
Type-Check Elimination: Two Object-Oriented Reengineering Patterns

Stéphane Ducasse, Tamar Richner, Robb Nebbe
Software Composition Group, Institut f¨ur Informatik (IAM)

Universität Bern, Neubr¨uckstrasse 10, 3012 Berne, Switzerland
fducasse,richner,nebbeg@iam.unibe.ch

http://www.iam.unibe.ch/�scg/

to appear in Proceedings WCRE ’99

Abstract

In reengineering an object-oriented system we want to
benefit from the expertise developed in earlier efforts. It is
therefore essential to have a way to communicate expertise
at different levels: from knowledge about how to approach
a system to be reengineered, to knowledge about improving
code by eliminating ’bad’ style. In this paper we propose to
use a pattern form to communicate knowledge about reengi-
neering. Areengineering patternconnects an observable
problem in the code to a reengineering goal: it describes
the process of going from the existinglegacysolution caus-
ing or aggravating the problem to a newrefactoredsolution
which meets the reengineering goal. It thus gives a method
appropriate for a specific problem, rather than proposing
a general methodology, and makes reference to the appro-
priate tools or techniques for obtaining the refactored so-
lution. In this paper we discuss the role of reengineering
patterns and contrast them with related kinds of patterns.
We then highlight the form of reengineering patterns and
present two simple patterns for type-check elimination.

Keywords: Object-Oriented, Reengineering, Pat-
terns, Refactorings

1. Reengineering Patterns

Reengineering projects, despite their diversity, often en-
counter some typical problems again and again. These can
be problems at different levels and due to different prac-
tices [7]. But it is unlikely that one methodology or process
will be appropriate for all projects and organizations [14],
just as no one tool or technique can be expected to solve
all the technical problems encountered in a reengineering
project. To allow reengineering projects to benefit from the
experience gained in previous efforts, an appropriate form
is required for transferring expertise. This form should be
small enough to be easily consulted and navigated, and sta-
ble enough as to be useful for many reengineering projects.

In the object-oriented software engineering community

Design Patterns [9] have been adopted as an effective way of
communicating expertise about software design. A design
pattern describes a solution for a recurring design problem
in a form which facilitates the reuse of a proven design solu-
tion. In addition to the technical description of the solution,
an important element of a design pattern is its discussion of
the advantages and disadvantages of applying the pattern.

We propose to use a pattern form to transfer expertise
in the area of reengineering. Reengineering patterns cod-
ify and record knowledge about modifying legacy software:
they help in diagnosing problems and identifying weak-
nesses which hinder further development of the system and
aid in finding solutions which are more appropriate to the
new requirements. We see reengineering patterns as stable
units of expertise which can be consulted in any reengineer-
ing effort: they describe a process without proposing a com-
plete methodology, and they suggest appropriate tools with-
out ’selling’ a specific one. A more thorough discussion of
the advantages of the pattern form as a vehicle for reengi-
neering expertise can be found in [14], which discusses pat-
terns closely related to ours.

In the context of a project developing a methodology
for reengineering object-oriented legacy systems to frame-
works, we are working on a system of patterns for reverse
engineering and reengineering. Besides the two reengineer-
ing patternsType Check Elimination in Clients and Type
Check Elimination within a Provider Hierarchy presented
here, this system of patterns also includes the following
patterns:Code Navigation Elimination, Curing God Class,
Changing Architectural Dependencies andTransforming In-
hieritance into Composition. All these patterns address typ-
ical legacy solutions found in object-oriented code, and
describe how to move from the legacy solution to a new
refactored solution. The patterns presented here are of a
technical nature; we expect, however, that some reengi-
neering patterns will describe overall strategies for dealing
with legacy systems, and thus be of a less technical nature.
Systems Reengineering Patterns[14] are examples of such
higher-level patterns which address broader methodologi-

1

cal issues. The ’Deprecation’ pattern [14], for example, de-
scribes how to iteratively change interfaces of a system in a
friendly way for the client of the system under change.

The paper is structured as follows: in the next section we
compare and contrast our reengineering patterns to related
pattern work. In section 3 we give a brief overview of the
format used for writing reengineering patterns. In section 4
we introduce the topic of type check elimination addressed
by our sample patterns. The two patterns are presented in
section 5 and section 6 respectively. Finally we conclude in
section 7 with some discussion of the pattern form and its
use in reengineering.

2. Reengineering Patterns and Related Work

Our reengineering patterns and Systems Reengineering
Patterns [14] are close. The only difference is that our pat-
terns are low level and focus in particular on object-oriented
legacy systems. Note that the our patterns cannot be used
to evaluate whether or not an application should be reengi-
neered in the first place; this difficult task has been tackled
by [1] and [12]. In [5] a methodology is proposed to help in
the migration of legacy systems (principally legacy database
systems) to new platforms.

