
Object and Dependency Oriented Programming
in FLO

Anne-Marie Dery and St�ephane Ducasse and Mireille Fornarino

fpinna,ducasse,blayg@essi.fr
Universit�e de Nice Sophia-Antipolis - CNRS URA 1376

650 route des colles - B.P. 145, 06903 Sophia Antipolis CEDEX - FRANCE

Abstract. The flo language integrates management of inter-object de-
pendencies into the object oriented paradigms. In this paper, we focus on
the use of reactive dependencies (links) in object-oriented knowledge rep-
resentation. In particular, we present di�erent meta-links (links between
links) and show how the flo links allow one to design some composition
relationships.

1 Introduction

Although the importance of inter-object relationships (also named dependencies
or interactions) is well accepted [BC89, BELR92], there is only limited object-
oriented language support for their speci�cation and implementation. Confron-
ted with this lack of expressiveness in object models, the programmer has to use
traditional object features, such as attributes, to store the references to linked
objects, accessors, or daemons, in order to manage constraints and interactions
among objects. However, such designs of behavioral relationships [HHG90] lead
to several drawbacks. The dependency semantics is not clearly expressed, and
dependencies are often hard-wired into object functionalities. This goes against
modularity. It is then di�cult to modify, specify, or maintain objects and de-
pendencies. Reuse capabilities also decrease.

In response to this lack of expressiveness of object models, the flo1[DBFP95]
language is an extension of the object-oriented paradigms integrating dependency
management. In flo, the user de�nes dependencies specifying which methods
have to be controlled. Next, he/she can declare the objects involved in the de-
pendencies, without altering object classes. flo then automaticallymaintains the
consistency of the graph of declared dependencies, by controlling the messages
sent to the related objects. The language is currently used for knowledge repres-
entation [DFP91] and in the domain of User Interface Management. Moreover,
flo is designed as an extensible language by means of computational re
ection
[Mae87]. Thus, its expressiveness and the dependency management mechanism
may be adapted according to the application's needs.

1
flo, standing for First class Links between Objects, is a scheme-based object-
oriented language.

This paper is organized in three parts. Firstly, we present other work on de-
pendency expression. Secondly, we give an intuitive view of the de�nition and
maintenance of dependencies in flo. Finally, we describe some examples of use
and adaptations of the language for knowledge representation. In particular, we
present di�erent meta-links (dependencies between dependencies) and a new op-
erator to design some composition relationships.

2 Motivations
\... no object is an island. All objects stand in relationship to others, on whom
they relay for services and control." [BC89] The necessity of dependency de�ni-
tion and management has been known for a long time [Woo75, HK85, EWH85].
Nowadays, di�erent methods of modeling and design [BELR92, NECH92] out-
line the existence of relationships. Many applications in several domains (graph-
ical interfaces, knowledge representation and acquisition [DT88], hypertext, : : :)
require the expression of interactions between objects. However, in traditional
object-oriented languages there is no way to declare the behavioral dependencies,
so the user has to implement them using built-in mechanisms such as inheritance,
attributes, method combination, active values, or daemons [SBK86]. Thus, some
languages, such as Smalltalk-80, introduce tools for managing inter-object de-
pendencies. Constraint languages also answer to this lack of expressiveness in
object-oriented languages. Let us examine these di�erent approaches in the fol-
lowing sections.

TraditionalObject-Oriented Solutions. In order to illustrate the traditional
implementations of inter-object dependencies, we chose the following example.
Let us suppose that a user has created two independent objects: a stack object
s1 and a memory object m1. The class stack de�nes four methods: pop, push,
empty?, and empty. The class memory de�nes the methods store, unstore and not-

full?. We want to express a dependency between two instances of these classes,
such that all the popped values of the stack instance must be stored within the
memory instance associated with the stack . Such a dependency between a stack
and a memory is consistent if the memory stores all the popped values of the
stack.

A simple implementation consists of creating a subclass of stack to represent
stack-with-memory, in adding a slot memory to this class and in specializing the
pop method so that its execution implies automatically sending a store message to
the memory associated with the stack. Daemons, accessors, references to linked
objects, or active values [SBK86] are other similar ways to manage dependency
consistency. Such implementations give a poor dependency expressiveness. The
dependency semantics is not clearly expressed, and dependencies are hard-wired
into object functionalities. Consequently, object structures and functionalities
are polluted by non-intrinsic information. Programming and maintaining applic-
ations involving inter-object dependencies are then di�cult.

