
Dynamix - a Meta-Model to Support Feature-Centric Analysis

Orla Greevy

Software Composition Group
University of Berne, Switzerland

greevy@iam.unibe.ch

Abstract

Many researchers have identified the potential of exploit-
ing domain knowledge in a reverse engineering context.
Features are abstractions that encapsulate knowledge of a
problem domain and denote units of system behavior. As
such, they represent a valuable resource for reverse engi-
neering a system. The main body of feature-related reverse
engineering research is concerned with feature identifica-
tion, a technique to map features to source code. To fully
exploit features in reverse engineering, however, we need
to extend the focus beyond feature identification and exploit
features as primary units of analysis.

To incorporate features into reverse engineering analy-
ses, we need to explicitly model features, their relationships
to source artefacts, and their relationships to each other. To
address this we propose Dynamix, am meta–model that ex-
presses feature entities in the context of a structural meta-
model of source code entities. Our meta-model supports
feature-centric reverse engineering techniques that estab-
lish traceability between the problem and solution domains
throughout the life-cycle of a system.

Keywords: meta-model, feature analysis, program com-
prehension, software maintenance

1 Introduction

From an external perspective, users understand a system
as a collection of features that correspond to system be-
haviors to fulfill requirements. As such, features are well-
understood abstractions that encapsulate domain knowledge
and denote a system’s behavioral units. However, the soft-
ware engineer cannot identify and manipulate features, as
they are not explicitly represented in the source code of
object-oriented systems. Typically, feature implementa-
tion cross-cuts the structural boundaries (i.e., packages and
classes) of an object-oriented system [9].

A software engineer is frequently confronted with fea-
tures. Typically, change requests and bug reports are ex-
pressed in a language that reflects the features of a sys-
tem [8]. Therefore, to perform maintenance tasks, a soft-
ware engineer needs to maintain a mental map between the
features and their implementation as source artefacts.

To support the software engineer during maintenance ac-
tivities, system comprehension techniques need to incorpo-
rate and explicitly model the notion of a feature as a first-
class entity.

Typically the software developer is familiar with a struc-
tural representation of a system’s source code, for example
a UML class diagram. UML describes sequence diagrams
to represent runtime behaviors. To support comprehension,
we need to capture the relationship between the structural
perspective of a system in terms of software artefacts and
the dynamic behavioral entities of an object-oriented sys-
tem, namely object instantiations and message sends. To
represent features we understand dynamic behavior in terms
of units that correspond to the features of a system.

In this paper, we describe Dynamix, our meta-model that
supports feature-centric analysis of object-oriented systems
by focusing on features as first-class entities of analysis
in the context of the structural entities, namely packages,
classes and methods.

Structure of the Paper. In the next section, we iden-
tify the motivation for descibing a meta-model for features.
In Section 3 we introduce Dynamix our meta-model for ex-
pressing features as first-class entities in the context of a
structural model of the source code. We present related
work in Section ?? and finally in Section ?? we outline our
conclusions.

2 Motivating a Meta-Model for Feature-
Centric Analysis

Our work is centered around the notion of a feature. We
adopt the definition of a feature proposed by Eisenbarth et



al. [4] as a unit of behavior of a system triggered by the user,
as it is generally accepted by other researchers in a reverse
engineering context [1, 5]:

The main goal of our research is to identify how we can
exploit domain knowledge of object-oriented systems that
is inherent in a user’s perspective of how a system behaves
at runtime so that (1) existing reverse engineering analyses
can be enriched with semantic context, and (2) we can de-
fine reverse engineering analysis techniques that exploit the
notion of features as first-class entities [7]. We establish the
goals of Dynamix, our meta-model to express features in
the context of a system’s behavioral and structural entities
as follows:

1. Behavior. Due to language features like polymorphism
and late binding of object-oriented systems, behavior
of a system cannot be completely automatically deter-
mined by analyzing its source code alone. Thus, to
capture a system’s behavior, we need to perform dy-
namic analysis.

2. Exploiting Domain Knowledge. Our research question
is centered around the problem of exploiting domain
knowledge to enhance system comprehension. We
consider features to be units of behavior encapsulating
domain knowledge.

3. Combining Static and Dynamic Analysis. Two main
distinct approaches to system comprehension have
dominated reverse-engineering research efforts [2]:
dynamic analysis approaches and static analysis ap-
proaches. Both perspectives are necessary to support
the understanding of object-oriented systems [3].To
complement structural analysis of a system, roles of
source artefacts need to be enriched with feature con-
text (i.e., how they participate in features at runtime).

