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Abstract

1Knowing where to start reverse engineering a large
software system, when no information other than the sys-
tem’s source code itself is available, is a daunting task.
Having the history of the code (i.e., the versions) could be
of help if this would not imply analyzing a huge amount of
data. In this paper we present an approach for identify-
ing candidate classes for reverse engineering and reengi-
neering efforts. Our solution is based on summarizing the
changes in the evolution of object-oriented software systems
by defining history measurements. Our approach, named
Yesterday’s Weather, is an analysis based on the retrospec-
tive empirical observation that classes which changed the
most in the recent past also suffer important changes in the
near future. We apply this approach on two case studies and
show how we can obtain an overview of the evolution of a
system and pinpoint its classes that might change in the next
versions.

Keywords: software evolution, reverse engineering,
object-oriented programming, program understanding

1 Introduction

When starting a reverse engineering effort, knowing
where to start is a key question. When only the code of
the application is available, the history of a software system
could be helpful. However, analyzing a software system’s
history is difficult due to the large amount of complex data
that needs to be interpreted. Suppose we had as case study
40 versions of a software system’s code, each version con-
sisting on average of ca. 400 classes. We would have to
analyze ca. 16000 classes,i.e.,class versions, which would
make the analysis more difficult. Still, the history of the
system contains valuable information about the life of the

1Proceedings of ICSM 2004 (International Conference on Software
Maintenance), 2004, pp. 40–49

system, its growth, decay, refactoring operations, and bug-
fixing phases.

The code history of a system holds useful information
that can be used to reverse engineer the most recent version
of the system and to get an overall picture of its evolution.
Nevertheless, it requires one to create higher level views of
the data.

The basic assumption of this work is that the parts of
the system which change are those that need to be under-
stood first. We can find about the tendencies of changes by
looking at the history of the system. However, not every
change in the history of the system is relevant for the future
changes. For example, the parts of a system which were
changed in its early versions are not necessarily important2

for the close future: Mens and Demeyer suggested that the
evolution-proneparts of a system are those which changed
a lot lately [16].

In this paper we aim to measure how relevant it is to
start reverse engineering from the parts of the system which
changed the most in the recent past. Based on historical in-
formation, we identify the parts of the system that changed
the most in the recent past and check the assumption that
they are likely to be among the most changed classes in the
near future. If this assumption held many times in the sys-
tem history, then the recently changed parts are good candi-
dates for reverse engineering. Our experiments showed that
important changes do not necessarily imply that they only
occur in big classes (in terms of lines of code, methods or
attributes). Therefore identifying the big classes in the last
version of a software system is not necessarily relevant for
its near future.

In this paper we analyze the evolution of object-oriented
systems. We analyze classes as they are the primary abstrac-
tions from which applications are built. We identify classes
that are likely to change by defining evolutionary measure-
ments which summarize the history of object-oriented sys-
tems. We show the relevance of these measurements in our

2By importantwe denote the fact that these classes will be affected by
changes.
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approach which we namedYesterday’s Weather. It is simi-
lar to the historical observation of the weather: a good way
of guessing what the weather will be like tomorrow is to
think it will stay the same as today, which depending on
the location can have very high success rates. However,
this probability is not the same in all places. For example,
in the Sahara desert the chance that the weather stays the
same from one day to the next is higher than in Switzer-
land, where the weather can change in a few hours. There-
fore, before we can use such a predictive and intrinsically
fuzzy approach for “successful weather forecasts”, we need
historical information about the climate of the place we are
interested in.

Yesterday’s Weatheris a measurement applied on a sys-
tem history and it characterizes the “climate” of a software
system. More specifically,Yesterday’s Weatherprovides an
indication that allows one to evaluate the relevance of start-
ing reverse engineering from the classes that changed the
most recently.

We start by presenting an overview of our approach in
Section 2. In Section 3 we define the measurements needed
to compute theYesterday’s Weather. In Section 4 we present
the results obtained on two case studies, and then discuss
the variation points of our approach. Before concluding, we
discuss related work. In the appendix we show key aspects
of the implementation of the tools we use.

2 Yesterday’s Weatherin a Nutshell

We defineYesterday’s Weather(YW) to be the retrospec-
tive empirical observation of the phenomenon that at least
one of the classes which were heavily changed in the recent
history is also among the most changed classes in the near
future.

Our approach consists in identifying, for each version of
a subject system, the classes that were changed the most in
the recent history and in checking if these are also among
the most changed classes in the successive versions. We
count the number of versions in which this assumption
holds and divide it by the total number of analyzed versions
to obtain the value ofYesterday’s Weather.

Example. Suppose that for a systemYWyields a value of 50%.
This means that the history of the system has shown that in 50%
of the cases at least one of the classes that was changed a lot in the
recent past would also be among the most changed classes in the
near future.