The MVC Model. The MVC2 model [KP88] uses the Smalltalk dependen-
cies, which are based upon message propagation between objects: when a model

2 Model View Controller

changes (changed method), a noti�cation message (update: method) is broadcas-
ted to its dependents. At �rst glance, the philosophy of the MVC model, which
was the clear independence of the di�erent agents, is respected. However, the
use of the Smalltalk dependencies has several drawbacks. The programmer must
know a priori which objects are susceptible to being linked. The programmer
must manage all the state modi�cations of the model and the reaction of its
dependents: he/she must program the change noti�cations in all the necessary
methods of the linked objects (by adding the self changed message and program-
ming the update: methods). Furthermore, a class of dependent objects is speci�c
to a class of model objects: contrary to the initial MVC philosophy, these classes
are strongly linked. Moreover, from a speci�cation point of view, the Smalltalk
dependencies are spread across all the classes: protocols are sometimes di�cult
to understand because one has to browse the whole class library to track the mes-
sage
ow. The advantage of this approach is that the model does not explicitly
know or refer to its dependents.

The ALV Paradigm. The Abstraction-Link-View paradigm [Hil92] emphas-
izes a clean separation of user interfaces from applications.ALV links are objects
whose sole responsibility is to facilitate communication between abstraction ob-
jects (application) and the view objects (user interfaces). ALV links are bundles
of constraints that maintain consistency between views and abstraction. No com-
munication support is coded into the view or abstraction objects: they ignore each
other. There are many similarities between ALV paradigm and flo. However,
as we will show flo allows one to control any method, whereas rendezvous
limits link de�nition to instance variable accesses.

Constraint Languages. In constraint-based languages, dependencies are ex-
pressed in terms of constraints between instance variables. When the value of
such a constrained variable is modi�ed, a propagation algorithm tries to satisfy
the constraints, modifying the linked variables ([FBB92, MGZ92, San93, Ber93,
Kum92]). Constraints are not expressed in terms of object interactions, so some
inter-object dependencies are di�cult to express as constraints between instance
variables. In the proposed example, it is clear that the use of constraints is not
natural. The user only wants to express interactions between messages of its ob-
jects and not mathematical constraints between values of their instance variables.
Moreover, some limitations on types of components are imposed by the constraint
solvers. And constraint expressions violate encapsulation. However, constraints
are a powerful formalism to manage some particular inter-object dependencies
between objects. As the constraints are not at the same level of expression as
our links, constraints are complementary to our approach.

Contracts. In order to express cooperation between objects, Helm et al. in
[HHG90] propose contracts. Contracts are speci�ed through type obligations,
which de�ne variables and external interfaces to be supported, and causal ob-
ligations, which de�ne a sequence of messages to be sent and an invariant to
be maintained. With a contract, classes of linked objects are structured by and
around dependencies. To quote the authors, \the speci�cation of a class becomes

spread over a number of contracts and conformance declarations, and is not loc-
alized to one class de�nition" [HHG90]. Our approach di�ers signi�cantly from
that of contracts, because we believe in the equal importance of dependencies
and of the objects they relate.

3 Dependencies in flo

We claim that the existence of inter-object dependencies changes the behaviors of
linked objects. Thus, in this section, we describe the flo language via a simple
example, i.e. the nature of our dependencies (named links), the way they are
de�ned, and the process of link maintenance.

Link Declarations. Let us recall the previous example concerning two inde-
pendent objects: a stack object s1 and a memory object m1. To express the
previous dependency as a link instance between s1 and m1, the user de�nes a
link, named memorized-by. This link is only expressed by referring to stack and
memory methods, so that all popped values of the stack are stored in the linked
memory, until the memory is full. After that, he/she instantiates this link with
s1 and m1 (line 6).

