2) incomplete—due to time constraints, Bellon was only able to cover 2% of the candidates.

• Clone types. For his study Bellon categorized all clones into three types: Exact clones (Type 1),
clones where identifiers have been changed (Type 2) and clones where whole expressions or
statements have been inserted, deleted or changed (Type 3).

• Mapping clone candidates to references. To decide which candidates correspond to a confirmed
clone, Bellon defined a matching criterion based on the notion of distance between clones.
This criterion assesses a clone pair to be a ‘good enough’ match of another clone pair if
the overlap between the two corresponding source fragments is large enough and they are of
comparable size. The OK and GOOD metrics [12] determine how well two clone pairs overlap
each other, i.e., if they can be declared as ‘similar’. Bellon has used a threshold of 0.7 to
determine which candidate clones map to a reference.

4.2. String matching as evaluated by Bellon

To evaluate our approach, we provided Bellon with results obtained from non-normalized source code,
allowing for a gap of one line between matching lines. In the summary of his study [12], Bellon forms
two coarse categories of tools: the ones achieving high recall with low precision on the one hand,
and those sacrificing recall for an improved precision on the other hand. He groups our approach
together with the other string- and token-based approaches of Baker [2] and Kamiya et al. [11] in the
former category, and notes that we are closest to Baker’s in terms of number of reported and rejected
candidates.

More detailed results from Bellon’s study are shown in the next table. We list the differences of
Baker and Kamyia to our own, setting our values as 100%.

WELTAB COOK

Differences to Rieger Baker Kamyia Baker Kamyia

Retrieved Candidates +988 +2144 −113 −6318
References matched with OK +26 −66 −2 −105
References matched with GOOD +50 −97 −1 −42
Precision −0.003 −0.008 0 +0.03

Regarding the number of returned clone candidates, our approach was closest to Baker’s which is
normal since both approaches make line breaks a factor of comparison.

5. ASSESSING THE IMPACT OF NORMALIZATION

When participating in Bellon’s case study, we compared only non-normalized code. We now wish to
consider the impact of normalizing source code (Section 3.5) on the effectiveness of our technique.
It is clear that normalizing code elements increases the number of single matches, as the diversity
among the source lines is reduced. The question is how these additional single matches affect recall
and precision for the clones retrieved by the filtering (Section 3.4). In particular, we want to assess to

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58

46 S. DUCASSE, O. NIERSTRASZ AND M. RIEGER

1, 2, 3, 4 5, 6

5, 6, 7

1, 2, 3, 4, 5, 6, 7

No Normalization (—)

Constants
Normalized (C)

Identifiers
Normalized (I)

Identifiers and
Function Names
 Normalized (IF)

1, 2, 3, 4, 5, 6

Full Normalization (CIF)

Constants and
Identifiers

Normalized (CI)

Figure 5. Different degrees of normalizations and their relationships.

what extent can recall be improved without sacrificing precision. We answer this question by exploring
the impact of various degrees of normalization on the quality of clone detection by string matching for
two representative systems from the Bellon set.

For each system we performed the following steps: (1) select the normalization operations and
transform the code; (2) compute the candidate clones; and (3) compare the candidate set to a reference
set to assess precision and recall.

5.1. Degrees of normalization and gap size

To perform this evaluation we define and assess six degrees of normalization as shown in Figure 5.
Independently we assess the impact of varying the gap size.

5.1.1. Degrees of normalization

By code normalization we mean replacing certain elements of a program with generic placeholders
with the aim of only removing inessential information (see Table I). The transformed code should still
represent essential features which are then better recognized in the comparison. We define six degrees
of normalization that make use of various subsets of the normalization operations listed in Table I.
These six degrees form a lattice, illustrated in Figure 5, reflecting which normalization operations are
performed. These normalization degrees correspond to the different editing operations a programmer
may perform when duplicating code.

• No normalization (–). Here, only the basic noise reduction as described in Section 3.2 is applied
to the source code. The results gathered for this degree demonstrate the effectiveness of the basic
approach.

• Constants normalized (C). In addition to the noise removal we normalize literal strings,
characters and numerical constants, i.e., we mapped them all to a similar token (operations 1,
2, 3 and 4 of Table I).

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58

CLONE DETECTION BY STRING MATCHING 47

• Identifiers normalized (I). After noise removal we normalize some lexical language elements:
identifiers, labels, basic numeric types (operations 5 and 6).