YW characterizes the history of a system and is useful
from a reverse engineering point of view to identify classes
that are likely to change in the next version. On one hand we
use such information to make out progressive development
phases in the evolution of the system (e.g.,what is/was the
current focus of development?). In phases where the devel-
opers concentrate on a certain part of the system, the evolu-

tion would be fairly easy to predict. During repairing phases
due to bug reports or little fixes the developers change the
software system apparently at random places which leads to
a decrease of predictability (i.e.,the weather becomes unsta-
ble). On the other hand it also gives a general impression of
the system (i.e.,how stable is the climate of the whole sys-
tem?). By interpreting theYWwe identify that the changes
are either focused on some classes over a certain period of
time, or they move unpredictably from one place to another.

Example. If the YWvalue of a software systemS1 is 10%, this
implies that the changes in the system were rather discontinuous –
maybe due to new development or bug fix phases. If theYWyields
an 80% value for a systemS2, this implies the changes in the sys-
tem were continuous. In such a system, we say it is relevant to
start the reverse engineering from the classes which were heavily
changed lately, while this is not the case in systemS1.

3 Yesterday’s Weatherin Detail

We define ahistory to be a sequence of versions of the
same kind of entity (e.g.,class history, system history, etc.).
By a version we understand a snapshot of an entity at a cer-
tain point in time (e.g.,class version, system version, etc.).

1 2 3 4versions

Class History A

Class History B

ClassHistory C

Figure 1. Example of a system history displayed in an
Evolution Matrix.

Example. In Figure 1 we use a simplified example of the Evo-
lution Matrix [12] to display a system history with four versions.
A cell in the matrix is marked by a square and represents a class
version. A line in the matrix represents a class history and a col-
umn represents a system version. In Figure 1, class A was present
in all four versions of the system, class B was removed in the last
system version, while class C appeared in the system only after the
first system version.
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3.1 History Measurements

A class is the primary unit of design and structure in
object-oriented systems. The functionality of the system
is defined by classes and their methods. We consider as
change to a class an addition or a removal of at least one
method. Therefore, to measure the changes in the history of
a class we measure the differences in their number of meth-
ods in different versions. In the following paragraphs we
define 3 measurements that are necessary to compute the
YW value of a software system, namely the (1)Evolution
of Number of Methods(ENOM), the (2)Latest Evolution of
Number of Methods(LENOM), and the (3)Earliest Evolu-
tion of Number of Methods(EENOM).

1. Evolution of Number of Methods (ENOM)

We defineENOMi as being the difference in the num-
ber of methods between versioni−1 andi of the class
C:

(i > 1) ENOMi(C) = |NOMi(C)−NOMi−1(C)| (1)

ENOMj..k is the sum of the number of methods added
or removed in subsequent versions from versionj to
versionk out ofn versions of a class C:

(1 6 j < k 6 n)

ENOMj..k(C) =
Pk

i=j+1 ENOMi(C) (2)

We use this measurement to show the overall changes
performed during the lifetime of a class.

2. Latest Evolution of Number of Methods (LENOM)

When computingENOMj..k all the changes have the
same importance. WithLENOMj..k (see Equation 3)
we favor the recent changes over the changes further in
the past by applying a weighting function2i−k which
decreases the importance of a change as the versioni
in which it occurs is more distant from the latest con-
sidered version (k).

(1 6 j < k 6 n)

LENOMj..k(C) =
Pk

i=j+1 ENOMi(C)2i−k (3)

3. Earliest Evolution of Number of Methods
(EENOM)

As opposed toLENOM, we defineEENOM to favor
the changes closer to the first version of the history

over the changes that appear closer to the latest version
of the considered history (see Equation 4).

(1 6 j < k 6 n)

EENOMj..k(C) =
Pk

i=j+1 ENOMi(C)2k−i+1 (4)

3.1.1 Interpretation of the Measurements

2 3 4

2 24 2

2 2
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D

ENOM1..5 LENOM1..5
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Legend:
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EENOM1..5

3.25

1.37

2.12

0

5.25

2

7

3

2

versions

Figure 2. Examples of the computation of theENOM,
LENOMandEENOMclass history measurements. Figure 3
shows in more details how we obtained the values applied
on the history of class A.

ENOM1..5 =

LENOM1..5 =

 = 7

= 3.50

2 4 3 5A 7

2 212

2*2-1 2*201*2-22*2-3

+++

+++

EENOM1..5 = = 3.252*2-2 2*2-31*2-12*20 +++

Figure 3. Detailed computation ofENOM, LENOM and
EENOMfor class history A.