1 (de
ink memorized-by (:stack :memory)

2 (((pop :stack) ! (store :memory :result))

;; the popped value is stored in the memory

3 ((pop :stack) j (not-full? :memory))))

;; stack can pop an element only if memory is not full

4 (define s1 (new stack)) ;; we create a stack and a memory

5 (define m1 (new memory)) ;; and an instance of link between these instances

6 (define s1-im1 (new memorized-by :stack s1 :memory m1))

De�nition 1: the link memorized-by.

Line 2 of de�nition 1 shows that, when pop is called for the object denoted by
the :stack variable, store must be sent to the object designated by the :memory
variable3, with the result (denoted by the prede�ned :result variable) of the pop

call as argument. The implies operator (!) associates a compensating message
to a method so that, after applying a speci�ed method, the system automat-
ically performs the associated compensating message. Likewise, in line 3, pop

will only be performed on :stack, if :memory is not full. Thus, the semantics
of the permitted-if operator (j) is such that the method can be applied only if
the expression following such a j operator is true. We call such an expression
a guard. The link memorized-by can be used for linking any instance of stack
with any instance of memory. The instances s1 and m1 become dependent when
an instance of the memorized-by link is created between them (see line 6). The
system associates them respectively with the two variables :stack and :memory
of this instance of memorized-by link. After that, flo automatically ensures the

3 These variables look like Lisp keywords because we want the user to keep in mind
that such variables refer to objects which are associated with such initarg keywords
at creation time.

consistency of this instance of memorized-by link, controlling the messages sent
to those instances in accordance with the link de�nitions.

The link de�nitions are independent even if such links concern the same ob-
jects. Suppose that the user wants to have a graphic representation of a stack. On
the one hand, he/she has de�ned the stack object s1, on the other hand, he/she
has de�ned a possible graphic representation gr-s1 with appropriate methods. To
link these objects s1 and gr-s1, he/she de�nes a new link, called graphically-re-
presented-by (see de�nition 2), such that pop method calls imply the removal of
the corresponding graphic value, push calls lead to the addition of a new graphic
value, and empty calls reset the representation. This de�nition is independent of
the memorized-by de�nition. Thus, the stack instance s1 can be linked at the
same time to the memory instance m1 and to the graphic representation gr-s1.

(de
ink graphically-represented-by (:stack :graphic)

(((pop :stack) ! (remove-top :graphic))

((push :stack val) ! (add :graphic (conv val))))

((empty :stack) ! (reset :graphic)))

(define gr-s1 (new single-descriptor)) ;; one graphic object is created

(define s1-graph1 (new graphically-represented-by :stack s1 :graphic gr-s1))

De�nition 2: the link graphically-represented-by.

An Example of Link De�nition Inheritance. Another kind of reuse is
necessary: the link reuse. Flo o�ers a special inheritance mechanism to specialize
link de�nitions.

Let us suppose that we de�ne a new link, called reactive-gr, subclass of the
link graphically-represented-by, such that some messages on the representation
now imply modi�cations of the stack object: if we click on the top value of the
graphic object, the stack is popped (line 3). To increase the expressiveness, we
have introduced the possibility of renaming the inherited link variables within
the new link (line 2 of the de�nition of reactive-gr).

Moreover, new participant objects can be added to a link (see the link complete-
gr line 4 in the de�nition 3). For example, the previous representation of the stack
can be completed with a button stop-bt. When this button is selected, no value
may now be pushed or popped in the stack, and the representation of the stack
may no longer be selected (lines 6, 7, 8).

1 (de
ink reactive-gr (:stack :react-grap)

2 :inherit ((graphically-represented-by (:graphic rename-as :react-grap)))

3 (((click-top :react-grap) ! (pop :stack))))

4 (de
ink complete-gr (:stack :react-grap :stop-bt) :inherit (reactive-gr)

6 (((select :stop-bt x) ! (if (eq x t)

(inhibit :react-grap)

(reactive :react-grap)))

7 ((push :stack v) j (if-not-selected :stop-bt))

8 ((pop :stack) j (if-not-selected :stop-bt))))

De�nition 3: an example of link inheritance.

4 Links for Knowledge Representation

In this section, we highlight the power of expressiveness of flo for object-oriented
knowledge representation.