Reengineering patterns differ from Design Patterns [9]
in their emphasis on theprocessof moving from an existing
legacysolution to a newrefactoredsolution. Whereas a de-
sign pattern presents a solution for a recurring design prob-
lem, a reengineering pattern presents a refactored solution
for a recurring legacy solution which is no longer appropri-
ate, and describes how to move from the legacy solution to
the refactored solution. The mark of a good reengineering
pattern is (a) the clarity with which it exposes the advan-
tages, the cost and the consequences of the target solution
with respect to the existing solution, and not how elegant the
target solution is, (b) the description of the change process:
how to get from one state of the system to another.

We also contrast reengineering patterns with AntiPat-
terns [6]. Antipatterns, as exposed by Brown et al., are pre-
sented as “bad” solutions to design and management issues
in software projects. Many of the problems discussed are
managerial concerns that are outside the direct control of
developers. Moreover, the emphasis in antipatterns is on
prevention: how to avoid making the mistakes which lead
to the antipatterns. Consequently, antipatterns may be of
interest when starting a project or during development but
are no longer helpful when we are confronted with a legacy
system. In approaching legacy systems we prefer to with-
hold judgment and use the term “legacy solution” or “legacy
pattern” for a solution which at the time, and under the con-
straints given, seemed appropriate. In reengineering it is
too late for prevention, and reengineering patterns therefore
concentrate on the cure: how to detect problems and move
to more appropriate solutions.

Finally, our reengineering patterns are different from
code refactorings [11, 10, 15, 8]. A reengineering pattern
describes a process which starts with the detection of the
symptoms and ends with the refactoring of the code to arrive
at the new solution. A refactoring is only the last stage of
this process, and addresses the technical issue of automat-
ically or semi-automatically modifying the code to imple-
ment the new solution. Reengineering patterns also include
other elements which are not part of refactorings: they em-
phasize the context of the symptoms, by taking into account
the constraints that reengineers are facing, and include a dis-
cussion of the impact of the changes that the refactored so-
lution may introduce.

3. Form of a reengineering pattern

Pattern Name. We use a short sentence with a verb that
emphasizes the kind of reengineering transformation.

Intent. A description of the process, together with the re-
sult and why it is desirable.

Applicability. When is the pattern applicable? When is it
not applicable? This section includes a list of symp-
toms, a list of reengineering goals and a list of re-
lated patterns. Symptoms are those experienced when
reusing, maintaining or changing the system. Reengi-
neering goals present the qualities improved through
the application of this pattern.

Motivation. This section presents an example: it must ac-
quaint the reader with a concrete example so the reader
can better understand the more abstract presentation of
the problem which follows in the structure and pro-
cess sections. The example clearly describes the struc-
ture of the existing legacy system, the structure of the
reengineered system, and the relation between the two.

Structure. It describes the structure of the system before
and after reengineering. As in Design Patterns [9],
the participants and their collaborations are identified.
Consequences discuss the advantages and disadvan-
tages of the target structure in comparison to the initial
structure.

Process.The process section is subdivided into three sec-
tions: the detection, the recipe and the difficulties. The
detection section describes methods and tools that help
to detect when the code is indeed suffering from the
serious problems. The recipe states how to perform
the reengineering operation and its possible variants.
The difficulties section discusses situations where the
reengineering operation is infeasible or its application
is compromised by other problems.

2

Discussion. In this section cost and benefit tradeoffs of ap-
plying the pattern are discussed. The legacy solution
is commented to show why such a solution was appro-
priate at the time but is now insufficient or inadapted to
the current problem. What is the cost of detecting this
problem and what is the benefit gained by applying the
pattern? This discussion should aid an engineer in de-
ciding whether or not it is worth applying the pattern.

Language Specific Issues.This section lists what must be
specifically resolved for each programming language.
What makes it more difficult? More easy?

4. Type Check Elimination

The introduction of polymorphism is an important and
frequent operation in reengineering object-oriented legacy
systems. Replacing hand coded polymorphism with the
support built into the language both simplifies the software
and makes it more flexible. Even in the presence of poly-
morphism it is our experience that developers continue to
implement through other means functionality that would be
best handled through polymorphism.

Here we present two patterns:Type Check Elimination
within a Provider Hierarchy andType Check Elimination in
Clients, that deal with the absence of polymorphism in
legacy systems. The essential distinction between these two
patterns is thelocation of the type check:in Type Check
Elimination within a Provider Hierarchy the decision struc-
ture is in a provider class and is over an instance variable of
that class while inType Check Elimination in Clients the de-
cision structure is in the client class and is over an instance
variable of another class. Note that when one class depends
on another we call this class aclientclass and the class it de-
pends on is aproviderclass. This is a general terminology
and is not specific to these patterns.

