
Idioms for Composing Games with EToys

Markus Gaelli, Oscar Nierstrasz
Software Composition Group

University of Bern, Switzerland

{gaelli,oscar}@iam.unibe.ch

Serge Stinckwich
GREYC, Université de Caen/CNRS, France

serge.stinckwich@info.unicaen.fr

Abstract

1 Creating one’s own games has been the main motiva-
tion for many people to learn programming. But the barrier
to learn a general purpose programming language is very
high, especially if some positive results can only be expected
after having manually written more than 100 lines of code.
With this paper we first motivate potential users by showing
that one can create classic board- and arcade games like
Lights Out, TicTacToe, or Pacman within the playful and
constructivist visual learning environment EToys dragging
together only a few lines of code. Then we present recurring
idioms which helped to develop these games.

1. Introduction

Any problem in computer science can be solved
with another level of indirection. But that usually
will create another problem. — David Wheeler
[20]

Software people tend to favor the joy of complex-
ity, yet we should strive for the joy of simplicity.
— Alan Kay

Squeak is a feature-rich, platform-independent open
source implementation of the Smalltalk programming lan-
guage written in itself and by many developers. It includes
network- and 2D/3D-graphics support, an integrated devel-
opment environment, and a constructivist learning environ-
ment for children called EToys[9]. EToys are used as a
teaching vehicle around the world, including high-schools
in the United States, Japan, Spain, France and Germany.

EToys introduce a new way of programming to a wide
audience: Traditional, widespread programming languages
like Java and C++ are text based and require a strong sep-
aration between GUI and underlying model. In contrast,

1Fourth International Conference on Creating, Connecting and Collab-
orating through Computing (C5’06) pages 222–231

EToys, which are modeled after Self [18], provide an inter-
face where the developer must drag and drop together code
which directly manipulates visual objects. By not separat-
ing the GUI from the model, EToys open up the opportu-
nity to explore a rather different application development
paradigm, albeit within a rather constrained environment.
We present several fairly complex applications built within
EToys and we identify several recurring idioms2 which al-
low the developer to keep the GUI and the model together
in one object.

By setting up examples of classic games built within
EToys and publishing recurring idioms used while devel-
oping these games, we hope to motivate and help potential
users of Squeak to play around with “this instrument whose
music is ideas”.

The games presented in this paper as well as many oth-
ers can be downloaded together with their scripts from the
first author’s web site [6]. The rest of the paper is struc-
tured as followed: First we introduce classic games built
with EToys, and then we explain visual idioms used build-
ing this games.

2. Games

As space is rather limited we will not explain in detail
how we have developed these games with EToys [2]. In-
stead we will focus on describing their features, showing
motivating screenshots, and explaining and categorizing re-
curring idioms of the solutions.

2.1 14-15 Puzzle

The 14-15 puzzle [7] was invented by Sam Loyd in the
1870s. In the original version the stones 14 and 15 are inter-
changed, and the (impossible) task for the player is to bring

2We draw the usual distinction between idioms and design patterns:
idioms are implementation techniques closely tied to a particular program-
ming language or programming paradigm, whereas design patterns are re-
curring micro-architectures that are relatively language-independent. The
idioms we present lie somewhere at the boundary between idioms and de-
sign patterns.



Figure 1. 14-15 Puzzle composed out of four
lines of code

all numbers from 1 to 15 into the right order. As you can
see in Figure 1 one can create a running user-interface of
this puzzle with only four lines of code.

Features This is a very basic implementation of the puz-
zle but comes with an easy-to-use interface. The player only
has to move the mouse over a stone, which is a neighbor to
the empty cell, and immediately this stone is moved to the
empty cell.

Idiom: Visual Cursor The actual empty cell gets stored
into the cursor of the puzzle-playfield.