• Identifiers and function names normalized (IF). In addition to identifiers, we change all function
names in declarations and invocations to foo (operations 5, 6, and 7).

• Constants and identifiers normalized (CI). This includes all operations except function name
normalization.

• Full normalization (CIF). Here we apply all the normalization operations.

5.1.2. Gap size

The filtering of clone candidates as described in Section 3.4 can be thought of as an ad hoc
normalization mechanism. Indeed, a gap in a sequence of matching lines occurs when corresponding
lines fail to match. When we allow a gap in a sequence of matching lines, we are normalizing the
contents of these lines. Due to the generality of this mechanism, the increase of noise or the loss of
precision due to it is noticeable.

In this experiment we want to compare the gap mechanism with the degree of normalizations.
The gaps in a comparison sequence can be controlled by the maximum gap size filter criterion. We have
set this parameter to the values 0, 1, and 2. Based on our experience, we choose to let no more than
two consecutive non-matching lines in a comparison sequence of minimal length six which is the
same minimal length as was agreed upon by the participants of the Bellon study. Our experiment then
generates 18 different data sets based on the six different normalization degrees and the three gap sizes.

5.2. Case study selection

We selected the case studies to cover the following criteria: (a) availability of reference data for other
clone detection tools; (b) differences in coding style and line layout; (c) real applications developed by
external persons; and (d) common programming language, to avoid possible influence of programming
paradigms. (Note that we have separately carried out experiments with case studies from different
programming languages, to assess the language-independence of the approach [14].)

We chose two applications from Bellon’s comparative study: the WELTAB application consisting
of 39 files (9847 lines of code (LOC)) and the COOK application consisting of 295 files
(46 645 LOC) [12]. WELTAB is a relatively small application known to contain considerable duplicated
code, and is therefore convenient for carrying out experiments. The COOK application adopts a code
formatting approach in which function arguments and parameters are put on separate lines, posing a
special challenge to line-based clone detection approaches.

Due to time constraints we were not able to investigate all eight systems from Bellon’s study at the
required level of detail. Note, however, that for the two case studies, we manually evaluated a large
portion of the clone candidates. For the other six systems we provide in Appendix A numbers that can
be computed without manual intervention.

5.3. Construction of the reference set

To compute recall and precision, we need to compare the candidate clones reported by our tool with
a reference set of validated clones. We have constructed such a reference set from two sources:

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58

48 S. DUCASSE, O. NIERSTRASZ AND M. RIEGER

(1) the (incomplete) reference set by Bellon [20] which was assembled by manually examining
candidates detected by various tools; and (2) the result of a manual evaluation of the results reported
by our tool as shown by the following table.

Case study Retrieved candidates Evaluated candidates Confirmed clones

WELTAB 10 392 8411 6499
COOK 82 655 46 288 5672

To be clear: we measure recall using the confirmed clones that Bellon selected from the candidates of
all tools participating in his study. Precision, on the other hand, will be established using the confirmed
clones reported by our own tool.

Note that, although the reference set is not homogeneous, and not necessarily complete, one can
still obtain meaningful figures for recall and precision. To assess recall, one may use an arbitrary,
sufficiently large set of confirmed clones. The reference set need not be complete. To assess precision,
it suffices to manually examine a representative sample of the candidate clones detected. To determine
the recall rate of our tool we have mapped the retrieved candidates to the reference clones by way of
the mapping function defined by Bellon [12] with the same OK threshold of 0.7.

6. RESULTS

We now summarize the results of our experiments. We present the numbers of candidate clones
detected, recall for different categories of clone types, precision and performance.

6.1. Retrieved candidates

Table II shows the number of the candidates identified with the largest setting of the maximum gap size.
In Figure 6 we plot the percentage increase in the number of identified candidates that normalization
brings, in comparison to clone detection without normalization. As expected, COOK shows a more-or-
less steady increase in candidates identified as more normalization operations are applied. In WELTAB,
however, we notice a considerable but puzzling jump when constants and identifiers are normalized
jointly.

6.2. Recall by clone types

The effectiveness of a clone detection techniques will vary depending on how much a clone has been
edited after copying. We adopt Bellon’s classification of clone types in an effort to measure recall as a
function of both editing operations and degrees of normalization.

In the WELTAB case study (see Figure 7), we see that overall recall (all types) increases from 78.2%
to 95% when introducing more normalization. For Type 1 clones (identical clones), the recall rate is
100% at all degrees, as would be expected from exact string matching.