Each reengineering pattern is self contained - some iden-
tical parts will therefore appear in both patterns. Patterns
are written as self contained units as we have found that
depending on our goals when reengineering we may be in-
terested in one pattern and not the other. For example, if
we wish to extract a subsystem thenType Check Elimination
in Clients is very important. On the other hand if we wish
to add functionality thenType Check Elimination within a
Provider Hierarchy is more relevant.

5. Type Check Elimination within a Provider
Hierarchy

Intent
Transform a singleproviderclass being used to implement
what are conceptually a set of related types into a hierarchy
of classes. Decision structures over type information, such

as case statements or if-then-elses, are replaced by polymor-
phism. This results in increased modularity and facilitates
the extension of functionality through the addition of new
subclasses.

Applicability

Symptoms.

� Methods contain large decision structures over an in-
stance variable of theproviderclass to which they be-
long.

� Extending the functionality of theprovider class re-
quires modifying many methods.

� Manyclientsdepend on a singleproviderclass.

Reengineering Goals.

� Improve modularity.

� Simplify extension ofprovider functionality.

Related Reengineering Patterns. A closely related pattern
is Type Check Elimination in Clients where the case state-
ments over types are in the client code as opposed to the
provider code. The pattern is also related to the object-
oriented heuristic : “Explicit case analysis on the type of
an attribute is often an error” [13].

Motivation
Case statements are sometimes used to simulate poly-

morphic dispatch. This is often the result of the absence
of polymorphism in an earlier version of the language (e.g.
Ada’83! Ada’95 or C! C++). Another possibility is that
programmer don’t fully master the use of polymorphism
and as a result do not always recognize when it is appli-
cable. Programmers often fall back to the language they
are most familiar with (the the Variable State pattern [3]
describes such a situation) and so they may continue to im-
plement solutions which do not exploit polymorphism even
when polymorphism is available. This could occur espe-
cially when programmers extend an existing design by pro-
gramming around its flaws, rather than reengineering it.

In a language that supports polymorphism it is preferable
to exploit the language support for dispatching rather than
to simulate it. Case statements or other large decision struc-
tures that simulate dispatch must be coded and maintained
by hand, making changes or extensions to the functionality
more difficult because many places in the source code are
affected. Simulating dispatch also results in long methods
with fragmented logic that is hard to understand.

Initial Situation. Our example, taken in a simplified form
from a case study, consists of a message class that wraps
two different kinds of messages (TEXT andACTION) that

3

must be serialized to be sent across a network connection as
shown in the code and the figure 1.

A single provider class implements what is conceptually
a set of related types. One attribute of the class functions as
surrogatetype information and is used in a decision struc-
ture to handle different variations of functionality required.

Client1
Message

set_value(action Integer)
send(channel Channel)

set_value(text String)
receive(channel Channel)

Client2

Figure 1. Initial relation and structure of
clients and providers.

class Message f
public:
Message();
set value(char* text);
set value(int action);
void send(Channel c);
void receive(Channel c);

...
private:
void* data;
int type ;
g
// from Message::send
const int TEXT = 1;
const int ACTION = 2;
switch (type) f
case TEXT: ...
case ACTION: ... g;

Final Situation. The case statements have been replaced by
polymorphism and the original class has been transformed
into a hierarchy comprised of an abstract superclass and
concrete subclasses. Clients must then be adapted to cre-
ate the appropriate concrete subclass.

Initially there may be a large number of dependencies on
this class, making modification expensive in terms of com-
pilation time, and increasing the effort required to test the
class. The target structure improves all of these problems
with the only cost being the effort required to refactor the
provider class and to adapt the clients to the new hierarchy.

Message

send(channel Channel)
receive(channel Channel)

Client1

Text_Message
send(channel Channel)
receive(channel Channel)
Text_Message(text String)

send(channel Channel)

Action_Message

receive(channel Channel)
Action_Message(action Integer)

Client2

Figure 2. Final relation and structure of clients
and providers.

class Message f
public:
virtual void send(Channel c) = 0;
virtual void receive(Channel c) = 0;

...
g;

class Text Message: public Message f
public:
Text Message(char* text);
void send(Channel c);
void receive(Channel c);

private:
char* text;

...
g;

class Action Message: public Message f
public:
Action Message(int action);
void send(Channel c);
void receive(Channel c);

private:
int action;

...
g;

Structure

Participants.

