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Abstract

A single software fault may cause several tests to break,
if they cover the same methods. The coverage sets of tests
may not just overlap, but include one another. This infor-
mation could be of great use to developers who would like
to focus on the most specific test that concerns a given fault.
Unfortunately, existing unit testing tools neither gather nor
exploit this information.

We have developed a simple approach that analyses a set
of test suites, and infers the partial order corresponding to
inclusion hierarchy of the coverage sets. When several tests
in an inclusion chain break, we can guide the developer to
the most specific test in the chain.

Our first experiments with three case studies suggest that
most unit tests for typical applications are, in fact, compa-
rable to other tests, and can therefore be partially ordered.
Furthermore, we show that this partial order is semanti-
cally meaningful, since faults that cause a test to break will,
in nearly all cases cause less specific tests too break too.

1 Introduction

Programmers are often confronted with the situation that
a software change causes a number of unit tests to fail, but
in fact only a single defect is responsible for multiple fail-
ures. An important question is therefore: Which test pro-
vides the bestfocusfor the problem at hand, and will help
the programmer to track down the defect most quickly?

In this paper we propose a partial order on tests – a unit
test coversanother unit test, if the coverage set of meth-
ods invoked by the first test is a superset of the coverage
set of the second. We explore the hypothesis that this order
can provide developers with the focus needed during debug-
ging. By exposing this ordering, we can gain insight into
the correspondence between tests and defects: if a number
of related tests break, there is a good likelihood they are

PersonTest>>testName

PersonTest>>testNew

PersonTest>>testBecomeProfessorIn

UniversityTest>>testAddPerson

Figure 1. A Test hierarchy.

breaking because of a common defect; on the other hand, if
unrelated tests break, we may suspect multiple defects.

Consider, for example, the tests in Figure 1. We draw an
arrow from one test to another if the first covers the second.
The test methodPersonTest�testNew (i.e., the methodtest-
New of the classPersonTest) will invoke at run-time some
set of methods of various classes.PersonTest�testName
will invoke those same methods, and more, so its cov-
erage set includes that ofPersonTest�testNew. Note
that we donot require thatPersonTest�testName invoke
PersonTest�testNew, or even that it tests remotely the
same logical conditions; merely that it covers at least the
same methods.

In this hierarchy, if all four tests break, we can infer that,
with great likelihood, there is some single defect that is
causing all the tests to break. SincePersonTest�testNew
is the “smallest” test, in the sense that it covers less meth-
ods, it provides us with better focus, and may help us find
the defect more quickly. In any case, the fact that these tests
are related will cause us to consider them as a group in the
debugging process.

Unfortunately, existing unit testing tools do not order
tests in terms of method coverage, and do not even gather
this information.

Test prioritization [13] has been successfully used in the
past to increase the likelihood that failures will occur early
in test runs.

Here we investigate a different hypothesis. When mul-



tiple tests fail, tests that cover one another fail due to the
same defects. In this paper we provide initial evidence that:

• Most unit tests for a typical application are comparable
by thecoversrelation, and can be partially ordered.

• When a test fails, a test thatcoversit typically fails too.

We have taken three case studies with extensive sets of tests,
and analyzed the tests cases to infer the partial order. Then
we introduced defects to test the hypothesis that when a test
fails, its covering tests will fail too. We validated this hy-
pothesis in each of the three case studies.

In section 2 we present the experiments we carried out
with three case studies. In section 3 we discuss our findings.
In section 4 we give a brief overview of related work. In
section 5 we conclude with a few remarks concerning future
work.

2 Case studies

For our experiments, we took three separate case stud-
ies of small to medium size, for which most functionality
was known to be covered by unit tests. The programs and
tests of the case studies were created by three different de-
velopers who were not aware of our attempts to structure
their tests while they were writing them. In each case we
instrumented the subsystem being tested and generated a
log of which methods were called by the unit tests. This in-
formation was then used to generate the partial order – the
coverage set(the set of methods called) for each unit test
was simply compared pairwise to that of every other unit
test. If the coverage set of a test is a superset of a second
test, we say that the first testcoversthe second. In a second
phase, defects were introduced to validate that breaking of
tests correlated to the partial order identified. In particular,
if a test breaks, we expect that tests that cover it are likely
to break as well.