Idiom: Connected Neighbors The trick is to let the cells
have rounded corners. Then we can change the layout of the
cells in such a way that horizontal or vertical neighbor-cells
overlap whereas diagonal cells stay apart. The test if a cell
is the neighbor of the empty cell then simply boils down to
the built-in query whether the cell morph overlaps the cell
morph of the empty cell stored as a variable in the container.

2.2 Concentration

Concentration [4] is a classic children’s game in which
the goal is to identify pairs of identical cards amongst a
bunch of face-down cards. When a matching pair is found,
the cards stay face up until all pairs are found.

Features Our version includes a counter of how many
clicks the user needed to detect all pairs, and a restart button
which gets activated when all the cards are turned over. As
one can see in Figure 2 we used photos rather than symbols,

Figure 2. Concentration composed with 32
lines of code

as it is easy to import them into Squeak: Just drop them on
the Squeak Window. We composed this game with only 32
lines of code.

Idiom: Visual Cursor The last revealed card gets stored
into the cursor of the concentration-playfield. The next time
a card is turned it is compared to the most recently flipped
one. If they match, both are turned face up, else both stay
face down.

2.3 Lights Out

The goal of Lights Out [11] (see Figure 3) is to turn all
cells to the same color. If a cell is clicked, that cell and all
its horizontal and vertical neighbors invert their color.

Features We only implemented the basic feature which
drives the game. There is no score management or reset
of the application. The size of the playfield can easily be
adjusted by adding or removing cells.

Idiom: Visual Cursor The latest cell pressed is stored in
the cursor of the playfield after having been pressed.

Idiom: Connected Neighbors The idea is again to use
rounded corners and change the layout so that all horizontal
and vertical neighbor cells overlap. Then the second script
is executed which inverts all cells overlapping the “current-
Cell” stored in the container. As the current cell overlaps
with itself, it also gets inverted.



Figure 3. Lights Out in six lines of code

2.4 Pong

Pong (see Figure 4) is the first arcade computer game
ever and was originally implemented on an oscilloscope.
Two ping pong paddles on either side of the playing table
can be moved up and down to bounce the ball back to the
other player.

Features We only implemented a very basic ball bounc-
ing algorithm: If the ball hits the paddle, it bounces back
with an output angle equally to its input angle. The score
of the left player increases if the ball is missed by the right
player and vice versa. Nothing special happens in this ver-
sion when a player wins. The players have to hit the key-
board each time they want to move the ball.

Idiom: Intelligent Environment Both the horizontal and
the vertical walls are distinct rectangle-siblings. If a vertical
wall finds out that it overlaps the ball, the opposite counter
is incremented by one and the ball is put back in the middle
of the playfield.

Idiom: Text as variable The counters are actually just
texts: Each vertical wall has an instance-variable which is
typed as “player” and points to the text.

2.5 Tic Tac Toe

Tic Tac Toe (see Figure 5) is a classical board game and
was one of the first programs the first authors developed on
the Commodore 64 using Basic, the immediate program-
ming language any owner of the C64 was confronted with
after starting the computer. The goal is to to put three stones
in a diagonal, vertical or horizontal row.

Features The EToy version provides a fairly complete
user interface. It gives the player direct feedback which
player won the game and why (indicating the winning line

Figure 4. A Pong game composed out of 28
lines of code

in red), and a restart button, which only gets activated at the
end of a game.

Idiom: Intelligent Environment Since EToys provides
no mechanism to perform matrix queries, we need another
way to detect if three stones from the same player occur in
a row. We do this by introducing lines as can be seen in
Figure 5. We associate to each player’s stones either the
value 1 or -1. When a stone is placed, its value is added
to the counter of each line that it touches. When some line
reaches the value 3 or -3, we know that one player or the
other has won.

Idiom: Visible Factory We indicate the current player
by setting the cursor of the holder to either the circle or the
cross. At the same time we use this currently indicated stone
as a prototype for copying it into the clicked empty cell.

