
Components for Embedded Software

The PECOS Approach

Thomas Genßler
Forschungszentrum Informatik

(FZI), Germany,
http://www.fzi.de

genssler@fzi.de

Oscar Nierstrasz
Software Composition Group

(SCG), University of Bern,
Switzerland,

http://www.iam.uinbe.ch/˜scg

oscar@iam.unibe.ch

Bastiaan Schönhage
Object Technology
International (OTI),
The Netherlands,

http://www.oti.com

Bastiaan Schonhage@oti.com

ABSTRACT
Software is more and more becoming the major cost factor for em-
bedded devices. Already today, software accounts for more than
50 percent of the development costs of such a device. However,
software development practices in this area lag far behind those
in the traditional software industry. Reuse is hardly ever heard of
in some areas, development from scratch is common practice and
component-based software is usually a foreign word. PECOS is a
collaborative project between industrial and research partners that
seeks to enable component-based technology for a certain class of
embedded systems known as ”field devices” by taking into account
the specific properties of this application area. In this paper we in-
troduce a component model for field device software. Furthermore
we report on the PECOS component composition language CoCo
and the mapping from CoCo to Java and C++.

Categories & Subject Descriptors
D.2.11 [Software engineering]: Software architectures — embed-
ded systems; D.3.2 [Programming languages]: Language classifi-
cations;

General Terms
Design, Languages

Keywords
Embedded systems, Field devices, Component based software de-
velopment

1. INTRODUCTION
The state-of-the-art in software engineering for embedded systems
is far behind other application areas. Software for embedded sys-
tems is typically monolithic and platform dependent. Development
from scratch is common practice. The resulting software is hard to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES 2002, October 8–11, 2002, Grenoble, France.
Copyright 2002 ACM 1-58113-575-0/02/0010 ...$5.00.

maintain, upgrade and customize. Beyond that it is almost impossi-
ble to port this software to other hardware platforms. Component-
based software engineering would bring a number of advantages
to the embedded systems world such as faster development times,
the ability to secure investments through reuse of existing compo-
nents, and the ability for domain experts to interactively compose
and adapt sophisticated embedded systems software. The key tech-
nical questions and challenges are:

� Component model: What kind of component model is
needed to support modularization and re-use of software for
embedded systems? Which non-functional aspects of this
software (such as timing constraints) have to modeled ex-
plicitly to enable automated compositional reasoning?

� Lightweight composition techniques: How can component-
based applications be mapped on efficient and compact code
that fulfills the hard requirements imposed by the application
domain?

� Platforms and tools: How can we increase software portabil-
ity (and thus increase re-use and productivity)? What tools
are needed to support efficient specification, composition,
validation, and deployment of embedded systems applica-
tions built from components?

The PECOS project1 aims to enable component-based software de-
velopment for embedded systems. In order to achieve concrete re-
sults, PECOS is driven by a case study in the domain of field de-
vices. Section 2 introduces the PECOS case study, summarizes the
particular requirements of field devices for CBSD, and provides an
example application that illustrates the PECOS working domain.
Section 3 introduces the PECOS (field device) component model.
In Section 4 we introduce the PECOS composition language for
component based software. Examples are used, to illustrate the
concepts and the mapping between the language and the model.
Section 5 provides concepts for deploying the specified software
to real devices. It describes how components are mapped to target
code and how certain concepts are implemented.

2. CASE STUDY DESCRIPTION
ABB’s Instruments business unit develops a large number of differ-
ent field devices, such as temperature-, pressure-, and flow-sensors,

�

Funded by the European Commission under IST Program IST-1999-20398 and by
the Swiss government as BBW 00.0170. The partners are Asea Brown Bovery AG
(ABB, Germany), Forschungszentrum Informatik (FZI, Germany), Object Technol-
ogy International (OTI, The Netherlands), and Institut für Informatik und Angewandte
Mathematik, University of Bern (UNIBE, Switzerland)

19

actuators and positioners. A field device is an embedded hard real-
time system. Field devices use sensors to continuously gather data,
such as temperature, pressure or rate of flow. They process this
data, and react by controlling actuators like valves or motors. To
minimize cost, field devices are implemented using the cheapest
available hardware that is up to the task. A typical field device
may contain a 16-bit microprocessor with only 256KB of ROM
and 40KB of RAM.