The lowest recall for non-normalized code is registered for Type 2 clones (renamed identifiers).
This can be explained by the observation that identifier changes are likely to occur systematically on

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58

CLONE DETECTION BY STRING MATCHING 49

Table II. Retrieved candidates for the different normalization degrees (maximum gap size = 2).

Normalization degree WELTAB candidates COOK candidates

– No normalization 1467 7661
C Constants normalized 2255 12 434
I Identifiers normalized 2565 29 333
IF Identifiers, function names normalized 2608 38 141
CI Constants, identifiers normalized 5946 38 581
CIF Full normalization 6334 49 789

Figure 6. The increase in retrieved candidates, measured relative to the lowest degree of normalization.

most of the lines of a clone. Exact string matching will therefore miss every line thus modified, and
consequently fail to identify the clone. With the normalization transformation, however, the recall rate
rises by a remarkable 25% to a final level almost equal to that for Type 1 clones. It does not reach 100%
because we normalized constants and identifiers with different tokens which fails in the case when a
constant parameter has been changed into a variable.

For Type 3 clones (arbitrary edits), recall is initially higher than for Type 2 clones. This can be
explained by the fact that we take gaps (non-matching lines) into account when collecting the clones.
However, since the normalization operations we perform are local to a single line, we cannot improve
detection rates as much as for Type 2 clones. Nevertheless, we achieve a recall rate of 90% at the
highest normalization degree.

In the COOK case study, the picture is similar. For Type 1 clones, recall is 100% already at the lowest
degree of normalization. For Type 2 clones, recall rises from 63 to 88%, again by about 25%. Type 3
recognition is the worst for all degrees of normalization.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58

50 S. DUCASSE, O. NIERSTRASZ AND M. RIEGER

Figure 7. Recall for WELTAB and COOK split by clone type. Maximum gap size is two.

We investigated why the recall was so low for COOK Type 3 clones and found a number of reasons:

• code that was syntactically too different to be recognized as a clone;
• altered source elements that we did not normalize, e.g., type casts, pointer dereferences;
• altered formatting of source lines;
• source text inserted or deleted from the middle of a clone; and
• clones too small to be retrieved by our specification.

In Figure 8 we see how recall varies in response to increasing degrees of normalization. Increasing
the maximum gap size from 0 to 1 improves recall significantly, whereas a maximum gap size of
two has less impact. Normalizing constants improves recall for both WELTAB and COOK, whereas
normalizing identifiers and function names is good only for COOK.

6.3. Precision

We now consider how precision varies with respect to the degrees of normalization. The studies
illustrate well the phenomenon that precision diminishes with increasing recall.

With the WELTAB case study, we observe a precision of 94% for non-normalized code, but this drops
to 70% at the highest degree of normalization. The very high precision of WELTAB is consistent with
the results of Bellon’s experience that the confirmation rate for WELTAB candidates (coming from all
the participating tools) was, at 90%, the highest among all the systems under study.

The situation is not so good in the COOK case study, where initial precision (i.e., without
normalization) is only 42% and drops to 11.5% for the highest degree of normalization. The latter
clearly represents an unattractive level of noise for an engineer who is searching for refactoring
opportunities.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58

CLONE DETECTION BY STRING MATCHING 51

Figure 8. Recall and precision for WELTAB and COOK.

A similar drop in precision from the WELTAB to the COOK case studies was reported by Bellon for
both our approach and that of Baker.

6.4. Time and space analysis

The prototypical detector used for this case study, Duploc, is implemented in VisualWorks 7.1
SMALLTALK as an exploratory and flexible platform. Providing optimal speed was not the guiding
factor in its design. We measure the time and space required for different phases of our approach using
a 2.1 GHz AMD Athlon with 550 MB of memory running Linux 2.4.

Evaluating precisely the amount of space required is difficult since it is based on the chosen
representation. In our tool, we keep all the information in memory as objects in a SMALLTALK image.
In the following table the space number indicates only the space required for storing the computed
duplication, not for the representation of the source code since this does not change much when
normalizing the code. High normalization degrees make the code more uniform which increases the
number of single matches. This is the reason for larger memory requirements seen in COOK. Note that
the comparison and filtering phases are mostly determined by the number of single matches.