� A single provider (Message) class that is trans-
formed into a hierarchy of classes (Message,
Text Message andAction Message)

� A set ofclient classes

4

Collaborations. The single provider class will be trans-
formed into a hierarchy, thereby increasing modularity and
facilitating extension of functionality.

Initially, the clients are all dependent on a single provider
class. This class encompasses several variants of function-
ality and thus encapsulates all the collaboration that would
normally be handled by polymorphism. This results in long
methods typically containing case statements or other large
decision structures.

The situation is improved by refactoring the single
provider class into a hierarchy of classes: an abstract su-
perclass and a concrete subclass for each variant. Each of
the new subclasses is simpler than the initial class and these
are relatively independent of each other.

Consequences. The functionality of the hierarchy can be
extended adding a new subclass without modifying the su-
perclass. The increased modularity also impacts the clients
who are now likely to be dependent on separate subclasses
in the provider hierarchy.

Process

Detection. For the automatic detection of the initial situation
in legacy code, a class having many long methods is a good
candidate for further analysis. A line-of-code-per-method
metric may help to narrow the search. If these methods
contain case statements or complex decision structures all
based on the same attribute then the attribute is probably
serving as surrogate type information. In C++, where it is a
good practice to define a class per file, the frequency of case
statements in the same file can be also used as a first hint to
narrow the search for this pattern.

Example: detection of case statements in C++ . Know-
ing if the pattern should be applied requires the detection
of case statements. Regular-expression based tools like
emacs, grep, agrep help in the localization of case state-
ments based on explicit construct like C++’s switch. For ex-
ample,grep ’switch’ ‘find . -name ”*.cxx” -print‘ enumer-
ates all the files with extension.cxx contained in a directory
tree that containsswitch. With agrep, the expressionagrep
’switch;type’ -e ‘find . -name ”*.cxx” -print‘ extracts all
the files containing lines havingswitch andtype.

These tools are not well suited, however, for detect-
ing case statements based on explicitifthenelse structures,
since their detection capabilities are restricted to one line at
a time. One possible solution is to use perl scripts - a perl
script which searches the methods in C++ files and lists the
occurrences of case statements is given in the appendix.

Recipe.

1. Determine the number of types conceptually imple-
mented by the class by inspecting the case statements.
An enumeration type or set of constants will probably

document this as well.

2. Implement the new provider hierarchy. You will need
an abstract superclass and at least one derived concrete
class for every variant.

3. Determine if all of the methods need to be declared in
the superclass or if some belong only in a subclass.

4. Update the clients of the original class to depend on
either the abstract superclass or on one of its concrete
subclasses.

Difficulties.

� If the case statements are not all over the same set
of functionality variants this is a sign that it might be
necessary to have a more complex hierarchy including
several intermediate abstract classes, or that some of
the state of the provider should be factored out into a
separate hierarchy.

� If a client depends on both the superclass and some of
the subclasses then you may need to refactor the client
class or apply theType Check Elimination in Clients
pattern because this is an indication that the provider
does not support the correct interface.

Discussion

About the legacy solution. The legacy solution is a good so-
lution when the language does not support polymorphism.
The variants represent the subclasses in a object-oriented
languages. The functionalities can be shared between the
variants and the polymorphism can be simulated. Note also
that the type checks occur only in the implementation of
the provider and there is very little complexity distributed
across the clients.

The major drawback is that the provider class quickly
becomes very large as the number of variants increases and
the particularities of each variant must be taken into ac-
count. The complexity is reflected in the methods that must
distinguish the different variants and their logic becomes
fragmented and difficult to follow. Adding new variants of-
ten requires making extensive modifications to the provider
class.

About Detection. It is well-known that the code often tells
the reengineer where the problem is and that the reengineer-
ing process must be goal driven to avoid reengineering code
that is not obstructing further development. However, there
are cases where it may be interesting to automatically detect
where a pattern could be applied.

During the detection phase one can find other uses of
case statements. For example, case statements are also used

5

to implement objects with states [4, 2]. In such a case the
dispatch is not done on object type but on a certain state
as illustrated in the State pattern [9, 2].The Strategy pattern
[9, 2] is also based on the elimination of case statement over
object state.

Opdyke [11] discusses “Refactoring To Specialize”, in
which he proposes to use class invariants as a criteria to
simplify conditionals. His proposal for automatic refactor-
ing is similar to this pattern.

About the refactored solution. Applying the pattern may
lead to a number of new classes, basically transforming
what is often a single class into a hierarchy of classes. How-
ever, these classes already existed conceptually in the legacy
solution and we are trading one very complex class for sim-
pler but more numerous classes. The logic of each class is
then much cleaner since you do not need to filter out the
noise associated with the other variants and the typing can
be tightened so that unwanted variants can be excluded by
the type system rather than through a precondition check.