Figure 1: Pneumatic positioner TZID

The software for a typical field device, such as the TZID pneu-
matic positioner shown in Fig. 1, is monolithic, and is separately
developed for each kind of field device. This results in a number of
problems.

� Little code reuse: the same functionality (e.g., Non-volatile
Memory-Manager, Field-bus Driver, or control-algorithms)
is re-implemented at different development locations in dif-
ferent ways for different field devices.

� Plug-incompatibility: functions and modules are imple-
mented for a specific device without standardized interfaces.

� Inflexibility: monolithic software is hard to maintain, extend
or customize.

� Cyclic execution model: Software is often implemented in
several periodic tasks with different cycle times (e.g.,

�����
,

�������
and

���	�
�
). This makes it hard to incorporate spo-

radic and long running functions without introducing dead-
line misses. Furthermore it is error-prone to change soft-
ware from the cyclic execution approach to process-based
scheduling[7].

In order to validate CBSD for embedded systems, the PECOS
project is developing the hardware and software for a demonstra-
tion field device. The task of the PECOS field device is to control
a three-phase motor connected to a valve (see Fig. 2).
The motor is driven by a frequency converter that can be controlled
by the field device over Modbus (an industrial communication pro-
tocol). The motor can be coupled to a valve either directly via a
worm shaft or using additional gearing (4). A pulse sensor on the
shaft (5) detects its speed and the direction of rotation. The PECOS
board (1) is equipped with a web-based control panel (7) with some
basic elements for local operation and display.The demonstrator
can be integrated in a control system via the field-bus communi-
cation protocol Profibus PA (6). The device is compliant to the
profibus specification for Actuators [14, 13].

2.1 Example Application
We will use the following example throughout this paper to illus-
trate the PECOS component model and composition language. Part

of the PECOS case study is concerned with setting a valve at a
specific position between open and closed. Fig. 3 illustrates three
connected PECOS components that collaborate to set the valve po-
sition; the desired position is determined by other components not
shown here. In order to set and keep the valve at a certain position,
a control loop is used to continuously monitor and adjust the valve.

� The ModBus component works as an interface to a piece of
hardware called the frequency converter, which determines
the speed of the motor. The frequency to which the motor
should be set is obtained from the ProcessApplication com-
ponent. ModBus outputs this value over a serial line to the
frequency converter using the ModBus protocol.

� The FQD (Fast Quadrature Decoder [2]) component is re-
sponsible for capturing events from the motor. This com-
ponent abstracts from a micro-controller module that does
FQD in hardware. It provides the ProcessApplication with
both the velocity and the position of the valve.

� The component ProcessApplication obtains the desired po-
sition of the valve (Set-Point) and reads the current state of
the valve from the FQD component. This information is then
used to compute a frequency for the motor. Once the mo-
tor has opened the valve sufficiently, ascertained by the next
reading from the FQD, the motor must be slowed or stopped.
This repeated adjustment and monitoring constituted the con-
trol loop.

This example illustrates the key issues – besides the tight resource
situation – concerning the field device domain: (1) Cyclic behavior
– each component is responsible for a single piece of functional-
ity, which is repeatedly executed (with a specified cycle time) and
must not take longer than a specified worst-case execution time.
(2) Data-flow-oriented interaction – components communicate
by means of shared data. The interface of a component consists of
a set of data ports. (3) Threading – some components are passive
(i.e., cyclically invoked by a scheduler), while others (like FQD)
have their own thread of control in order to react on asynchronous
events or to perform long computations in the background.

3. A COMPONENT MODEL FOR EMBED-
DED SOFTWARE

In order to apply component-based software development to em-
bedded systems software, we must be precise about what we mean
by a component. In particular, we must take care to specify how
components are structured and composed, which properties of
components are important to capture and reason about, and how
a composition of components can be interpreted at run-time.
Here we briefly present a meta-model that reflects an architectural
style [17] for embedded systems software. We also sketch how
compositions of components can be interpreted by means of Petri
nets.

3.1 Model Elements
Fig. 4 illustrates the key elements of the component model. Com-
ponents have interfaces defined by a number of ports, and may be
hierarchically composed. So-called leaf components are treated as
black boxes, and are directly implemented in some host program-
ming language. Composite components, on the other hand, are
built by connecting the ports of other, existing components (leaf
or composite), and expressing which ports of the constituent com-
ponents are exported as ports of the composite (See Fig. 5.)