Case Normalization Number of Comparison Filtering Space
study degree matches (s) (s) (MB)

WELTAB – 260 710 5.8 0.7 2.2
C 388 732 6.4 0.9 2.4
I 365 289 7.0 0.8 3.2

IF 429 226 7.3 0.8 3.4
CI 649 817 8.8 1.1 3.8

CIF 726 470 9.5 1.2 4.2
COOK – 1 485 630 150 15.8 59

C 2 166 832 183 22.8 88
I 5 771 343 469 61.3 252

IF 6 825 959 690 64.3 330
CI 6 629 632 546 63.7 289

CIF 7 703 927 750 88.8 380

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58

52 S. DUCASSE, O. NIERSTRASZ AND M. RIEGER

6.5. Conclusions

The experiment clearly demonstrates the limited value of normalizing function names. In the WELTAB

case study, recall did not improve at all, but precision dropped by about 3%. With COOK, recall
improved by about 1.3%, while precision dropped by 2.5%. Since for COOK the reduced precision
meant 11 000 more candidates were retrieved at the highest degree of normalization (gap size two), the
impact of normalization can be quite significant.

In both case studies, normalizing identifiers yields a gain in recall with a corresponding loss in
precision. Since recall without normalization is already quite high, this suggests that normalization
operations are of very limited value.

We also note that setting a maximum gap size of one rather than two improves precision by 10%,
while impacting recall by no more than 5%. We conclude that setting a general gap size of two is not
worthwhile, noting however that with increasing lengths gap sizes of two will probably become less
detrimental to the relevance of a clone candidate.

The experiment also shows that our clone-detection technique gives very different results for
different case studies. The unusual layout of the COOK case study is especially problematic for simple
line-based string matching. Whereas WELTAB adopts a very traditional code layout, COOK has a sparse
code layout where function calls are often spread over multiple lines. Lines then contain only one
identifier which leads, especially if identifiers are normalized, to a great number of spurious matches
and consequently to a drop in precision.

7. COMPARISON WITH OTHER STRING-BASED APPROACHES

Many different techniques have been applied to identify copy and paste plagiarism [21–24]. Techniques
used include: structural comparison using pattern matching [4], metrics [5,6], statistical analysis of
the code, code fingerprints [3,25,26], or AST matching [7], slicing of program dependence graphs
(PDGs) [10,27], or a combination of techniques [28]. The approaches of Johnson [3], Baker [2],
Kamiya et al. [11], and Cordy et al. [29] are based on string matching and are closest to ours.

Johnson [3], Baker [2], and Kamiya et al. [11] employed simple lexical transformations, and Cordy
et al. [29] used pretty-printing to prepare the source code for clone detection. The main differences
amongst these approaches are the selection of the comparison granularity, the choices regarding code
normalization and the comparison algorithm.

• Johnson [3] does not change the source text at all. He created the comparison element by building
ngrams. However, Johnson did not participate in Bellon’s comparative study.

• Baker [2] selected a single line as the grain of comparison, just as we do. She argued that program
editors and programmers work in a line-oriented way. She introduced a mechanism to normalize
identifiers which respects the local context in which identifier names are changed. Two code
sections are jointly recognized as duplicates if their identifiers have been systematically replaced,
i.e., x for width and y for height. This prevents some of the false positives that our more
simple approach produces (see below for an investigation of this technique). She uses a suffix
tree algorithm for comparison.

• Kamiya et al. [11] work at the granularity level of individual tokens. They perform many
code normalizations in the same manner as we do, however they do not analyze the impact

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58

CLONE DETECTION BY STRING MATCHING 53

of individual normalization operations. They employ a suffix tree comparison algorithm similar
to Baker’s.

• Cordy et al. [29] used an island grammar to identify syntactic constructs in code. These are then
extracted and used as smallest comparison unit. The code is pretty-printed to isolate potential
differences between clones to as few lines as possible, but there is no normalization performed
at all. The comparison is done using the UNIX diff tool which makes it line based.

7.1. Comparative studies

Now we compare our approach with that of Baker and Kamiya et al. Since both have participated in
Bellon’s study, comparative data are available. We have already summarized Bellon’s analysis of the
string matching approaches in Section 4.2. Here we wish to investigate how the approaches of Baker
and Kamiya et al. compare against different degrees of normalization. We chose the best result of
Kamiya et al. i.e., the voluntary submission where some noise was removed by Kamiya et al. For our
tool we did not remove any pieces of code that would favor us.

To obtain a meaningful comparison, we first determine which choice of minimum gap size and
normalization degree returns a comparable number of candidates. Then we analyze recall and precision
for this specific configuration.