Language Specific Issues.

C++ . Detection: in C polymorphism can be emulated ei-
ther by using function pointers or through union types and
enum’s. C++ programmers are likely to use a single class
with a void pointer and then cast this pointer to the appro-
priate type inside a switch statement. This allows them to
use classes which are nominally object-oriented as opposed
to unions which they have probably been told to avoid. The
use of constants is typically favored over the use of enum’s.

Difficulties: If void pointers have been used in conjunc-
tion with type casts then you should check to see if the
classes mentioned in the type casts should be integrated into
the new provider hierarchy.

ADA. Detection: because Ada83 did not support polymor-
phism (or subprogram access types) discriminated record
types are the preferred solution. Typically an enumeration
type provides the set of variants and the conversion to poly-
morphism is straightforward in Ada95.

SMALLTALK . Detection: In SMALLTALK the detection of
the case statements over types is hard because few type ma-
nipulations are provided. Basically, methodsisMemberOf:
and isKindOf: are available. Detecting these method calls
is not sufficient, however, since class membership can also
be tested withself class = anotherClass, or with property
tests throughout the hierarchy using methods likeisSym-
bol, isString, isSequenceable, isInteger.

JAVA . Detection: look for the use of the operatorin-
stanceof. Note that this operator returns true if the ob-
ject on its left-hand side is an instance of the class or im-
plements the interface specified on its right-hand side. As
classes are not real objects in JAVA a programmer cannot di-

rectly compare two references as in SMALLTALK , but could
compare class names, so you may look forgetClass() and
getName() combined with string comparison.

6. Type Check Elimination in Clients

Intent
Transformclient classes that depend on type tests (usually
in conjunction with case statements) intoclientsthat rely on
polymorphism. The process involves factoring out the func-
tionality distributed across the clients and placing it in the
provider hierarchy. This results in lower coupling between
theclientsand theproviders(class hierarchy).

Applicability

Symptoms.

� Large decision structures in theclient over the type
of (or equivalent information about) an instance of the
provider, either passed as an argument to the client, an
instance variable of the client, or a global variable.

� Adding a new subclass of theprovider superclass re-
quires modifications toclients of the provider hier-
archy because functionality is distributed over these
clients.

Reengineering Goals.

� Localize functionality distributed acrossclients in the
providerhierarchy.

� Improve usability ofproviderhierarchy.

� Lower coupling betweenclientsand theproviderhier-
archy.

Related Reengineering Patterns. A closely related reengi-
neering pattern isType Check Elimination within a Provider
Hierarchy, where the case statements over types are in the
providercode as opposed to theclient code. The pattern is
also related to the object-oriented heuristic: “Explicit case
analysis on the type of an object is usually an error.” [13].

Motivation
The fact that the clients depend on provider type tests is

a well known symptom for a lack of polymorphism. This
leads to unnecessary dependencies between the classes and
it makes it harder to understand the program because the
interfaces are not uniform. Furthermore, adding a new sub-
class requires all clients to be adapted.

Initial Situation. The following code illustrates poor use of
object-oriented concepts as shown by Fig. 3. The function
makeCalls takes a vector ofTelephone’s (which can be of
different types) as a parameter and makes a call for each of
the telephones. The case statement switches on an explicit

6

type-flag returned byphoneType(). In each branch of the
case, the programmer calls the phoneType specific methods
identified by the type-tag to make a call.

initializeLine()
connect()

tourneManivelle()
call()

makeCalls()

switch(p->phoneType())
case
case ...

TelephoneBox

POTSPhone

Telephone

ISDNPhone

ProvidersClient

Figure 3. Initial relation and structure of
clients and providers.

void makeCalls(Telephone * phoneArray[])
f

for (Telephone *p = phoneArray; p; p++) f
switch(p->phoneType()) f
case TELEPHONE::POTS: f
POTSPhone * potsp = (POTSPhone *) p;
potsp->tourneManivelle();
potsp->call(); break;g

case TELEPHONE::ISDN: f
ISDNPhone * isdnp = (ISDNPhone *) p;
isdnp->initializeLine();
isdnp->connect(); break;g

case TELEPHONE::OPERATORS: f
OperatorPhone * opp = (OperatorPhone *) p;
opp->operatormode(on);
opp->call(); break;g

case TELEPHONE::OTHERS:
default:

error(....);
g g g

Final Situation. After applying the pattern the correspond-
ing ringPhones() will look as follows and the structure as
shown by the Fig. 4.

void makeCalls(Telephones *phoneArray[])
f

for(Telephone *p = phoneArray; p; p++) p-
>makeCall();
g

Note that the client code, which represents distributed
functionality, has been greatly simplified. Furthermore, this
functionality has been localized within theTelephone class
hierarchy, thus making it more complete and uniform with

respect to the clients needs.

makeCall() makeCall()

POTSPhone ISDNPhone

makeCalls()

... makeCall()

TelephoneBox Telephone

makeCall()

Client Providers

Figure 4. Final relation and structure of clients
and providers.