2.6 Space Invaders

Peter Vogel, a high-school teacher with some back-
ground in Basic programming, developed this classic arcade
game (see Figure 6) in EToys, with some help of one of the
authors.

Features We implemented some bomb-dropping aliens,
a ship which can shoot one visible rocket at a time, and
which is only steerable via a joystick and not via a keyboard.
(keyboard support only came in a later version of EToys).
The game comes with a score display and the possibility to
restart it.



Figure 5. Two-player version of Tic Tac Toe in
36 lines of code

Idiom: Encode interactions into the affected objects
When a rocket hits an alien, the alien gets destroyed. To
have a reference on the alien we encode the “check for de-
struction” method on the aliens, which are all siblings. On
the other hand we can encode the behavior of alien bombs
destroying the mothership into the bombs as we only have
one mothership and thus its reference is clear.

Idiom: Text as variable We do not store the actual score
in some variable but put it directly in some visible text-field.

2.7 PacMan

Pacman is the classic arcade game in which one has to
steer pacman through a labyrinth in order to eat pills and
avoid monsters. If certain pills are eaten, pacman can eat
monsters for a while.

Features Pills can be eaten, score is maintained, and
monsters send pacman to the graveyard. Currently pacman
cannot eat monsters. (See Figure 7.) It has to be admitted,
that here the fun was more in developing the game than in
actually playing it, as the current version is too feature-poor
to be really interesting.

Idiom: Intelligent Environment One trick we used here
to make the monsters follow the alleys was to insert some
points in the crossings. If a monster collides with such a
point, it changes direction randomly.

We also introduced a graveyard-playfield: If pacman
dies, it gets included into a hidden playfield called ”grave-

Figure 6. Space Invaders in 64 lines of code

yard“. Thus we only have to put it back from there when
the game is restarted.

Idiom: Encode interactions into the affected Pacman
eats pills. But we do not encode this into pacman but into
the pill: only then we have a reference to the eaten pill that
we can use to hide the pill.

Idiom: Text as variable Again we increment directly a
text-field storing the high-score each time a pill gets eaten.

2.8 PetitPetri

Petri nets are a “pinball game” for mathematicians [15].
They are used to formally describe concurrent processes
like the classic example of the deadlocking dining philoso-
phers [5]. We implemented a simple Petri net editor in
EToys (see Figure 8) and use it in our concurrent program-
ming course for masters students at the University of Bern.

A Petri net consists of transitions and places connected
by directed arcs. A place is a container that can hold several
tokens. If all incoming arcs to a transition are connected
to places holding at least one token, then the transition is
enabled and can be fired. When a transition is fired all its
incoming places reduce their number of tokens by one and
all its outgoing places increment their number of tokens by
one.

Our implementation [12] makes use of the connectors
framework from Ned Konz [10], which comes with the ac-
tual squeakland version 05. In contrast to other graphic
frameworks like Hotdraw [3] connectors and their con-
nected elements can be programmed directly: Whereas in
Hotdraw one usually duplicates the topology of some graph



Figure 7. Pacman in 36 lines of code. One
cannot yet eat monsters though.

by representing the graph both graphically and as a model,
connectors invite the developer to directly manipulate the
nodes and edges. Connectors e.g., provide expressions to
send some messages to all incoming or to all outgoing
nodes.

Features This is a very basic implementation of the Petri
nets but comes with an easy-to-use interface. Transitions,
places and arcs can be created using factory buttons as pro-
vided by the connectors framework. If a transition becomes
enabled, it turns green, and can be clicked to fire it. Tokens
are represented as integers, which can be edited directly.
Multiple connections between places and transitions are not
provided yet.