4.1 Meta-Knowledge: Links between Links

Links are themselves objects. Thus as simply as other links, we can express links
between links, called "Meta-links4". Meta-links are not speci�c to a particular
application, and must be considered as powerfull flo expressive tools. We �rst
present a simple de�nition of the link inverse, and use it to de�ne dependencies
between dependencies as de�ned in Merise [NECH92].

The Inverse Link. If l
�1 is the inverse of the link l, then x linked to y by

l
�1 implies that y is linked to x by l (see de�nition 4). In particular, we can
specify the re
ective aspect of the inverse link: the inverse of the inverse is the
inverse (line 4 of the de�nition 4). Consequently, de�ning l

�1 as the inverse of l

is su�cient to de�ne l as the inverse of l
�1 (line 5).

1 (de
ink inverse (:masterlink :slavelink)

2 :inherit (binary-link)

3 (((create :masterlink obj1 obj2) ! (create :slavelink obj2 obj1))

4 ((create :slavelink obj2 obj1) j (if-not-exist :slavelink obj2 obj1))))

5 (create inverse inverse inverse)

6 (create inverse father-of son-of)

;; the link inverse between son-of and father-of is automatically created

7 (create father-of Caesar Brutus)

;; the link son-of between Brutus and Caesar is automatically created

8 (create son-of Jesus God)

;; And the link father-of between God and Jesus is automatically created

De�nition 4: the link inverse.

Other Meta-Links. OMT [BELR92] or Merise [NECH92] methodologies char-
acterize di�erent constraints on relationships. The following de�nitions present
some meta-links as de�ned in Merise. The main idea of this kind of meta-links is
to control the link instance creation. We can notice the use of the inverse link for
the de�nition of the links exclusion and simultaneity, and the use of inheritance
to de�ne the simultaneity link as a specialization of the inclusion link, as shown
in the de�nition 5. The sole di�erence between the inclusion and simultaneity
links is that the last one is the inverse of itself.

4 This possibility follows the same philosophy as the Meta-Constraints of [Ber93].

(de
ink exclusion (:masterlink :slavelink) :inherit (binary-link)

(((create :masterlink obj1 obj2) j (if-not-exist :slavelink obj1))))

(create inverse exclusion exclusion)

(create exclusion father-of son-of) ;; X can not be both the father-of and the son-of Y

(de
ink inclusion (:masterlink :slavelink) :inherit (binary-link)

(((create :masterlink obj1 obj2)! (if (if-not-exist :slavelink obj1)

(ask-for-creation :slavelink obj1)))))

(de
ink simultaneity (:masterlink :slavelink) :inherit (inclusion))

(create inverse simultaneity simultaneity)

(create simultaneity father-of husband-of)

De�nition 5: some Merise links.

Meta-links facilitate the de�nition of links, outline some properties of links
and increase reuse of link de�nitions. For the sake of understanding, we have just
presented binary meta-links, but other links such as the composition of links can
be de�ned.

4.2 Language Extension and Use

In the previous sections, we have presented the standard aspects of flo. However
flo has been designed to be an extensible language [DBFP95] and we present
an additional interesting feature of flo and its use for composing objects.

A New Operator in flo for Propagating Messages. As shown in the
above examples, the behavior of a linked object is guarded or modi�ed by the
links. However, according to some applications, we noticed that linked objects
may also acquire new behaviors, which are due only to the link existence. There-
fore, the idea is to allow an object to answer some new messages as soon as
these messages are de�ned by links concerning this object. So we propose a new
operator, corresponds (�). This operator allows the declaration that a message
received by one object of the link has to be re-sent to another object of this link.
In this sense - (method1 :object1 arg1) � (method2 :object2 (fct arg1)) - means that
when a message corresponding to the method1 is not de�ned, another (or the
same) message is sent, using (or not) calling arguments, to another object (or to
itself).

The user of the �rst example wants to ask the stack s1 which object is its rep-
resentation. However, it is clear that only s1 is related to a graphic object, there-
fore this property is not a class property but a property of the s1 instance. Thus,
the programmer de�nes the link reactive-gr-new as a specialization of the link
reactive-gr and he/she indicates the message corresponding5 to the representation-
of call (line 2 of de�nition 6).