Structure

Participants.

� provider classes(Telephone and its subclasses)

– organized into a hierarchy.

� theclients(TelephoneBox) of the provider class hier-
archy.

Collaborations.
The collaborations will change between all clients and

the providers as well as the collaboration within the
provider hierarchy.

Initially, the clients collaborate directly with the provider
superclass and its subclasses by virtue of type tests or a case
statement over the types of the subclasses. After reengineer-
ing the only direct collaboration between the clients and the
providers is through the superclass. Interaction specific to a
subclass is handled indirectly through polymorphism.

Within the provider hierarchy the superclass interface
must be extended to accurately reflect the needs of the
clients. This will involve the addition of new methods and
the possible refactorization of the existing methods in the
superclass. Furthermore, the collaborations between the
provider superclass and its subclasses may also evolve, i.e.
it must be determined whether the new or refactored meth-
ods are abstract or concrete.

Consequences.
Relying on polymorphism localizes the protocol for in-

teracting with the provider classes within the superclass.
The collaborations are easier to understand since the inter-
face actually required by the clients is now documented ex-
plicitly in the provider superclass. It also simplifies the ad-
dition of subclasses since their responsibilities are defined

7

in a single place and not distributed across the clients of the
hierarchy.

Process

Detection. The technique described in the patternType
Check Elimination within a Provider Hierarchy to detect case
statements is applicable for this pattern. Whereas in the pat-
ternType Check Elimination within a Provider Hierarchy, the
switches are located in the same class, hence in one file for
a language like C++, in this pattern the case statements occur
in several classes which can be spread over different files.

Recipe. The process consists of two major steps. The first
is to encapsulate all the responsibilities that are specific to
the provider classes within the provider hierarchy. The sec-
ond is to make sure that these responsibilities are correctly
distributed within the hierarchy.

1. Determine the set of clients to which the pattern will
be applied.

2. Define a new abstract method in the provider super-
class and concrete methods implementing this method
in each of the subclasses based on the source code con-
tained within each branch of the case statement.

3. Refactor the interface of the provider superclass to ac-
curately reflect the protocol used by the clients. This
involves not only adding and possibly changing the
methods included but determining how they work to-
gether with the subclasses to provide the required be-
havior. This includes determining whether methods
are abstract or concrete in the provider superclass.

4. For each client, rewrite the method containing the
case statement so that it uses only the interface of the
provider superclass.

Difficulties.

1. The set of clients may all employ the same protocol;
in this case the pattern needs to be applied only once.
However, if the clients use substantially different pro-
tocols then they can be divided into different kinds and
the pattern must be applied once for each kind of client.

2. If the case statement does not cover all the subclasses
of the provider superclass a new abstract class may
need to be added and the client rewritten to depend on
this new class. For example, if it is an error to invoke
the client method with some subclasses as opposed to
just doing nothing then the type system should be used
to exclude such cases. This reduces the provider hier-
archy to the one starting at the new abstract class.

3. Refactoring the interface will affect all clients of the
provider classes and must not be undertaken without
examining the full consequences of such an action.

4. Nested case statements indicate that multiple patterns
must be applied. This pattern may need to be applied
recursively in which case it is easiest to apply the pat-
tern to the outermost case statement first. The provider
classes then become the client classes for the next ap-
plication of the pattern. Another possibility is when the
inner case statement is also within the provider class
but some of the state of the provider classes should be
factored out into a separate hierarchy.

Discussion

About the legacy solution. Explicit type check are some-
times necessary. This is the case when the programmers are
working at the frontier between object-oriented and non-
object-oriented applications [13]. For example, writing in
C++ does not save one from dealing with the way events are
handled in the X window system, since X inevitably loses
type information about events by placing them in the event
queue. The application then receives these as events and
must explicitly check their type to determine how to handle
them.

Java deals with this problem by changing the approach
to event handling. Widgets register for events and specify
what they want done with the events. This short circuits the
loss of type information and eliminates the type checks.