4. Features as First-Class Entities. During the lifetime of
a system, software engineers are constantly required
to modify and adapt application features in response to
changing requirements. A reverse engineering analysis
needs to support this activity by breaking the system
into groupings that reflect its features. As a basis of
any feature-centric analysis we need to define a meta-
model that treats features as first class entities (i.e., pri-
mary units) and establishes relationships between fea-
tures and source artefacts implementing their function-
ality. Therefore, an underlying model should unify be-
havioral data of features and structural data of source
code such as packages, classes and methods. A uni-
fied model would provide a framework for our feature-
centric analysis. The model needs to be generic, ex-
tensible and should easily accommodate metrics from
other feature analysis techniques.

5. Feature Relevancy Measurements. Feature identifica-
tion represents the foundation of our work. Thus, a
feature-centric analysis approach needs to provide a
measurement to quantify the relevance of a software
artefact to a feature, or set of features.

6. Feature Relationships. Software engineers need to un-
derstand relationships between features, as modifica-
tions to one feature may inadvertently affect other fea-
tures. Furthermore, feature relationships reflect con-
straints and dependencies in a problem domain. Thus,
they are important sources of information for system
comprehension. A feature-centric analysis approach
needs to identify and quantify relationships and depen-
dencies between features.

3 Dynamix

We introduce Dynamix, our meta-model to specify be-
havioral entities of feature execution data and their relation-
ships. Dynamix also specifies the relationships between the
behavioral entities and the structural entities representing
source artefacts. Dynamix is MOF 2.0 compliant 1. Our
OCL specifications comply with OCL 2.0 2.

To obtain a model of dynamic and static data of a system
under study, we first extract a structural model by parsing a
system’s source code. Then, we extract feature traces by
exercising a set of features on an instrumented system. We
transform the execution data of feature traces into Dynamix
entities and establish the relationships between the execu-
tion entities and the source entities of the structural model.

In Figure 1 we show the entities of our model in a
UML 2.0 diagram [6]. The Features package represents
the dynamic behavioral data of the feature traces. The
Structure package models the entities of the source code.
We model behavioral data of features using three entities:
Feature, Activation and Instance.

Feature. Each feature trace we capture during dynamic
analysis of a system is modeled as a Feature entity. A Fea-
ture entity is uniquely identified by a name. The Feature
entity allows us to collectively manipulate all the Activa-
tions that correspond to the events of the feature trace which
it models. It maintains a list (modeled as an ordered col-
lection) of all of its Activations for ease of manipulation.
The first Activation of the list represents the root of a fea-
ture trace. We assign properties to Feature entities based
on the Activations and their relationships to other entities
(e.g., number of Activations, number of Instances created,
number of Methods referenced, and feature affinity prop-
erties). Relationships between features are shown in the

1http://www.omg.org/docs/ptc/03-10-04.pdf
2http://www.omg.org/docs/formal/06-05-01.pdf

2



Features Structure 

 
Instance

AbstractEntity/packages: Collection<Package>
/classes: Collection<Class>
/features: Collection<Feature> 

Model

1

*

1

*

1*

1*

method

instanceOf

receivercreator

activations

* /numberOfFeatures: Integer
/featureAffinity: Integer

Method

/numberOfFeatures: Integer
/featureAffinity: Integer

Class

/numberOfFeatures: Integer
/featureAffinity: Integer

Package

notCovered
singleFeature
lowGroupFeature
highGroupFeature
infrastructuralFeature

<<enum>>
FeatureAffinity

1

disjoint
loose
tight
complete

<<enum>>
FeatureSimilarity

{self.referencedObjects = self.activations.receiver->asSet()}

{self.nReferencedObjects = self.referencedObjects.size()}

{self.methods = self.activations.method->asSet()}

Inheritance

superclass superclass

1 *
model

{self.classes = self.activations.receiver.instanceOf->asSet()}

depends
*

dependentFeature

*

{self.createdObjects = self.activations.creator->asSet()}

startTime: Integer
stopTime: Integer
...

Activation

name: String
/methods: Collection<Method>
/classes: Collection<Class>
/referencedObjects: Collection<Instance>
/createdObjects: Collection<Instance>
/nReferencedObjects: Integer
/featureSimilarity: Real
/depends: Boolean