5 Some flo primitives allow one to �nd the same information, but in our sense, in a
less natural way.

1 (de
ink reactive-gr-new (:stack :react-grap) :inherit-from (reactive-gr)

2 (((representation-of :stack) � :react-grap)))

;; when linked, the stack knows its representation

3 (define s1 (new stack)) ;; we create a stack and a graphic object

4 (define gr2 (new graphical-object))

5 (representation-of s1) ����� > error no-applicable-method

6 (define s1�igr2 (new reactive-gr-new :stack s1 :memory gr2))

;; Once an instance of link s1�igr2 is created the stack. s1 knows its representation.

7 (representation-of s1) ����� > gr2

De�nition 6: an example of corresponding messages

Composition and Collection. \Aggregation is ignored by the popular object-
oriented programming" [LSR87]. Some research attempts to address this lack
of object-oriented programming by introducing speci�c dependencies between
a part and a whole object (whole/part association WPA [Civ93], is-part-of de-
pendency [WBWW90], part dependency [LSR87], aggregation [BELR92]). We
do not discuss these di�erent approaches in this paper. However, in this section,
we highlight the features of the links for composing objects. Through links, the
user can specify the semantics of his/her WPA. In particular, the operator �
can be used to manage the composition problem between whole-part entities,
exposed by Blake:\The whole protocol which a part understands : : :will have to
be re-implemented as the protocol of the whole. The net result is that the part
hierarchy is replaced by a single monolithic whole as far as the external world is
concerned" [BC87]. If we link a car (the whole) to the coachwork (a part), when
we ask the car for its color, this message has to be re-sent to the part which is
able to respond to this message. With the operator�, \the whole protocol which
a part understands" must not be re-implemented, the corresponding messages
are introduced in links. In our example, we also chose to destroy the coachwork
if the car is destroyed.

(de
ink car-composition (:car :coachwork :wheels)

(((color-of :car) � (color :coachwork))

(....)

((destroy :car) ! (destroy :wheels) (destroy:coachwork))))

(define carcmp (new car-composition :car a-car :coachwork a-coachwork

:wheels '(a-wheel wheel a-wheel a-wheel)))

De�nition 7: an example of composition.

The originality of our approach is that the classes of the part objects need
not to be changed when they are involved in a whole-part association. Moreover,
as classes are �rst class objects in flo, we can also de�ne links on classes. Thus,
automatic creation of parts and of links can be declared as links between classes
of the whole, of the parts, and of the links.

The concept of group or collection is integrated in the flo language, by de-
claring the linked objects as a list. The language o�ers methods to add (resp.

retract) objects to (resp. from) a collection. In de�nition 8, a drawing is a col-
lection of shapes. If a drawing is moved all the shapes are moved. A shape can
be moved only within the limits of its drawing. To express this dependency, we
de�ne the link together, by using some built-in primitives of the language.

(de
ink together (:master :slaves)

(((move :master delta) ! (for-each (x) (move x delta) :slaves)

((move (x in :slaves) delta)) j (if-in-limits x delta :master))))

(define adraw (new drawing))

(define l (new together :master adraw :slaves '(s1 s2)))

(add l :slaves s3) ;; add a shape to the drawing adraw.

(retract l :slaves s1) ;; retract the shape s1 from the drawing adraw.

De�nition 8: an example of group.

5 Conclusion

Current object-oriented languages are not expressive enough to represent the
richness in semantic properties and roles of inter-object dependencies. In the tra-
ditional object-oriented languages, the implementation of these dependencies is
buried into the object code. To respond to this problem, flo is an object-oriented
language integrating the concept of inter-object dependencies in a declarative way
[DBFP95]. The user can de�ne links and instantiate links between objects; the
language automaticallymanages their consistency. Through links, the behavior of
linked objects is changed (methods are controlled), and it is possible to associate
new behaviors to linked objects. flo allows one to clearly specify the changed ob-
ject behaviors. This speci�cation does not occur at the class level as in Smalltalk,
nor in the object de�nition. Links are de�ned in an independent way from the
linked objects, enforcing the principle of encapsulation. As links are expressed in
terms of the object interfaces, and as they may be dynamically added or removed
without interfering with the object implementation, modularity is strengthened.
The code of linked objects is kept pure: no relational information is spread across
the classes of the linked objects. The classes de�ne the intrinsic knowledge of the
objects and the links the relational knowledge. Moreover, knowledge about de-
pendencies can be expressed in particular links between links. The use of these
\meta-links" increases the robustness of the applications.