Type checks are made necessary when type information
is lost. Loss of type information may be an artifact of the
design and relatively straight forward to repair, as in this
pattern and theType Check Elimination within a Provider Hi-
erarchy pattern. In other cases this may require an extensive
redesign. In such cases the advantages of “doing it right” or
at least making it look like it was done right with a wrapper
must be weighed against the costs.

About detection. During the detection phase one can find
other uses of case statements. For example, case statements
are also used to implement objects with states [4, 2]. In
such a case the dispatch is not done on object type but on
a certain state as illustrated in the State pattern [9, 2]. The
Strategy pattern [9, 2] is also based on the elimination of
case statement over object state.

About evolution. If the application currently reengineered
has been in the past distributed as a library and is used now
by other programmers, the Deprecation pattern [14] can be
applied to deal with the interface conflicts between the old
version and the new ones.

About the refactored solution. Applying the pattern will
lead to changes in the interface and may introduce new
classes in the provider hierarchy. However, the interface

8

as well as the classes already existed conceptually in the
legacy solution. The mismatch between the abstraction pre-
sented and the abstraction required created complexity that
was distributed across the clients. In the refactored solution
the complexity is localized within the provider hierarchy in-
stead of being distributed across the clients of the hierarchy.
This makes the client code much easier to understand and
the role of the provider classes is much better documented
by their interfaces.

Language Specific Issues.

C++ . In C++ virtual methods can only be used for classes
that are related by an inheritance relationship. The poly-
morphic method has to be declared in the superclass with
the keywordvirtual to indicate that calls to this methods are
dispatched at runtime. These methods must be redefined in
the subclasses.

Type information is encoded often using someenum
type. A data member of a class having such an enum type
and a method to retrieve these tags are usually a hint that
polymorphism could be used (although there are cases in
which polymorphic mechanism cannot substitute the man-
ual type discrimination).

ADA. Detecting type tests falls into two cases. If the hier-
archy is implemented as a single discriminated record then
you will find case statements over the discriminant. If the
hierarchy is implemented with tagged types then you cannot
write a case statement over the types (they are not discrete);
instead an if-then-else structure will be used.

If a discriminated record has been used to implement the
hierarchy it must first be transformed by applying theType
Check Elimination within a Provider Hierarchy pattern.

SMALLTALK . In SMALLTALK the detection of the case
statements over types is hard because few type manipula-
tions are provided. Basically, methodsisMemberOf: and
isKindOf: are available. Detecting these method calls is
not sufficient, however, since class membership can also be
tested withself class = anotherClass, or with property
tests throughout the hierarchy using methods likeisSym-
bol, isString, isSequenceable, isInteger.

JAVA . Detection: look for the use of the operatorin-
stanceof. Note that this operator returns true if the ob-
ject on its left-hand side is an instance of the class or im-
plements the interface specified on its right-hand side. As
classes are not real objects in JAVA a programmer cannot di-
rectly compare two references as in SMALLTALK , but could
compare class names, so you may look forgetClass() and
getName() combined with string comparison.

7. Discussion and Conclusions

We have proposed a pattern form as the appropriate style
for communicating expertise about the reengineering of
software systems. Reengineering patterns are stable units
of expertise which can be consulted in any reengineering
effort dealing with object-oriented legacy systems.

But how do we validate patterns? Since patterns are
intended to document reengineering processes that have
proven to be useful, knowing that a pattern has been applied
successfully several times gives us confidence in the pattern.
We therefore seek to collect examples of reengineering ef-
forts which have applied these patterns. In the FAMOOS
project1, we have studied several case studies (ranging from
50K LOC to 2,500K LOC of C++ and Ada) which are be-
ing reengineered in industry. Obtaining information about
the actual reengineering processes in industry is difficult,
however, since these are rarely documented, and often can
not be disclosed. From discussions and project workshops
with developers in industry we have confirmation that such
patterns are actually applied.

We have chosen to present here two patterns dealing
with symptoms of missing polymorphism in legacy sys-
tems because they present situations that many developers
have encountered, and are closely related to known design
patterns[9] and to some refactoring operations[11]. In other
words, they appear convincingly familiar already to most
developers. We have used our detection script to find in-
stances of type checks, both in clients and within a provider
hierarchy, in both C++ and Ada case studies. Based on our
exchange with developers we have elaborated the discus-
sion of the advantages and disadvantages of the pattern
application, and gained a better understanding of the con-
straints under which the ’legacy solution’ was chosen.