The experiment was performed using VisualWorks
Smalltalk. The code of interest was instrumented using
AspectS [7]. Our tool removed tests that did not call any
method of the instrumented subsystem but only called those
of prerequisite subsystems. The resulting coverage sets
were then compared pairwise, and used to compute a di-
rected, acyclic graph representing the partial order. Tests
with identical coverage sets were put in common nodes in
the DAG, since they are equivalent in the partial order.

In a second phase, defects were introduced in the code to
test the hypothesis that the failures would respect the order-
ing. We therefore

• iterated over all test cases that are covered by some
other test case,

• determined which methods were invoked by that test,
but not by any other test that it covers,

• mutated each method signature by deleting its method
body,

• for each each mutation ran the tests and all its covering
tests and collected the results.

2.1 MagicKeys

MagicKeys is a package that makes it easy to graphi-
cally view, change and export/import keyboard bindings in
VisualWorks Smalltalk1. 16 tests existed for MagicKeys.
37% of the methods in the package were covered by the test
cases. One test had an empty coverage set, which meant
that it only checked methods of prerequisite packages. In-
deed the comment of this test case read

make sure that all the ctrl cmbinations are indeed
in Textconstants. As the lookup in the dispatch-
table depends on this (VisualWorks code, not
ours), we assume they are. However, this tests
this assumption (together with the naming con-
vention).

Three tests were identified as equivalent. This equivalence
is not surprising, given the names of the tests:

• MagicKeysTest�testAltDispatchWriting

• MagicKeysTest�testMetaDispatchWriting

• MagicKeysTest�testShiftDispatchWriting

The resulting graph consisted of 12 nodes containing a sin-
gle test case, and one containing the three equivalent tests.
The computation of the inclusions took 19756 milliseconds
to run whereas the uninstrumented test cases took 26 mil-
liseconds to run.

Only one test was not comparable to any other test case
(see Figure 3), and only 5 tests were not covered by any
other test. (see Figure 2. The deepest level of a chain in the
DAG was 6.

We mutated altogether 46 methods. 43 mutations also
broke all covering tests. 23 of them yielded the same failing
or erroneous test results in each covering test. So 20 mu-
tations gave at least 2 different error or failure messages in
their covering tests. 5 mutations of these gave both failures
and errors in the covering tests. 3 mutations belonging to 3
different tests made the deepest test fail, but let some cov-
ering tests pass. This validates our hypothesis that most but
not necessarily all tests break if some covered test fails.

2.2 VAN

VAN is a version analysis tool, which is being developed
in our group. We examined its domain model and the asso-
ciated tests.

1http://homepages.ulb.ac.be/∼rowuyts/MagicKeys/index.html
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Figure 2. Magic Keys: Test hierarchy.
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Figure 3. Comparable nodes of Magic Keys.

Figure 4. Van Test hierarchy.

The 67 tests covered 64% of the application. A total of
246 method signatures were covered. Running the unin-
strumented tests alone took 100 seconds; running the in-
strumented tests and generating the partial order took 748
seconds.

Three pairs of equivalent test cases were identified. One
test case was identified as being empty so a total of 63 cov-
ered test cases remained. The developer of VAN told us
that one of these equivalent pairs consisted of an accidently
duplicated test. In one of the remaining pairs one test was
dependent on the other, but as they called the same methods
in a recursive manner, our tool could not differentiate them.

16 of the tests where covered in at least one other test.
This means that for roughly every fourth test the chance is
very high, that if it fails at least one other test will fail also.

The deepest level of a chain in the DAG was 5. We asked
the developer of VAN, where he would expect some over-
lapping before we started the experiment. He predicted 2
places which were included in the 13 found.

The resulting graph of TestComposer contained the fol-
lowing coverage between tests, where their composition
property could have even been guessed by their method
names:

• CategoryHistoryGroupTest�testENM
(OperatorTest�testENMOperator)
We introduced a bug in the ENMOperator class and
both tests naturally failed.

• LoaderTest�testConvertXMIToCDIF
(LoaderTest�testLoadXMI)

• SystemHistoryTest�testAddVersionNamedCollection
(SystemHistoryTest�testAddVersionNamed)

• SystemHistoryTest�testSelectClassHistoriesWithLifeSpan
(SystemHistoryTest�testSelectClassHistories)

We mutated altogether 251 methods. 160 mutations did not
let any test pass. 130 of them yielded the same failing or
erroneous test results in each covering test. So 121 muta-
tions gave at least 2 different error or failure messages in
their covering tests. Only 23 out of 251 hard method delet-
ing mutations broke the deepest test in the coverage chain
without breaking all the covering tests. To do the mutation
experiment took about 120 minutes.