Idioms used

Visible Factory An essential part of the user interface of
PetitPetri is the button bar, with which new containers, tran-
sitions and arcs can be created. The button maker is part of
the connectors framework

3. Idioms

Let us now take a closer look at the idioms we used to
build the games described above. Although we do not wish
to belabor the point whether these are “just idioms” or “re-
ally design patterns” [8], we note that they seem to fit the
characterization of design patterns posed by the architect
Christopher Alexander:

Each pattern describes a problem which occurs
over and over again in our environment, and then

Figure 8. Dining philosophers in a Petri Net
implementation consisting of 24 lines of code

describes the core of the solution to that problem,
in such a way that you can use this solution a mil-
lion times over, without ever doing it the same
way twice. [1]

The design principle behind all our idioms is: “Form is
function” [19]: The objects introduced or tweaked are all
visual and thus merge their behavior and their visualization
like the naked objects from Pawson et al. [14]. The behav-
ior of the visual objects depend on their form, position or
color. Thus we can keep the number of lines of code low.
As the architect Frank Lloyd Wright said:

Form follows function — that has been misunder-
stood. Form and function should be one, joined in
a spiritual union.

3.1 Intelligent Environment

Encode otherwise implicit behavior of an object into an-
other object of the environment.

Motivation Tic Tac Toe is won when three stones of the
same kind are put on a horizontal, vertical or diagonal line.
Lacking abstract and invisible data types in EToys, the de-
veloper is forced to think about a visual representation of
these lines. By introducing real and intelligent lines, this
problem can be solved. Furthermore the winning condition
can be visualized by coloring the winning line red.

Putting intelligence into the environment is a known
technique and can be found in Kedama and StarLogo [13]
[16] where intelligence is put into the patches in which the
turtles live.



Applicability Use this idiom whenever the behavior of an
object depends on its environment. Ask yourself if you can
alter the environment in such a way that it visually repre-
sents the problem.

Consequences Altering the environment by either chang-
ing its visual properties, like its color, or by introducing new
visual objects not only helps to create a solution in a more
distributed and object-oriented way, it often also gives the
user of the application direct visual feedback.

Known Uses In the classic EToys car demo, two 10-year
old girls came up with a different solution to automatically
steer the car around a given track: Instead of providing two
different colored sensors they encoded the solution in the
environment — when the car sees a blue lake inside the
track it turns left, when it sees the gray surrounding it turns
right.

In the pacman implementation, we encoded the junctions
for the monsters by putting squares on the junctions. When
a monster encounters such a square it changes its direction
randomly.

3.2 Encode interactions into the affected objects

If an object of one kind interacts with an object of an-
other kind, encode the behavior in the affected object.

Motivation Rockets destroy aliens. To destroy the alien
one needs a reference to the affected alien after an encounter
with a rocket has occurred. EToys currently do not provide
references to the objects touched by a given object. So it
becomes necessary to detect the encounter on the side of
the affected object, as it is guaranteed to have a reference to
itself.

Applicability Use this idiom whenever you need to check
for some external condition like collisions and need to
change the state of an object later. Encode the test and con-
sequence into the affected object.

Consequences Using this idiom slows down your game.
Instead of only letting the pacman check for collisions with
pills, one needs to spawn a different process for each pill in
the game.

In the case of collisions each EToy should have a plug-
gable behavior or trait [17] that would allow the developer
to ask it for all objects which actually collide with it. There-
fore it would be desirable to enumerate these objects and
send some messages to them: EToyers miss the select:
and do: idioms known from Smalltalk and this idiom only
provides a trick to circumvent this problem.

Known Uses Pacman eating pills and rockets killing
aliens.

3.3 Visual Cursor

Store a selected element of a playfield in a cursor

Motivation As we have seen in Lights Out or the 14-15
puzzle, it is often necessary to iterate over all elements of
a playfield and compare each element with a given one. To
accomplish this we store the element of interest into the cur-
sor of its surrounding playfield.

Applicability Use this idiom whenever you need to select
some element of a playfield.

Consequences Actually there is already a cursor in play-
fields but it is only settable via the index of an element.
Incrementing the cursor index of playfields is enough when
one wants to do simple animations. For selecting given el-
ements it is rather cumbersome to first detect the index of
the element only to set it later. It would be nice if EToys
provided a direct way of setting the cursor to some given
element.