20

Figure 2: PECOS case study device

Figure 3: FQD control loop

Figure 4: A Component Model for Embedded Software

Ports are shared variables that allow components to communicate
with each other. Connected ports and exported ports therefore rep-
resent the same variable. Connectors may only connect ports of
compatible type, direction and range.
The model expresses three kinds of components relevant for em-
bedded systems.

Active Components (e.g., ModBus in figure 3) have their own
thread of control. Active components are used to model on-

going or long-lived activities that cannot complete in a short
cycle-time. A complete system composed of components is
always modeled as a composite active component. Compos-
ite active components schedule their constituent components
in order to meet the deadlines imposed by the real-time con-
straints.

Passive Components (e.g., ProcessApplication) have no own
thread of control. They are used to encapsulate a piece of be-
havior that executes synchronously and completes in a short
cycle time. Passive components are scheduled by the nearest
active parent that contains them.

Event Components (e.g., FQD) are components whose function-
ality is triggered by an event. They are typically used to
model hardware elements that periodically generate events.
Typical examples are timers, used to keep track of deadlines,
or devices that emit events encoding status information, such
as the current rotation speed of a motor, the current tempera-
ture, and so on.

Components are characterized by their properties, which encode
information such as timing and memory usage.

3.2 Execution model
In addition to the static structure described above, the Pecos model
has an execution model that describes the behavior of a Field De-
vice. By using Petri nets [19] to represent the execution model,
we intend to reason about real-time constraints and automatically
generate real-time schedules for software components.

21

leaf components

connected ports

exported port

composite component

Figure 5: A Composite Component

The execution model deals with the following two issues: Syn-
chronization – how to synchronize data-flow between components
(esp. between components that live in different threads of control)
and Timing – how to make sure that component’s functionality is
executed according to cycle times and required deadlines.
A composition of components has as many threads of control as
there are active components. Each active component is responsi-
ble for scheduling the passive components under its control. We
formalize the execution semantics by means of a Petri net interpre-
tation. The details of this formalization, however, are beyond the
scope of this paper. They are described in [11, 9].

4. THE COCO COMPONENT LANGUAGE
In this section we introduce the component composition language
CoCo. The CoCo language is the syntactical representation of the
model described in section 3. The language is intended to be used
for 1) the specification of components, 2) the specification of entire
field device applications and 3) the specification of architectures
and system families. In addition, CoCo supports reuse of compo-
nents and architectures and supports compositional reasoning. Last
but least, CoCo serves as input for scheduler computation and code
generation.
We first give an overview on the CoCo language. We describe
how developers can specify components in terms of their inter-
faces and their behavior We subsequently show how CoCo supports
the specification of system families. Finally, we sketch how CoCo
specifications can be used for reasoning about functional and non-
functional properties of a system.

4.1 CoCo Language Overview
Components represent units of computation and are the major
means of structuring a CoCo system. CoCo supports all component
types of the component model. For example, Figures 6 and 7 show
a CoCo specification of our running example. There we see an
active component (marked with the keyword active), an event com-
ponent (keyword event) and two passive components. In analogy
to the OO model, components play the role of classes. Components
define a scope in the same sense as OO classes do. Components can
be instantiated that is, one can create an instances of a component
with a unique identity.
Components are composite when they contain instances of other
components (see for example the component PositionValve in Fig-
ure 7). In PECOS, an entire application, such as a field device,
is modeled as a composite component. Instances of components
have a component type and a unique name within the scope of the
enclosing component. All instances are created at system start-up
that is, there is no ”new” statement to dynamically construct new
instances during run-time but all possible instances are known at

event component FQD �
output float actualPosition;
output float velocity;
property cycleTime = 100;
property execTime = 10;�

active component ModBus �
input float setFrequency;
property cycleTime = 100;
property execTime = 10;�

component ProcessApplication �
input float setPoint;
input float actualPosition;
input float velocity;
output float setFrequency;
property cycleTime = 100;
property execTime = 20;�

Figure 6: The FQD control loop components specified in CoCo

compile time. This allows for a number of checks at compile-time
as well as for automated scheduler generation.

component PositionValve �
ModBus mb;
FQD fqd;
ProcessApplication pa;

input float setPoint;

connector c1 (setPoint, pa.setPoint);
connector c2 (fqd.actualPosition,

pa.actualPosition);
connector c3 (fqd.velocity, pa.velocity);
connector c4 (pa.setFrequency, mb.setFrequency);�

Figure 7: The FQD (Fig. 3) control loop itself specified in CoCo

Programming in CoCo is data-flow-oriented. Ports (e.g., “set-
Point”) denote data flow into or out of a component and are the only
means to communicate with a particular component. One can think
of the set of ports of a component as the interface to a piece of func-
tionality that is executed cyclically or in response to a certain event
in order to compute output values depending on the current input
values and/or the internal state of the component. The actual be-
havior, however, is not specified at the level of CoCo specifications
but hidden in the implementation of the component. The only infor-
mation available about this implementation is the worst-case time
it takes to perform the computation (property ”execTime”) and the
interval between this computations (property ”cycleTime”). These
values are specified in CoCo as component properties. Ports are as-
signed both a data flow direction (input, output, or in-/output) and a
data type. Connection of components is achieved through the use of
connectors (e.g., connector c1 in component PositionValve). Con-
nectors connect a list of ports defined either in the current compo-
nent (like port setPoint in connector c1) or by one of the contained
instances (that is, instances in the same scope). Different connec-
tors that share a common port represent the same connection. For
composite event and active components, this is only true within the
scope of their ancestor component while for passive components

22

this also holds for ports of instances within this particular passive
component.
Properties serve to specify functional and non-functional features
of a component, such as init values for ports, memory consumption
and worst-case execution time. They can be structured in so-called
property bundles. These bundles group properties that semanti-
cally belong together, such as scheduling information (worst-case
execution timer, cycle time). Properties can be used by tools to
inspect the component in different phases of the development pro-
cess (e.g., when calculating a scheduler). Properties can be set on
a per-component basis and a per-instance basis.

4.2 Adding Behavior to Components
CoCo does not only support the specification of component inter-
faces but also provides some help for the specification of the actual
behavior of components. There are two ways of adding behavior
to a component. One is by composing a component out of exist-
ing components the other is by filling in code written in the target
language. For the latter, CoCo provides three pre-defined hooks:

� initialize: Initialization code for a particular compo-
nent such as init values for ports is added here. This code is
executed by the run-time system upon start-up.

� execute: Serves to specify the actual functionality of a
component that is, the algorithm that computes output values
using the internal state of a component and/or input values.
The time of execution of this functionality depends on the
component type. For a passive component this functionality
is invoked synchronously by a scheduler. For active com-
ponents, this functionality is executed continuously within a
separate thread. Event components (including timer compo-
nents) perform their functionality when the particular event
occurs that this particular event component listens to.

� sync: Active and event components have this additional
part. The code in sync is executed synchronously - like
execute of passive components - by a scheduler and serves
to exchange data between the asynchronous thread or event
handler of active components respectively event components
and the synchronous outside world.

The code that can be specified here has to be valid target language
code (C++ or Java). A developer can only use primitives defined by
the PECOS run-time environment. This means in particular that a
developer cannot start new threads or do anything else which might
affect schedules. To deploy a component to a particular target plat-
form (i.e., to generate code for this platform) all hooks of each
component involved have to be filled in with appropriate target lan-
guage code. The code generator adds these code fragments to the
generated code.

4.3 Specifying software families with CoCo
Components serve to specify concrete pieces of a system but there
is no good means yet to specify architectural styles or families
of components or families of entire applications (devices). CoCo
provides the concept of abstract components for this purpose. By
means of abstract components one can specify a template of a sys-
tem that can later be filled in with concrete components. Abstract
components do not have a representation in the model as they do
not contribute to the run-time behavior of field device software.
They are merely a technique to simplify specification and to enable
reuse of designs.
Besides the elements known from normal components, abstract
components can define so-called roles. Roles are typed variation

abstract component PecosControlLoop �
role AbstractProcessApplication PecosPA;
role AbstractControlDevice PecosCtrl;
role AbstractFeedBackDevice PecosFdbck;
input float setPoint;

connector setPoint(setPoint, PecosPA.setPoint);
connector feedback1(PecosPA.actualPosition,

PecosFdbck.actualPosition);
connector feedback2(PecosPA.velocity,

PecosFdbck.velocity);
connector control(PecosPA.setFrequency,

PecosCtrl.setFrequency);�
[...]
component PositionValve is PecosControlLoop �
ProcessApplication pa is PecosPA;
ModBus mb is PecosCtrl;
FQD fqd is PecosFdbck;�

Figure 8: Using abstract components to specify system families

points or holes in a (micro-)architecture. Fig. 8 shows the specifi-
cation of an architectural style for control loops.
We assume that a PecosControlLoop should always have an in-
stance of sub-type of AbstractProcessApplication that plays the
role PecosPA in our valve controller architecture. AbstractProces-
sApplication again is an abstract component that defines a certain
interface (i.e., ports, properties) every process application compo-
nent has to conform to. Thus, roles serve as placeholders for in-
stances. These placeholders can also be connected by connectors
as if they were normal instances. This way a developer is able to
specify an entire family of applications that share a common ar-
chitecture in terms of the components involved and their data-flow
dependencies. To create a specific member of this family, a com-
ponent has to implement the respective abstract component. Im-
plementing an abstract component means that all roles defined by
this abstract component have to be bound to suitable instances and
that all connectors, instances, ports, and properties defined in this
abstract component become now part of the implementing compo-
nent. In our example the role PecosPA is bound to an instance of
component ProcessApplication. The component ProcessApplica-
tion on the other hand is required to implement the abstract com-
ponent AbstractProcessApplication.

4.4 Composition checking
In order for a composition to be valid, certain rules must be fol-
lowed. Besides simple syntactic rules, that are checked by a com-
position language parser, some semantic rules must also be fol-
lowed. These rules express requirements, that emerge from the
component model. Examples include rules, like “if a component
implements an abstract component, it must bind all roles” or “all
mandatory ports must be bound”, etc. First order predicate logic
is used to check these rules. The PECOS composition tool is able
to generate a set of Prolog facts out of a composition. These facts
describe the the whole system, together with all included compo-
nents and their connections. Semantic rules are formulated as Horn
clauses, which are checked against the generated facts.
Besides semantic rules imposed by the PECOS component model,
application domain specific rules may be imposed on a specifi-
cation. For example, embedded systems in a particular domain,
e.g. field devices, have a specific set of requirements that could be
checked using composition rules.
Finally, it may be important to impose application specific rules.
Such rules could express certain requirements for debugging or re-

23

lease versions of the software, dependencies between components,
platform specific property settings, etc. To check these rules, they
are also given to the system as Prolog rules, which are checked
against the generated facts.

5. CODE GENERATION: FROM COCO TO
C++ AND JAVA

CoCo can be used to specify a system using the Pecos model. To
be able to build a functional system out of a CoCo specification we
have developed a language mapping from CoCo to target languages
such as C++ and Java. This section briefly indicates the basics of this
mapping.

5.1 Mapping Components
Components in the PECOS model are directly mapped to classes in
the target language. Components are functional units that perform
some actions by means of an execute part. Passive components
within the same scope perform their execution synchronously, one
at a time. Active components, however, run in parallel with the rest
of the system. This is realized by mapping the PECOS model to
a prioritized, pre-emptive multi-threaded system (the Pecos Execu-
tion Environment). For assigning components to a particular thread
we deploy the following rules:

1. Every active and event component runs in its own thread.

2. Every passive component that is part of a composite runs in
the same thread as its direct parent.

Instances of components are mapped to objects in the target lan-
guage. More specifically, since instances of components can only
occur inside of composite components, these instances are mapped
to member variables. Instances are given the same name as the
name in the specification and can be accessed through the class
representing the composite component.
Ports in the PECOS model are the means to exchange data be-
tween components. In the model, three types of ports exist: input-
port, output-ports and inout-ports. In the target language, ports are
represented as getter and setter methods depending on the type of
port. Input-ports are mapped to a get-method, output-ports to set-
methods and inout-ports are mapped to both get- and set-methods.
By mapping ports to getter and setter methods, we are able to hide
the implementation of connectors between the ports in the methods
and, at the same time, give the user an easy means of accessing
the ports. As an example, Fig. 9 shows the generated code for the
PositionValve component.