2.3 CodeCrawler

CodeCrawler [8] is a language independent reverse en-
gineering tool which combines metrics and software visu-
alization and is also being developed in our group. We ex-
amined all its 79 tests. The 79 tests covered 24% of our
instrumented methods and took 51 seconds to run uninstru-
mented. The sorting and running of the instrumented tests
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Figure 5. Comparable nodes of VAN.

Figure 6. Code Crawler Test Hierarchy (dis-
played using Code Crawler).

took 261 seconds. Four of the 79 tests only checked meth-
ods of prerequisite systems and our tool therefore declared
them as being empty. 28 of the remaining 75 tests could
be put into 10 equivalence relations. Here again we have
an example of equivalent tests whose names suggest their
similarity.

• CCNodeTest�testRemovalOfEdgeRemovesChild

• CCNodeTest�testRemovalOfEdgeRemovesParent

• CCNodeTest�testRemovalOfSoleEdgeRemoves-
ChildOrParent

So 57 tests were sorted and only 8 were incomparable to
any other node. The deepest level of a chain in the DAG
was 6. 36 tests were isolated, 25 tests were covered by at
least one other test. One test was covered by many tests,
because it was mainly using some setup.

Unfortunately, we were unable to run the full experi-
ment, which appeared to loop endlessly due to some of the
defects we had introduced. In order to get some results, we
chose to only mutate a 10th of the covered methods of each
test case.

We mutated altogether 41 methods. 27 mutations yielded
different results for the chain of dependent tests and 14
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Figure 7. Comparable nodes of CodeCrawler.

the same. In 11 out of the 27 mutations no test passed.
Only 3 mutations broke the inner test but some covering
test passed. To do the mutation experiment took about 45
minutes.

3 Discussion

The experiments described above are rather simple, but
they are also remarkable for the consistency of their results.
In each case, a significant majority of the test cases was
comparable to other tests, using the rather stringent criterion
of inclusion of the sets of methods called. We fully expect
to obtain similar results for other applications with good test
coverage.

Furthermore, each of the case studies consistently
showed that if a defect will cause a particular test to break,
then, with high probability, tests that precede it in the partial
order will also break. The partial order over tests is there-
fore, not just accidental, but exposes semantic relationships
between the tests.

These relationships should, in principle, be of aid to de-
velopers who must track down defects in the software when
changes are introduced. Whenever a change causes mul-
tiple tests to break, the partial order over the test set can
be used to tell the developer which are the mostspecific
tests that have broken (i.e., those with the smallest coverage
sets). These tests will likely give the developer the best fo-
cus when debugging. Less specific tests are probably break-
ing for the same reason, and may only introduce more noise
into the debugging process.

We must be careful, though, not to claim too much. We
have only validated the hypothesis that a partial order over a
typical test set exists, and that this order is meaningful. Let
us now consider the limitations of what we know.
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The defects we have introduced are quite radical – we
have eliminated entire method bodies of methods being
called in known tests. Will other, more realistic kinds of
defects cause chains of tests breaking in ways that respect
the partial order?

We compare a test to another using the set ofall in-
strumented methods called, without distinguishing methods
called directly or indirectly. Would we obtain similar results
considering only direct method calls? AspectS provides us
with enough detailed information to allow us to perform
other experiments that make use of more fine-grained in-
formation.

Similarly, we make no distinction between methods that
are being called incidentally, and those methods that are ac-
tually being tested. In fact, there is no way to know which
methods are being tested without asking the test developer.
Certain methods will be called to set up the test objects,
others to obtain certain side effects, yet more to sample the
state of the test objects, and others to clean up. It is hopeless
(if not meaningless) to ask which are the methods that are
being “tested”.

We have not yet made a distinction between failures,
i.e., tests that break because of a failed assertion, and er-
rors,i.e., tests that fail because a run-time exception occurs.
We expect that failures will mostly respect the partial order,
since they indicate that something that is intentionally being
tested has broken. It seems naturally that a less specific test
will likely break as well. But an error is more accidental in
nature. Since each test case is different (we observed very
few instances of tests actually calling other tests), there is
no reason to expect errors to respect the partial order. At
this time, however, we have no evidence that there is a dif-
ference between failures and errors.

