
Been a Long-Living Software Mayor — the SimCity Metaphor to Explain the
Challenges behind Software Evolution

Submitted to the CHASE 2005 Workshop on Software Evolution

St́ephane Ducasse, Tudor Gı̂rba
Software Composition Group - University of Berne - Switzerland

Abstract

When explaining the true dynamics of legacy systems, we
are often short of good metaphors that provoke on the audi-
ence the correct understanding of the situation. While war
stories are entertaining and fun, the audience often summa-
rizing them as that the original developers were not good
and that they would not do the same mistakes. Sometimes
managers miss the point that a software system is a living
organism for which caretakers are important and that such
a system can simply die. We propose to use the SimCity
game as a metaphor to explain the challenges of maintain-
ing or making a system evolves.

Keywords: software evolution, metaphor

1 Introduction

Once upon a time, there was a successful project that
got sixty percent of the world-market. For the american
market, clients wanted to stack processors from 12 to 200
to get “speed increase”. This could have been possible if
the architecture of the system would have been document,
flexible, covered with tests, if the original developers were
available and . . . As a normal successful project, the soft-
ware was not documented, not covered by tests, following
an old and obscure architecture and nearly all the develop-
ers left the company since salaries were better on the other
side of the border. Still there was some hope. One devel-
oper resisted against dark forces. This bold knight of the
new century was ready to slice bugs with his refactoring
axe even when he was surrounded. Full of grace, he asked
his manager if they could hire a couple experimented code
fighters to “clean the system”. “But, we do not need to clean
the system! This a highly successful system and we have no
problem with it. This is our system!” was the answer of the
expert and wise manager . . .

In software development, it happens that decision mak-
ing people do not get the reality of software development
in the sense that software is aliving organism. Often-

times even the developers believe that they will not redo
the same mistakes other did because they are much smarter
and they use the brand new caffeine-based languages and
cutting edge wonder technologies. Still reality have proven
that them wrong: new languages, new standards and frame-
works, too much up front design, not getting client point
of view do not prevent to fail. If the system is not ready to
change in unexpected ways, changes will happen inevitably.
This is why the Figure 1 is a good appertizer for presenting
the problems related to changes.

Figure 1. Building software in wonder land.

The end of our story was lost in the dust of the future past
and we do not know whether our brave knight of the new
century manage to convince the manager or not. Yet, we
like happy endings. And as we were knights in a previous
life, we decided to come to the rescue of our brave knight
and endow him with the solution that leads to a happy end.

Our solution is to arm the developer with the metaphor of
SimCity, so that he can explain his manager his problems.

2 SimCity

The goal of SimCity is to be a long-living mayor of a
prosperous city. To be reelected the mayor should take care
of polls and the citizens can vote and express their opinions

1



Figure 2. SimCity: Simulating and controlling the evolution of a city

concerning their environment. Multiple factors come into
play such as the balance between production area and living
places, social facilities, infrastructure setup . . . In SimCity
is difficult to pay attention to all the aspects upfront, that is
what you originally planned does not always work the way
you thought: a nice city full of small houses and gardens
can get deserted if you do not have factories; a successful
city attracting too many people at once can turn rapidly into
a nightmare and shantytowns.

The laws of software evolution have stressed that evo-
lution is inevitable [2]. Sotware must change or become
obsolete. It should adapt to new requirements to survive.
And the same holds for SimCity.

2.1 Continuous Changes

SimCity is a large dynamic systems that forces the mayor
to take corrective actions, foresee the evolution of the situ-
ation, analyze the problems and find fast remedies. Some-
times entire parts of the city should be changed: bridges
need to be built, industry needs to be moved, quarters need
to be rearranged etc. Not changing the city leads inevitably

to problems.
Similarly, in software, not analyzing the evolution, look-

ing as symptoms clearly indicates that the state of the sys-
tem is in danger. Here is a list of such a symptoms classified
in three groups [1].
Lack of knowledge

• obsolete or no documentation,

• departure of the original developers or users,

• disappearance of inside knowledge about the system,

• limited understanding of entire system.

Code Smells

• duplicated code,

• code smells,

• large complex controlling classes,

• complex conditional logic [?].

Process Symptoms

2



• difficulty to get simple things done,

• difficulty to understand why problem occurs,

• difficulty of communication between subteam,

• large build time.

Not taking the time to analyze the trends and refactoring
or cleaning the system leads to fragile systems that cannot
change to adapt to new requirements. Rethinking and refac-
toring the system after an expansion phase leads to brittle
and fat systems.

2.2 Complex system with multiple stakeholders

As in software development, when building a city dif-
ferent stakeholders should be considered. For example, a
mayor should satisfy the citizens need of a clean environ-
ment while at the same time attracting the industry to sus-
tain the economical value of the city.

2.3 Past solutions were suitable for the past situa-
tions

Oftentimes developers think too easily that original de-
sign was simply wrong, that previous developers were not
smart enough. While this may be true, it is much more
probable that the original developers took the right deci-
sions within their context at that time. However, the fact
that new requirements are coming into play may be inade-
quate with the old architecture. SimCity really stresses this
aspect by its intrinsic dynamic nature.

2.4 Growth speed

Building a city too fast leads to sure failure. The same
goes for software development. Investing too much in the
upfront grand vision is often heavily challenged by the fast
changing environments. One should not grow faster than
the system can assimilate.

3 Conclusion

The urge of taking the evolution of a system into account
is often misunderstood. The SimCity Metaphor applied to
software evolution is one way to present this urge and to
help reengineers and maintainers of valuable legacy systems
to communicate their problems and the importance of evo-
lution in complex dynamic systems.

Afterwords

Once upon a time there was this bold knight of the new
century armed with his refactoring axe ready to fight the
bugs from the obscure structure of a highly successful sys-
tem. He knew his fight and he knew he needed help. So, he
faced his manager and . . .

“Do you like SimCity?” asked the bold knight.

“Who does not,” asked the intrigued manager.

“Then you know that if you want a long-living system, you
should always change it, you should always update the
infrastructure, as the condition change.”

“Of course I do! What, do you think I am stupid?”

“Then I tell you: a software system is like a city of sims.”

. . . and everyone lived happily ever after.

Acknowledgments. We gratefully acknowledge the fi-
nancial support of the Swiss National Science Foundation
for the project Recast: Evolution of Object-Oriented Appli-
cations (SNF 2000-061655.00/1).

References

[1] S. Demeyer, S. Ducasse, and O. Nierstrasz.Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code. Addison
Wesley, 1999.

[3] M. M. Lehman and L. Belady.Program Evolution – Pro-
cesses of Software Change. London Academic Press, 1985.

3