As mentioned in the introduction, these two patterns are
part of a larger pattern language which addresses a range
of different problems encountered in reengineering object-
oriented legacy systems. Such a pattern language is in-
tended for use with navigational help, which takes several
different forms. First, patterns are related to the stage of the
reengineering process at which they are to be applied - some
patterns are to be used in reverse engineering at the first en-
counter with the system, others are intended for refactoring
the code once a better understanding of the system has been
gained. Second, each pattern is associated with observed
symptoms and with a set of reengineering goals - this en-
ables engineers to look for patterns which could be appli-
cable in their project. Finally, patterns are related to each
other, and so can be navigated through these relationships.
We are now working on this kind of navigational guidance
which will take the form of a reengineering handbook.

1The FAMOOS ESPRIT project investigates tools and techniques
for transforming object-oriented legacy systems into frameworks. See
http://www.iam.unibe.ch/�famoos/

9

Acknowledgments. Our work on reengineering patterns is
part of ongoing work on a reengineering handbook, in the
context of the FAMOOS ESPRIT project. We thank our
colleagues - Serge Demeyer, Matthias Rieger and Sander
Tichelaar - for their collaboration in this project and for
comments on the paper. Thanks also to Eduardo Casais, Os-
car Nierstrasz, and to our shepherd at EuroPLOP’98, Don
Roberts, for their comments on an earlier draft of this doc-
ument. Patrick Steyaert helped us with the development of
the appropriate pattern form. This work has been funded by
the Swiss Government under grant MHV 21-41671.94 (to
T.R.), project no. NFS-2000-46947.96 and BBW-96.0015
as well as by the European Union under the ESPRIT pro-
gramme Project no. 21975.

References

[1] Software Reengineering Assessment Handbook v3.0. Tech-
nical report, STSC, U.S. Department of Defense, Mar. 1997.
(http://stsc.hill.af.mil/RENG).

[2] S. R. Alpert, K. Brown, and B. Woolf.Design Patterns in
Smalltalk. Addison-Wesley, 1998.

[3] K. Beck. Smalltalk Best Practice Patterns. Prentice-Hall,
1997.

[4] K. Beck and R. Johnson. Patterns generate architectures.
In Proceedings ECOOP’94, LNCS 821, pages 139–149.
Springer-Verlag, July 1994.

[5] M. Brodie and M. Stonebraker.Migrating Legacy Systems:
Gateways, Interfaces and the Incremental Approach. Mor-
gan Kaufman, 1995.

[6] W. J. Brown, R. C. Malveau, H. W. S. McCormickIII, and
T. J. Mowbray. AntiPatterns: Refactoring Software, Archi-
tectures, and Projects in Crisis. Wiley and Sons, 1998.

[7] B. Foote and J. W. Yoder. Big Ball of Mud. InProceedings
of PLoP’97, 1997.

[8] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns. Addison Wesley, Reading, MA, 1995.

[10] R. E. Johnson and W. F. Opdyke. Refactoring and ag-
gregation. InObject Technologies for Advanced Software,
First JSSST International Symposium, volume 742 ofLec-
ture Notes in Computer Science, pages 264–278. Springer-
Verlag, Nov. 1993.

[11] W. F. Opdyke. Refactoring Object-Oriented Frameworks.
PhD thesis, University of Illinois, 1992.

[12] J. Ransom, I. Sommerville, and I. Warren. A Method for
Assessing Legacy Systems for Evolution. InProceedings of
Reengineering Forum’98, 1998.

[13] A. J. Riel. Object Oriented Design Heuristics. Addison-
Wesley, 1996.

[14] P. Stevens and R. Pooley. System reengineering patterns. In
Proceedings of FSE-6. ACM-SIGSOFT, 1998.

[15] L. Tokuda and D. Batory. Automating three modes of evolu-
tion for object-oriented software architectures. InProceed-
ings COOTS ’99. USENIX, 1999.

A. Detecting Case Statements.

This perl script searches the methods in C++ files and lists the
occurences of statements matching the following expression:el-

seXif whereX can be replaced byf, //... or some white space
including carriage return.

#!/opt/local/bin/perl
$/ = ’::’;
new record delim.,
$elseIfPattern = ’else[\s\n]*{?[\s\n]*if’;
$linecount = 1;
while (<>) {

s/(\/\/.*)//g; # remove C++ style comments
$lc = (split /\n/) - 1; # count lines

if(/$elseIfPattern/) {
count # of lines until first

occurence of "else if"
$temp = join("",$‘,$&);
$l = $linecount + split(/\n/,$temp) - 1;
count the occurences of else-if pairs,
flag the positions for an eventual printout
$swc = s/(else)([\s\n]*{?[\s\n]*if)

/$1\n\t\t* HERE *$2/g;
printf "\n%s: Statement with

%2d else-if’s, first at: %d",
$ARGV, $swc, $l;

}
$linecount += $lc;
if(eof) {

close ARGV;
$linecount = 0;
print "\n";

}
}