5.2 Mapping Connectors
Instead of only specifying stand-alone components, CoCo is de-
signed to specify a system consisting of interacting components.
Therefore a data exchange mechanism has been introduced that
connects ports through connectors. A connector takes care that data
at an output port is ”moved” to the connected input port.
Data exchange between components can be achieved in a couple of
ways. Two common approaches are: shared memory and copying
values. In the language mapping we describe here, we have chosen
for a hybrid approach. Within a collection of components running
in a single thread data is exchanged through shared memory. This
is achieved by assigning a piece of shared memory to every thread
for data communication.
The Data Store that implements the shared memory is an automati-
cally generated artifact. Inside a single thread, mapping connectors
in the PECOS model to the Data Store is straightforward. The value

of a connector is stored on a specified location in the Data Store.
The generated get- and set-methods to exchange data on a port use
indices that read from, respectively write to, that location in the
Data Store. To achieve this, the generated classes use constant in-
dices that are used to access the right value. When two ports are
connected they use exactly the same index (the constant variable
has the same value). This results in two ports that use the same
location in the DS.
Active components together with their passive subcomponents are
running in their own threads. Each thread has its own Data Store
for the connectors locally to this particular thread. Connectors be-
tween ports that belong to components in different threads work
differently. They exchange data by copying values from the Data
Store in one thread to the Data Store in the other thread. A sched-
uled synchronization method (sync, see subsection 4.2) is used to
exchange data between the different threads.
Since the behavior of the synchronize method cannot be known be-
forehand and it is not specified in the model either, users currently
have to provide their own methods. A typical example of a synchro-
nize method would copy data in or out of the thread’s Data Store
depending on the state of the component. Therefore, two utility
methods are generated to aid in performing these tasks:

� import_<portname> : imports the value from the ”out-
side” world into the ”local” DS (input-port and inout-port
only)

� export_<portname> : exports the value from the ”lo-
cal” DS to the ”outside” world (output-port and inout-port
only)

5.3 Executing the System
To be able to run the generated code an execution environment is
necessary. In PECOS, we therefore defined the PECOS Execution
Environment that abstracts from its underlying (Real-Time) OS and
provides some language independent interfaces for synchroniza-
tion. An execution environment for C++ and Java is defined that
provides a common API for both supported target languages.
The execution environment contains a highest-priority first, pre-
emptive scheduler. Every active component (and its passive sub-
components) in a CoCo specification are mapped to a separate
thread in the target execution environment. The assignment of pri-
orities, periods and deadlines for the tasks can be specified as a
timing property of every active component. The actual schedule is
computed from the values of these properties.

6. RELATED WORK
Several approaches to the composition of software from compo-
nents have been proposed in the literature. An important contri-
bution to this stems, without doubt, from the field of software ar-
chitecture systems [5, 17, 8]. Architecture systems introduce the
notion of components, ports, and connectors as first class represen-
tations. However, most of the approaches proposed in the literature
do not take into account the specific properties of software systems
for embedded devices.
In [12] van Ommering et.al. introduce a component model that is
used for embedded software in consumer electronic devices. Koala
components may have several ”provides” and ”requires” interfaces.
Each of this interfaces defines ”ports” in the sense of methods. In
order to generate efficient code from Koala specifications, partial
evaluation techniques are employed. However, Koala does not take
into account non-functional requirements such as timing and mem-
ory consumption. Koala lacks a formal execution model and auto-
mated scheduler generation is not supported.

24

package org.pecos.generated;

import pecos.rte.component.PecosPassiveComponent;
import org.pecos.generated.DataStore;

public class PositionValve extends PecosPassiveComponent �
public PositionValve() �

super("PositionValve");�
public ModBus mb = new ModBus();
public FQD fqd = new FQD();
public ProcessApplication pa = new ProcessApplication();
public float get_setPoint() �

return (DataStore.val_float[DataStore.PositionValve$setPoint]);�
public void initialize() �

mb.initialize();
fqd.initialize();
pa.initialize();�

public void execute() ��
�
; /* PositionValve */

Figure 9: Generated Java code for PositionValve component

In [18] a framework for dynamically reconfigurable real-time soft-
ware is presented. It is based on the concept of so called Port Based
Objects. The framework provides only a limited form of specify-
ing a component (e.g., only rudimentary scheduling information is
given, predefined port types). Furthermore the architecture is lim-
ited i.e., there is no support for composite components. The veri-
fication of a composition regarding non-functional properties such
as memory consumption and schedulability is lacking too.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented an approach to component-based
software development in the area of embedded field device soft-
ware.
We have developed a component model that takes into account
the specific requirements imposed by the application domain. The
main features of this model are the data-flow-oriented program-
ming style and the explicit incorporation of non-functional require-
ments. We have shown how components and applications can be
specified in terms of the language CoCo and how these specifica-
tions are mapped onto target code. We also sketched how CoCo
supports system families.
One of the goals of the PECOS project is to support all steps neces-
sary to develop component software. This includes the component
specification and composition, component implementation, model
checking and deployment. During the project, prototypes of com-
position environments have been produced, which shall lead to a
(commercial) tool. The PECOS team has decided to use the Eclipse
platform (www.eclipse.org) as a common base for component
development. The Eclipse platform (see figure 10) is an open devel-
opment framework, which can be dynamically extended by plug-
ins. As basic functionality, Eclipse support basic editing, compil-
ing and version control of (Java) source files. In addition to this,
an increasing amount of plugins is separately developed to extend
Eclipse, such as C++ tooling and UML editing. In an ongoing effort,
the different PECOS tools are integrated into Eclipse, to give devel-
opers a single tool, which supports the whole development cycle of
component based software for field devices.

8. ADDITIONAL AUTHORS
Additional authors: Alexander Christoph, Michael Win-

ter (Forschungszentrum Informatik, Germany), email:�
christo � winter � @fzi.de; Stéphane Ducasse, Roel

Wuyts, Gabriela Arévalo (University of Bern, Switzerland),
email:

�
ducasse � wuyts � arevalo � @iam.unibe.ch; Peter

Müller, Chris Stich (ABB Research Center, Germany), email:�
peter.o.mueller � chris.stich � @de.abb.com.

9. REFERENCES
[1] Embedded C++ home page. www.caravan.net/ec2plus.
[2] Fast Quadrature Decode TPU Function (FQD).

Semiconductor Motorola Programming Note. TPUPN02/D.
[3] Gesellschaft für Prozessautomation & Consulting bH home

page. www.gpc.de.
[4] TPTPN home page. www.diit.unict.it/users/scava/tptpn.html.
[5] R. Allen and D. Garlan. A formal basis for architectural

connection. ACM Transactions on Software Engineering and
Methodology, 6(3):213–49, July 1997.

[6] G. J. Badros and A. Borning. The Cassowary Linear
Arithmetic Constraint Solving Algorithm: Interface and
Implementation. Technical Report UW Technical Report
98-06-04, University of Washington, 1998.

[7] A. Burns and A. Wellings. Real-Time Systems and
Programming Languages. Addision Wesley, 1989.

[8] P. C. Clements. A survey of architecture description
languages. In Int. Workshop on Software Specification and
Design, 1996.

[9] S. Ducasse and R. W. (editors). Field-device component
model. Technical Report Deliverable D2.2.8, Pecos, 2001.
www.pecos-project.org.

[10] M. Naedele. On the Modeling and Evaluation of Real-Time
Systems. PhD thesis, Swiss Federal Institute of Technology
(ETHZ), 2000.

[11] O. Nierstrasz, S. Ducasse, R. Wuyts, G. Arévalo, A. Black,
P. Müller, C. Zeidler, T. Genssler, and R. v. d. Born. A
component model for field devices. In To Appear: Second
Conference on Component Deployment, 2002.

25

Figure 10: The upcoming PECOS toolkit

[12] R. v. Ommering, F. v. d. Linden, J. Kramer, and J. Magee.
The koala component model for consumer electronics
software. IEEE Computer, 2000.

[13] PROFIBUS International. Device Datasheet for Actuators,
Version 3.0. www.profibus.org.

[14] PROFIBUS International. PA General Requirements, Version
3.0. www.profibus.org.

[15] B. Schönhaage. Model mapping to C++ or Java-based
ultra-light environment. Technical Report Deliverable
D2.2.9-1, Pecos, 2001. www.pecos-project.org.

[16] B. Schulz, T. Genssler, A. Christoph, and M. Winter.
Requirements for the Composition Environment. Technical
Report Deliverable D3.1, Pecos, 2001.
www.pecos-project.org.

[17] M. Shaw and D. Garlan. Software Architecture –
Perspectives on an Emerging Discipline. Prentice Hall, 1996.

[18] D. B. Stewart, R. A. Volpe, and P. K. Khosla. Design of
dynamically reconfigurable real-time software using
port-based objects. IEEE Transaction on Software
Engineering, 23(12):pages 759–776, 1997.

[19] J. Wang. Timed Petri Nets. Kluwer Academic Publishers,
1998.

26