Case study Data Baker Rieger Kamiya et al. Rieger

WELTAB Candidates 2742 2378 (IF, 1) 2608 (IF, 2) 3898 3761 (CIF, 0)
Recall 80% 86% 88% 93% 92%
Precision 80% 90% 90% 99% 91%

COOK Candidates 8593 9043 (CIF, 0) 7661 (–, 2) 2388 2764 (C, 0)
Recall 70% 71% 64% 43% 36%
Precision 29% 26% 42% 42% 49%

Contrary to expectations, Baker exhibits somewhat worse precision for WELTAB. For COOK, her
precision is slightly better than ours, although we can significantly improve precision at a 7% cost
in recall. We partly attribute Baker’s loss in precision to some noise (#include) that she does not
remove.

Kamiya et al. on the other hand exhibits a better precision than we do for comparable recall
in WELTAB. In COOK, his recall is better but our precision is better for a comparable number of
candidates.

In a second analysis, we identify configurations of our tool that exhibit similar precision to the other
approaches, and then we compare recall and the number of retrieved candidates.

Case study Data Baker Rieger Kamiya et al. Rieger

WELTAB Precision 80% 82% (CIF, 1) 99% 98% (IF, 0)
Recall 80% 96% 93% 61%
Candidates 2742 4973 3898 1414

COOK Precision 29% 30% (C, 2) 45% 42% (–, 2) 49% (C, 0)
Recall 70% 89% 43% 64% 36%
Candidates 8593 2255 2388 7601 2764

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58

54 S. DUCASSE, O. NIERSTRASZ AND M. RIEGER

From these numbers a consistent ranking cannot be derived. We see that our simple approach can
achieve results similar to the other two in all cases. For WELTAB, normalizing identifiers and function
names seems to be important to obtain similar results. For COOK, however, normalizing identifiers
results in too many candidates. We must therefore restrict ourselves to normalizing constants only, or
setting the maximum gap size to zero. The set of applicable normalization operations is thus shown to
depend on the system under study.

With both Baker’s and Kamyia et al.’s approaches being string matching techniques like ours, they
differ only in a few points from our proposed approach. We now take a closer look on a key difference
for each approach to find out how they influence the results.

7.1.1. Systematic identifier normalization

Baker does not replace names of identifiers indiscriminately by one and the same token, but makes the
consistent replacement of identifiers one criterion of the comparison, thereby avoiding clone candidates
which have the same syntactic structure but differing identifier usage.

By filtering out candidate clones where identifiers are mapped inconsistently (according to the
description of Baker in [2]) we can derive how much precision is lost when uniformly normalizing
identifier names. At gap size zero we get the following percentages of candidates which exhibit
inconsistent identifier mapping.

Normalization degree WELTAB COOK

— 0.0% 0.0%
C 0.0% 0.1%
I 1.0% 5.8%

IF 1.1% 7.3%
CI 3.8% 7.3%

CIF 3.8% 9.6%

The more we normalize identifiers the more inconsistency is naturally found. Filtering 10% of the
retrieved candidates could certainly be interesting if they all would prove to be false positives. The merit
of using this characteristic as filtering criterion is however less clear for clones where the two copied
fragments are more distant, as can be found among the results of, for example, metrics-based methods.
Finding inconsistently mapped identifiers is then no longer very effective at spotting false positives.
From the confirmed clones of Bellon’s study we can flag as having inconsistent identifier mappings
20.2% of WELTAB and 20.5% of COOK references.

7.1.2. Token-based comparison

Kamiya et al., rather than using source lines, compares the code on the granularity level of tokens.
This avoids problems with line break relocation where only the layout of the code is changed (this
problem can also be addressed by pretty-printing the code since such tools are readily available for
many languages). The smaller granularity, however, also means that more entities must be processed.

When investigating the references that were detected only by Kamiya et al. but not by us, there was
only one example of a clone where layout changes prevented the line-based comparison from detection.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58

CLONE DETECTION BY STRING MATCHING 55

This fact cannot however, be generalized, since it is influenced by the particular construction of the
reference set and the characteristics of the case studies. In their own investigations Kamiya et al. [11]
have reported that as much as 23% of the clones found by the token-based comparison exhibited line
break relocation.

8. CONCLUSIONS AND FUTURE WORK

We have presented a lightweight technique to identify duplicated code based on simple string matching.
We have reported the results of an external comparative study which classifies our approach with those
of Baker [2] and Kamiya et al. [11] as exhibiting high recall and average precision. We have carried
out a more extensive study into the impact of code normalization on recall and precision.