Feature senderActivation
0..1

Figure 1. The Dynamix Meta-Model

3



model with a depends association. We provide the OCL
definition for this relationship between features in Figure 2.
Activation. An Activation in our model represents a method
execution. It holds a reference to its sender Activation. In
this way Dynamix models the tree structure of a feature
trace. Thus, the model preserves the sequence of execution
of method executions of a feature trace. Time is captured
and modeled with two attributes, namely startTime (i.e., the
timestamp in milliseconds, when the method was invoked)
and stopTime (i.e., the timestamp in milliseconds when it
completed execution) of an activation . Each Activation is
associated with a Method entity in the structural model. The
Method entity of the structural model has a relationship to
the Class entity where it is defined. In this way, we model
relationships between features and source entities. Further-
more, an Activation is associated with an Instance entity
which represents the receiver instance of a message. The
sender instance is accessible via its sender Activation. Thus,
Dynamix models the actual object that invokes a method.
This does not necessarily correspond to the static relation-
ship between Method and Class entities, due to inheritance
in object-oriented systems. The return value of a message
is also stored as a reference to an Instance entity in the Ac-
tivation that models the message send.
Instance. We model every instantiated object of a feature
trace as an Instance entity. An Instance is created by an
Activation and maintains a list of references to all Activa-
tions that hold a reference to this object (i.e., Activations
reference the receiver instance of a message, Activations
that hold a reference to the Instance in the return value of a
message send). The Instance is associated with its defining
Class entity of the structural model.

Dynamix supports feature analysis from different levels
of granularity. We exploit relationships between Feature
entities and source entities to view a system at the pack-
age, class or method level of detail. When analyzing large
and complex systems, we may need to obtain a big picture
perspective to locate where features are implemented. In
this case, we focus on the relationships between features
and packages. For more fine-grained perspectives of feature
implementation, we analyze feature-to-class and feature-to-
method relationships.

Figure 1 shows an AbstractEntity from which the entities
(Structure and Feature entities) of our model, are derived. A
Model comprises every entity, and every entity is associated
with the Model entity. For example a Method entity obtains
a collection of all the Feature entities in the model via this
association.

Our Dynamix model as shown in Figure 1 models (1)
sequential programs, (2) one path of execution of features.
We show how Dynamix can be extended to model multi-
threaded applications and multiple execution paths of fea-
tures and discusses how this influences the analysis ap-

proaches described in this dissertation in our previous work
[7].

4 Related Work

5 Conclusion

To fully exploit features in reverse engineering, we need
to treat features as primary units of analysis. We moti-
vated the need to describe a meta-model for features : (1) to
enrich reverse engineering analysis techniques that extract
structural views of a system with semantic knowledge about
roles of source artefacts in features of a system, and (2) to
reason about a system in terms of features themselves and
relationships between features.

We describe Dynamix, a meta-model that expresses the
execution entities of feature behavior and their relation-
ships. Furthermore our meta-model expresses the relation-
ships between the execution entities and a structural model
of source code. Dynamix supports analysis that combines
static and dynamic views of a system.

References

[1] G. Antoniol and Y.-G. Guéhéneuc. Feature identification: a
novel approach and a case study. In Proceedings IEEE Inter-
national Conference on Software Maintenance (ICSM 2005),
pages 357–366, Los Alamitos CA, Sept. 2005. IEEE Com-
puter Society Press.

[2] E. Chikofsky and J. Cross II. Reverse engineering and de-
sign recovery: A taxonomy. IEEE Software, 7(1):13–17, Jan.
1990.

[3] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refactor-
ings via change metrics. In Proceedings of 15th International
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA ’00), pages 166–178,
New York NY, 2000. ACM Press. Also appeared in ACM
SIGPLAN Notices 35 (10).

[4] T. Eisenbarth, R. Koschke, and D. Simon. Locating features
in source code. IEEE Computer, 29(3):210–224, Mar. 2003.

[5] A. Eisenberg and K. De Volder. Dynamic feature traces: Find-
ing features in unfamiliar code. In Proceedings IEEE Inter-
national Conference on Software Maintenance (ICSM 2004),
pages 337–346, Los Alamitos CA, Sept. 2005. IEEE Com-
puter Society Press.

[6] M. Fowler. UML Distilled. Addison Wesley, 2003.
[7] O. Greevy. Enriching Reverse Engineering with Feature

Analysis. PhD thesis, University of Berne, May 2007.
[8] A. Mehta and G. Heineman. Evolving legacy systems features

using regression test cases and components. In Proceedings
ACM International Workshop on Principles of Software Evo-
lution, pages 190–193, New York NY, 2002. ACM Press.

[9] E. Wong, S. Gokhale, and J. Horgan. Quantifying the close-
ness between program components and features. Journal of
Systems and Software, 54(2):87–98, 2000.

4



context Feature
def: importedObjects : Set(Instance) =

self.referencedObjects->excluding(self.createdObjects)

context Feature
def: depends(aFeature: Feature) : Boolean =
( self.importedObjects->intersection(aFeature.createdObjects)->size() > 0)

and not (self = aFeature)

Figure 2. OCL specification of depends relationship between features.

5