Known Uses Visual cursors are used for doing animations
as shown by Allen-Conn et al. in [2]. We broadened their
scope for highlighting an element of a playfield to detect
overlapping elements like in the 14-15 puzzle or Lights Out
or to store them as in Concentration.

3.4 Text as variable

Use texts to directly store values

Motivation It is cumbersome to introduce integer typed
variables holding some score-value, only to update some
text fields later whenever the score has changed. Instead we
use the text-morphs provided by “supplies” to directly store
the score into them. We then can get or set the score via the
numericValue tile found in the “basic”-category of the
text-viewer.

Applicability Use this idiom whenever you display some
textual information to the EToy-user that might be recom-
puted later.

Consequences As an alternative one could also introduce
new variables and then drag out watchers to display their
values to the user. But these watchers come with a small
font and currently one cannot change these font-families
and font-sizes.



Text-morphs can be seen as global variables. But this
does not hurt too much in the case of the games we pre-
sented here: All the objects which are of interest to the user
are also of interest to the developer and fit on one screen.
Texts can also be “scoped” by putting them into some play-
fields.

Known Uses We used this idiom whenever we had to dis-
play some score or high-score to the user.

3.5 Connected Neighbors

Encode neighborhood relationship of objects by letting
them overlap.

Motivation Many board games consist of a matrix of con-
nected cells. In some games the cells are neighbors only
horizontally or vertically (e.g., 15-puzzle), in some also the
diagonals are neighbors too (e.g., Game of Life). In order to
detect if two cells are neighbors, one can change the layout
of the matrix in such a way that connected neighbors over-
lap. If the cells are not neighbors on the diagonals, we make
the borders rounded, thus reflecting their relationship both
to the EToy-Developer and to the user. The developer then
only has to ask if the current cell, possibly stored in a visual
cursor, overlaps a given (e.g., clicked) cell.

Applicability Use this idiom whenever you need to intro-
duce neighbors to each other.

Consequences This idiom allows the developer to detect
if two cells are neighbors.

Known Uses See Section 2 for the 15-puzzle and Lights-
Out or [6] for the game of life. The trick in the case of these
matrix based playfields is to change the layout of the matrix,
so that neighboring morphs overlap.

3.6 Visible Factory

Store the prototype of an object in some place which
makes sense to the end user

Motivation Having a display indicating the ships left is
essential to the space-invaders player. When a ship is de-
stroyed, the user has the imagination, that the next ship
comes out of the home base. But what makes sense to the
user, also makes sense to the developer: She could reuse the
rocket base as a visual prototype-holder to fetch the next
rocket, after one has been destroyed.

Applicability Use this idiom whenever you have stones
of different colors to set, ships to launch or pacmen to put
into some game.

Consequences This idiom allows the developer to display
valuable state information like ships left to the user, while
fully exploiting the metaphor of a base station by really tak-
ing the next ship from there. Therefore the lines of code
decrease, and the game is easier to understand.

Known Uses In the Tic Tac Toe example we indicated the
current player in the holder by highlighting his/her stone.
This very stone is copied into the cell clicked, when the
player makes his move, before the next prototype stone is
selected again. The button-makers of connectors are visible
factories to create visible factories.

4. Concluding remarks

We have shown that it is possible to implement various
classical games in EToys with just a few lines of code. As
such, EToys is surely attractive to beginning programmers
who are eager to see the fruits of their labours as early as
possible.

However, we believe that EToys exposes some other im-
portant notions that seem to run against the grain of con-
ventional programming. Most significantly, EToys trashes
the conventional wisdom that one should separate the model
from the view. All objects have a graphical representation.
Furthermore there are no objects that are not graphical. This
can be both a curse and a blessing, as illustrated by the pro-
gramming idioms we have identified. For instance, in order
to get around the fact that there are no hidden data struc-
tures, one must introduce visible entities that make up for
this lack. Instead, however, of simulating data structures
with graphical objects, one programs in a different way —
the programmer is forced to think in terms of what is ex-
plicit and visibly present.