Our evaluation shows that allowing for some variation in duplicated code is necessary to get decent
recall. We were not able to conclude that gaps in clones or specific normalization of certain source
elements is better. A maximum gap size of one yields good results, but allowing two lines as gaps can
lead to an undesirable loss in precision. However, a similar drop in precision can result from aggressive
normalization. In particular, normalizing function names can lead to a significant loss of precision that
is not worth the minimal gain in recall.

We have also demonstrated that more sophisticated approaches, such as parameterized matches [2],
offer only small advantages over the lightweight approach based on simple string matching.

Our approach has the advantage of being largely language independent. We have successfully
applied it to applications written in COBOL, JAVA, C++, PASCAL, PYTHON, SMALLTALK, C and
PDP-11 assembler [8,14], while never requiring more than 45 minutes to adapt the noise elimination
filter to a new language.

One of the problems with the simple approach we promote is that large numbers of false positives
can be generated for certain systems with unusual formatting. Future work should address ways of
dealing with this. With increased lexical analysis we can, for example, normalize literal arrays, a source
of many false positives in COOK, or filter clones that cross function boundaries. Another promising
direction is to cluster all n(n − 1)/2 clone pairs that are produced by n instances of the same source
fragment into clone classes. This will reduce the number of instances that have to be investigated
individually.

We deliberately chose the COOK case study for its unusual layout conventions. Our study has
confirmed that line-based string-matching approaches are sensitive to layout conventions. The strong
variation between the two case studies suggests that future work in clone detection should focus
not only on the detection of duplicated code but also on the analysis of variables that are outside
the code itself such as the coding style, the programming language, the development process, or the
programmer’s education. Understanding these factors would make the value of the various approaches
more quantifiable.

APPENDIX A. OTHER SYSTEMS OF THE BELLON STUDY

The Bellon case study comprised six more systems (Table AI) that were to be searched for clones.
Whereas Bellon has reviewed manually 2% of the clone candidates found by the study’s participants in

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58

56 S. DUCASSE, O. NIERSTRASZ AND M. RIEGER

Table AI. Other systems of the Bellon study.

Case Normalization Comparison Number of Recall
study degree (s) candidates (%)

NETBEANS-JAVADOC — 3 198 49.1
CIF 15 2804 87.3

ECLIPSE-ANT — 5 201 56.7
CIF 30 2099 90.0

SWING — 180 5561 69.9
CIF 700 34 659 85.3

ECLISPE-JDTCORE — 240 18 438 54.9
CIF 1380 60 314 74.6

POSTGRESQL — 300 20 294 66.3
CIF 3000 41 083 71.5

SNNS — 180 29 767 50.3
CIF 5400 88 565 80.8

all eight systems, we have used only two of the eight systems, manually assessing 80% (WELTAB) and
56% (COOK) of the clone candidates retrieved by our tool. To give an impression of how our approach
performs with the other systems we present numbers that we could compute automatically without
manual intervention.

We let our detector run on all six systems, setting the normalization degrees to the extremes (—)
and (CIF) and fixing gap size at two. We give the time the comparison took (in seconds), the number
of clone candidates retrieved, and the recall ratio with regard to Bellon’s reference set for that system,
computed again using the mapping function with the OK threshold of 0.7. Since Bellon’s reference sets
are not complete, precision cannot be evaluated without manually investigating the clone candidates,
which we refrained from due to time constraints.

ACKNOWLEDGEMENTS

We gratefully acknowledge the financial support of the Swiss National Science Foundation (SNF) and the Swiss
Federal Office for Education and Science (BBW) for the projects ‘Framework-based Approach for Mastering
Object-Oriented Software Evolution’ (FAMOOS), ESPRIT Project 21975/Swiss BBW Nr. 96.0015, ‘A Framework
Approach to Composing Heterogeneous Applications’, Swiss National Science Foundation Project No. 20-
53711.98, and ‘Meta-models and Tools for Evolution Towards Component Systems’, Swiss National Science
Foundation Project No. 20-61655.00 and Recast: ‘Evolution of Object-Oriented Applications’ 2000-061655.00/1.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58

CLONE DETECTION BY STRING MATCHING 57

REFERENCES

1. Demeyer S, Ducasse S, Nierstrasz O. Object-oriented Reengineering Patterns. Morgan Kaufmann: San Fransisco CA,
2002; 282 pp.