There is an implicit assumption in our motivation for this
work that more specific tests in the partial order are actually
“smaller” in some sense than less specific tests, and that
they will actually provide better focus in debugging. Both
these hypotheses are open at this time. Nevertheless, even
if we obtain evidence to the contrary, we expect that devel-
opers will still be able to benefit from the knowledge that
certain tests are semantically related, even if the partial or-
der does not necessarily correspond to a natural order in
which to examine the tests.

Naturally there is a cost to identifying the partial order.
Potentially this order will change every time the system is
modified, or a test case is added or changed, so the order
will have to be recalculated. The cost of instrumenting the
tests and calculating the partial order must be small enough
that it does not pose an unacceptable burden. The current
approach of pairwise comparisons is admittedly naive and
inefficient, but we can easily imagine more efficient ways of
topologically sorting tests, and incrementally updating the
order when changes occur.

4 Related Work

Test-driven development [1] is a technique in which test-
ing and development occur in parallel, thereby providing
developers with constant feedback. Saff and Ernst [14]
demonstrate that continuous testing speeds up development.
Parrishet al. [10] define a process for test-driven develop-
ment that starts with fine-grained tests and proceeds to more
coarse-grained tests.

Once a set of test cases is identified an attempt
is made to order the test case runs in a way that
maximizes early testing. This means that defects
are potentially revealed in the context of as few
methods as possible, making those defects easier
to localize.

In their approach, tests are written with a particular order
in mind. In our approach, on the other hand, we investigate
a posterioriorderings of existing tests. In both cases, the
ultimate goal is to improve the quality the feedback loop.

Debugging with tests is analogous to grading students
with exams. If individual exam questions are too broad, one
can only detect that a student is deficient in some area, but
not be able to tell specifically what knowledge is missing.
In oral exams, teachers may move from broader to more
specific questions to tell exactly where a student is strong
or weak. In computer aided teaching [5] the term “granu-
larity” was introduced with this sense of more specific and
less specific questions. The partial order we impose on test
sets are intended to capture a similar notion of granularity
for software tests, though the resulting “granularity hierar-
chies” [9] are technical quite different from the partial or-
ders we obtain.

Rothermelet al. [11] introduce the term “granularity”
for software testing, but they focus on cost-effectiveness of
test suites rather than on debugging processes.

Selective regression testing is concerning with determin-
ing an optimal set of tests to run after a software change is
made [12] [2]. Although there are some similarities with the
work initiated in this paper, the emphasis is quite different.
Instead of selecting which tests to run, we analyse the set of
tests that havefailed, and suggest which of these should be
examined first.

Test case prioritizing [13] sorts test cases to some spe-
cific criteria. The criterion which most closely matched our
approach wastotal function coverage[6]. Here a program
is instrumented and, for any test case, the number of func-
tions in that program that were exercised by that test case is
determined. The test cases are then prioritized according to
the total number of functions they cover by sorting them in
order of total function coverage achieved.

Zeller,et al. [4][15] use delta debugging on simplifying
test case input, reducing relevant execution states and find-
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ing failure-inducing changes. We focus on reducing failing
tests from a set of semantically different tests to the most
concise but still failing tests, their techniques could pay off
even more using this smaller tests.

5 Conclusion and Future work

We have proposed a simple approach to partially order
tests in terms of the sets of methods they invoke. Initial
experiments with three case studies reveals that this simple
technique exposes a large number of ordering relationships
between otherwise independent tests. Furthermore, the par-
tial order seems to correspond, in most cases, to a semantic
relationship in which less specific tests tend to fail if more
specific tests also fail.

The reported experiments are only a first step. We plan
to explore much larger case studies, and see if these results
scale up. The correspondence between the partial order and
failure dependency between tests needs to be tested with
other kinds of defects. We plan to artificially introduce more
fine-grained defects and check their impact on test failures,
and we also plan to analyse historical test failure results for
their correspondence with the partial order.

So far our experiments have been limited to Smalltalk,
but it should be easy to extend the approach to other lan-
guages, like Java.

In the long term, we are interested in exploring the im-
pact of ordering and structuring tests on the development
process. The partial order that is detected automatically
may not only help to guide developers in the debugging
process, but it may provide hints to how tests can be bet-
ter structured, refactored and composed.
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