Some of the idioms we have identified begin to look
like design patterns — best practices that that solve com-
mon design problems — but others look a bit like clumsy
workarounds that compensate for shortcomings in the pro-
gramming environment. We do not yet have enough insight
to propose alternative solutions, but we hope that we may
have convinced the reader that EToys are more than just
toys, and could well indicate a path to more expressive and
direct way of programming.

We also hope our examples and suggested idioms help a
bit to make teaching and learning to program possible and
fun, which it should be.



Acknowledgments

We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the projects “A
Unified Approach to Composition and Extensibility” (SNF
Project No. 200020-105091/1, Oct. 2004 - Sept. 2006),
and “RECAST: Evolution of Object-Oriented Applications”
(SNF Project No. 620-066077, Sept. 2002 - Aug. 2006).

References

[1] Christopher Alexander, Sara Ishakawa, and Murray
Silverstein. A Pattern Language. Oxford University
Press, New York, 1977.

[2] B.J. Allen-Conn and Kimberly Rose. Powerful Ideas
in the Classroom. Viewpoints Research Institute, Inc.,
2003.

[3] John Brant. Hotdraw. Master’s thesis, University of
Illinois at Urbana-Chanpaign, 1995.

[4] Concentration. http://en.wikipedia.org/wiki/-
Concentration (game).

[5] Edsger W. Dijkstra. Hierarchical ordering of sequen-
tial processes. Acta Informatica, 1(2):115–138, 1971.

[6] Composing Simple Games with EToys.
http://www.emergent.de/etoys.html.

[7] 15 Puzzle. http://en.wikipedia.org/wiki/N-puzzle.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley,
Reading, Mass., 1995.

[9] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wal-
lace, and Alan Kay. Back to the future: The story
of Squeak, A practical Smalltalk written in itself. In
Proceedings OOPSLA ’97, ACM SIGPLAN Notices,
pages 318–326. ACM Press, November 1997.

[10] Ned Konz. Connectors: A framework for building
graphical applications in squeak. In IEEE C5: The
Second International Conference on Creating, Con-
necting and Collaborating through Computing, vol-
ume 2, pages 96–103, 2004.

[11] Lights Out. http://en.wikipedia.org/wiki/Lights Out-
(game).

[12] Oscar Nierstrasz and Markus Gaelli. PetitPetri—A
Petri Net Editor done with EToys, September 2005.
http://www.iam.unibe.ch/∼scg/Teaching/CP/PetriNets.

[13] Yoshiki Ohshima. The Early Examples of Kedama, A
Massively Parallel System in squeak. In IEEE C5: The
Third International Conference on Creating, Connect-
ing and Collaborating through Computing, volume 3,
pages 93–100, 2005.

[14] Richard Pawson and Robert Matthews. Naked Ob-
jects. Wiley and Sons, 2002.

[15] James L. Peterson. Petri nets. ACM Computing Sur-
veys, 9(3):223–252, September 1977.

[16] Mitchel Resnick. Turtles, Termites, and Traffic Jams.
MIT Press, 1994.

[17] Nathanael Schärli. Traits — Composing Classes from
Behavioral Building Blocks. PhD thesis, University of
Berne, February 2005.

[18] David Ungar and Randall B. Smith. Self: The power
of simplicity. In Proceedings OOPSLA ’87, ACM SIG-
PLAN Notices, volume 22, pages 227–242, December
1987.

[19] Bosse Westerlund. Form is Function. In Proceedings
DIS 2002 Serious reflection on designing interactive
systems, pages 117–124, July 2002.

[20] David Wheeler. http://en.wikipedia.org/wiki/-
David Wheeler.