2. Baker B. On finding duplication and near-duplication in large software systems. Proceedings 2nd Working Conference on
Reverse Engineering. IEEE Computer Society Press: Los Alamitos CA, 1995; 86–95.

3. Johnson J. Substring matching for clone detection and change tracking. Proceedings International Conference on Software
Maintenance (ICSM 1994). IEEE Computer Society Press: Los Alamitos CA, 1994; 120–126.

4. Paul S, Prakash A. A framework for source code search using program patterns. IEEE Transactions on Software
Engineering 1994; 20(6):463–475.

5. Mayrand J, Leblanc C, Merlo E. Experiment on the automatic detection of function clones in a software system using
metrics. Proceedings International Conference on Software Maintenance 1996. IEEE Computer Society Press: Los
Alamitos CA, 1996; 244–253.

6. Kontogiannis K. Evaluation experiments on the detection of programming patterns using software metrics. Proceedings 4th
Working Conference on Reverse Engineering (WCRE’97), Baxter I, Quilici A, Verhoef C (eds.). IEEE Computer Society
Press: Los Alamitos CA, 1997; 44–54.

7. Baxter I, Yahin A, Moura L, Sant’Anna M, Bier L. Clone detection using abstract syntax trees. Proceedings International
Conference on Software Maintenance, 1998. IEEE Computer Society Press: Los Alamitos CA, 1998; 368–377.

8. Ducasse S, Rieger M, Demeyer S. A language independent approach for detecting duplicated code. Proceedings IEEE
International Conference on Software Maintenance (ICSM’99), Yang H, White L (eds.). IEEE Computer Society Press:
Los Alamitos CA, 1999; 109–118.

9. Balazinska M, Merlo E, Dagenais M, Laguë B, Kontogiannis K. Partial redesign of java software systems based on clone
analysis. Proceedings 6th Working Conference on Reverse Engineering, Balmas F, Blaha M, Rugaber S (eds.). IEEE
Computer Society Press: Los Alamitos CA, 1999; 326–336.

10. Krinke J. Identifying similar code with program dependence graphs. Proceedings 8th Working Conference on Reverse
Engineering (WCRE’01). IEEE Computer Society Press: Los Alamitos CA, 2001; 301–309.

11. Kamiya T, Kusumoto S, Inoue K. CCFinder: A multi-linguistic token-based code clone detection system for large scale
source code. IEEE Transactions on Software Engineering 2002; 28(6):654–670.

12. Bellon S. Vergleich von Techniken zur Erkennung duplizierten Quellcodes. Master’s Thesis, Institut für
Softwaretechnologie, Universität Stuttgart, Stuttgart, Germany, 2002; 156 pp.

13. Koppler R. A systematic approach to fuzzy parsing. Software—Practice and Experience 1996; 27(6):637–649.
14. Rieger M, Ducasse S, Nierstrasz O. Experiments on language independent duplication detection. Technical Report iam-04-

002, Institute of Applied Mathematics and Computer Science, University of Bern, Bern Switzerland, 2004; 30 pp.
15. Koni-N’sapu G. A scenario based approach for refactoring duplicated code in object oriented systems. Diploma Thesis,

Institute of Applied Mathematics and Computer Science, University of Bern, Bern, Switzerland, 2001; 110 pp.
16. Wall L, Christiansen T, Orwant J. Programming Perl (3rd edn). O’Reilly & Associates: Sebastopol CA, 2000; 1092 pp.
17. Gibbs A, McIntyre G. The diagram: A method for comparing sequences. Its use with amino acid and nucleotide sequences.

European Journal of Biochemistry 1970; 16:1–11.
18. Helfman J. Dotplot patterns: A literal look at pattern languages. Theory and Practice of Object Systems 1995; 2(1):31–41.
19. Ueda Y, Kamiya T, Kusumoto S, Inoue K. On detection of gapped code clones using gap locations. Proceedings 9th Asia-

Pacific Software Engineering Conference (APSEC’02). IEEE Computer Society Press: Los Alamitos CA, 2002; 327–336.
20. Bellon S. Detection of software clones. Institut für Softwaretechnologie, Universität Stuttgart, Stuttgart, Germany, 2002.

http://www.iste.uni-stuttgart.de/ps/clones/ [27 April 2005].
21. Halstead M. Elements of Software Science. Elsevier/North-Holland: Amsterdam, 1977.
22. Grier S. A tool that detects plagiarism in Pascal programs. ACM SIGCSE Bulletin 1981; 13(1):15–20.
23. Madhavji N. Compare: A collusion detector for Pascal. Techniques et Sciences Informatiques 1985; 4(6):489–498.
24. Jankowitz H. Detecting plagiarism in student Pascal programs. Computer Journal 1988; 1(31):1–8.
25. Manber U. Finding similar files in a large file system. USENIX Winter 1994 Technical Conference Proceedings. USENIX