References

[BC87] Edwin Blake and Steve Cook. On Including Part Hierarchies in Object-
Oriented Languages. In ECOOP'87, LNCS 276, pages 41{50, 1987.

[BC89] K. Beck and W. Cunningham. A laboratory for teaching object-oriented
thinking. In OOPSLA'89, pages 1{6, 1989.

[BELR92] M. Blaha, W. Permerlani F. Eddy, W. Lorensen, and J. Rumbaugh.
Object-Oriented Modeling and Design. Prentice-Hall, 1992.

[Ber93] Pierre Berlandier. The use and interpretation of meta level constraints.
LNAI 727, pages 271{280, 1993.

[Civ93] F. Civello. Roles for composite objects in object-oriented analysis and
design. In OOPSLA'93, pages 376{393, 1993.

[DBFP95] S. Ducasse, M. Blay-Fornarino, and A.M. Pinna. A Re
ective Model for
First Class Dependencies. In OOPSLA'95, pages 265{280, 1995.

[DFP91] AM. Dubois, M. Fornarino, and AM. Pinna. A tool for modelling and
reasoning. In 13th IMACS World Congress on Computation and Applied
Mathematics, 1991.

[DT88] R. Dieng and B. Trousse. 3DKAT, a dependency Driven Dynamic Know-
ledge Acquisition Tool. In 3rd ISKE, 1988.

[EWH85] R. Elmasri, J. Weeldreyer, and A. Hevner. The category concept : An
extension to the entity-relationship model. In Data and Knowledge En-
gineering, pages 75{116, 1985.

[FBB92] B. Freeman-Benson and A. Borning. Integrating constraints with an
object-oriented language. In ECOOP'92, LNCS 615, pages 268{286, 1992.

[HHG90] R. Helm, I. Holland, and D. Gangopadhyay. Contracts: Specifying com-
positions in object-oriented systems. In OOPSLA'90, pages 169{180,
1990.

[Hil92] Ralph D. Hill. The abstraction-link paradigm: Using contraints to connect
user interfaces to applications. In CHI'92, pages 335{342, 1992.

[HK85] P. Harmon and D. King. Expert Systems. Arti�cial Intelligence in Busi-
ness. Judy V. Wilson, re-edited 1985. Re-edited by Wiley Press Book.

[KP88] G.E. Krasner and S. T. Pope. A cookbook for using the Model-View-
Controller user interface paradigm in Smalltalk-80. JOOP, August 1988.

[Kum92] V. Kumar. Algorithms for constraint satisfaction problems: a survey. In
AI Magazine, volume 13, pages 32{44, 1992.

[LSR87] M. E. S. Loomis, A. V. Shah, and J. E. Rumbaugh. An Object Modelling
Technique for Conceptual Design. In ECOOP'87, LNCS 276, pages 192{
202, 1987.

[Mae87] Pattie Maes. Concepts and experiments in computational re
ection. In
OOPSLA'87, pages 147{155, 1987.

[MGZ92] B.A. Myers, D.A. Guise, and B. Vander Zanden. Declarative programming
in a prototype-instance system: object-oriented programming without
writing methods. In OOPSLA'92, pages 185{199, 1992.

[NECH92] D. Nanci, B. Espinasse, B. Cohen, and H. Heckenroth. Ingenierie des
systemes d'information avec Merise. Sybex, 1992.

[San93] M. Sannella. The skyblue constraint solver. Technical report, Dept of
Computer Science and Engineering, University of Washington, 1993.

[SBK86] M. Ste�k, D.G. Bobrow, and K. Kahn. Integrating Access-Oriented Pro-
gramming into a Multiparadigm Environment. IEEE Software (USA),
3(1):10{18, 1986.

[WBWW90] R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented
Software. Prentice Hall, 1990.

[Woo75] W.A. Woods. What's in a link: Foundations for semantic networks. In
Academic Press, editor, Representation and Understanding: Studies in
Cognitive Science. 1975.

This article was processed using the LATEX macro package with LLNCS style