Association: Berkeley CA, 1994; 1–10.
26. Johnson J. Identifying redundancy in source code using fingerprints. Proceedings of the 1993 Conference of the Centre

for Advanced Studies on Collaborative research: Software Engineering, vol. 1, Gawman A, Kidd E, Larson P (eds.). IBM
Press: Toronto ON, 1993; 171–183.

27. Komondoor R, Horwitz S. Eliminating duplication in source code via procedure extraction. Technical Report 1461,
Computer Sciences Department, University of Wisconsin–Madison, Madison WI, 2002; 10 pp.

28. Balazinska M, Merlo E, Dagenais M, Laguë B, Kontogiannis K. Advanced clone-analysis to support object-oriented system
refactoring. Proceedings 7th Working Conference on Reverse Engineering (WCRE’00), Balmas F, Kontogiannis K (eds.).
IEEE Computer Society Press: Los Alamitos CA, 2000; 98–107.

29. Cordy J, Dean T, Synytskyy N. Practical language-independent detection of near-miss clones. Proceedings of the 2004
Conference of the Centre for Advanced Studies on Collaborative research (CASCON 04). IBM Press: Toronto ON, 2004;
1–12.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58

58 S. DUCASSE, O. NIERSTRASZ AND M. RIEGER

AUTHORS’ BIOGRAPHIES

Stéphane Ducasse was assistant Professor at the University of Berne and is Professor at
the Université de Savoie, France, where he leads the Language and Software Evolution
Group. His fields of interests are: design of reflective systems and object-oriented
languages; Web development; and reengineering and evolution of objected-oriented
applications. He is one of the main developers of the Moose reengineering environment.
He has written several books in French and English: La programmation: une approche
fonctionnelle et recursive en Scheme (Eyrolles, 1996), Squeak (Eyrolles, 2001), Object-
Oriented Reengineering Patterns (Morgan Kaufmann, 2003) and Learning Programming
with Robots (Apress, 2005).

Oscar Nierstrasz has been a Professor of Computer Science at the Institute of Computer
Science (IAM) of the University of Bern since 1994, where he leads the Software
Composition Group. He is the author of over 100 publications and co-author of the
book Object-Oriented Reengineering Patterns (Morgan Kaufmann, 2003). He has been
active in the international object-oriented research community, serving on the programme
committees of ECOOP, OOPSLA, ESEC and many other conferences, and as the
Programme Chair of ECOOP ’93, ESEC ’99 and Models ’06.

Matthias Rieger obtained his PhD at the University of Berne, Switzerland. His interests
include Software Engineering and reengineering and the design of reflective systems.
He is the developer of the Duploc tool, which aims to detect duplicated code. The tool is a
research prototype implemented in Smalltalk and Perl. From 1997 to 1999 he participated
in the Esprit FAMOOS project on reengineering, and is co-author of the FAMOOS
Handbook of Reengineering.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:37–58

	1 INTRODUCTION
	2 DUPLICATION DETECTION CHALLENGES
	3 OUR APPROACH: DETECTING DUPLICATED CODE BY STRING MATCHING
	3.1 A three-step approach
	3.2 Noise elimination
	3.3 Effective line comparison
	3.4 Filtering
	3.5 Code normalization to improve recall

	4 BELLON'S COMPARATIVE STUDY
	4.1 Bellon's experimental setup
	4.2 String matching as evaluated by Bellon

	5 ASSESSING THE IMPACT OF NORMALIZATION
	5.1 Degrees of normalization and gap size
	5.1.1 Degrees of normalization
	5.1.2 Gap size

	5.2 Case study selection
	5.3 Construction of the reference set

	6 RESULTS
	6.1 Retrieved candidates
	6.2 Recall by clone types
	6.3 Precision
	6.4 Time and space analysis
	6.5 Conclusions

	7 COMPARISON WITH OTHER STRING-BASED APPROACHES
	7.1 Comparative studies
	7.1.1 Systematic identifier normalization
	7.1.2 Token-based comparison

	8 CONCLUSIONS AND FUTURE WORK
	APPENDIX A. OTHER SYSTEMS OF THE BELLON STUDY