Figure 2 presents an example of a system history dis-
played with an Evolution Matrix view [12] in which each
square represents a class version and the number inside the
square represents the number of methods of that particular
class version. On the right side of Figure 2 we display the
computed values ofENOM, LENOM, andEENOM for the
5 class histories (A, B, C, D and E). Figure 2 shows the
following:
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• During the displayed history (5 versions) of class D the
number of methods remained 2. We consider that no
methods were added or removed, therefore the values
of ENOM1..5, EENOM1..5 and ofLENOM1..5 of this
class history are 0.

• In the histories of class A, of class B and of class E,
7 methods were detected as being added or removed.
The class histories differ in theirLENOM1..5 and
EENOM1..5 values which means that (i) the changes
are more recent in the history of class B, (ii) in class E
the changes occurred in its early history, and (iii) in the
history of class A the changes were scattered through
the history more evenly.

• The histories of class C and E have almost the same
LENOM1..5 value, because of the similar amount of
changes in their recent history. TheENOM1..5 val-
ues differ heavily because class E was changed more
throughout its history than class C.

3.2 MeasuringYesterday’s Weather

Before defining theYW function, we introduce the no-
tion of top n of entities out of an original setS of entities
with the highestM measurement value:

(0 < n < 1) TopM (S, n) = S′

˛̨̨̨
˛̨̨̨ S′ ⊆ S,
|S′| = n
∀x ∈ S′, ∀y ∈ S − S′

M(x) > M(y)

(5)

For a system versioni, we compare the set of class
histories with the highestLENOM1..i values (thecandi-
datesset) with the set of the class histories with the high-
estEENOMi..n values (thereally-changedset). TheYester-
day’s Weatherassumption holds if the intersection of these
sets is not empty, that is at least one class history belongs
to both sets. This means that for the classes in versioni at
least one of the recently most changed classes is among the
most changed classes in the near future relative to versioni.
If the assumption holds for versioni we have a hit.

We formally define theYesterday’s Weatherhit function
applied on versioni of a system historyS and given the two
threshold valuest1 andt2 as follows:

(i > 1; t1, t2 ≥ 1)

Y Wi(S, t1, t2) =

8>><>>:
1, T opLENOM1..i

(S, t1)∩
TopEENOMi..n

(S, t2) 6= ∅
0, T opLENOM1..i

(S, t1)∩
TopEENOMi..n

(S, t2) = ∅

(6)

Yesterday’s Weatheris computed by counting the hits for
all versions and dividing them by the total number of pos-
sible hits. Thus, we obtain the result as a percentage with
values between 0% and 100%.

We formally define theYesterday’s Weatherapplied on
n versions of a system historyS given two threshold values
t1 andt2 as in Equation 7.

(n > 2; t1, t2 ≥ 1)

Y W1..n(S, t1, t2) =

Pn−1
i=2 Y Wi(S, t1, t2)

n− 2
(7)
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Legend:

a candidate history (i.e., in TopLENOM1..i 
)

a really-changed history (i.e., in TopEENOMi..n 
)

Figure 4. The detection of aYesterday’s Weatherhit.

Versions
System 2 3 4 5 6 7 8 9 10 11

YW = 
6 hits

10 possible hits
= 60% 

Figure 5. The computation of the overallYesterday’s
Weather.

Example. In Figure 4 we present an example of how we check
Yesterday’s Weatherwith respect to a certain version. We display
6 versions of a system with 7 classes (A-G). We want to check
Yesterday’s Weatherwhen considering the 4th version to be the
present one. Therefore, the versions between 1 to 3 are the past
versions, and the 5th and 6th are the future ones.

We also consider the dimensions of thecandidatesand the
really-changedset to be 3, that is, we want to check the assump-
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tion that at least one of the top three classes which were changed
in the recent history will also be among the top three most changed
classes in the near future. We draw circles with a continuous line
around the A, C and F classes to mark them as being the top three
classes which changed the most in the recent history with respect
to the 4th version. A, C and F are therefore, candidates for aYester-
day’s Weatherhit. While B changed recently, it is not a candidate
because A, C and F changed more than B and in this case we only
concentrate on the top three most changed classes. We marked
with a dotted circle the classes which change the most in the next
versions after the 4th one. We get a hit if the intersection between
the continuous line circles and the dotted circles is not empty. In
the presented example we get a hit because of class F.

In Figure 5 we show how we compute the overallYesterday’s
Weatherfor a system history with 10 versions. The grayed fig-
ures show that we had a hit in that particular version, while the
white ones show we did not. In the example we have 6 hits out of
possible 10, making the value ofYesterday’s Weatherto be 60%.

3.3 Yesterday’s WeatherInterpretation

Suppose we have to analyze a 40 version system history,
each version consisting on average of 400 classes and sup-
pose we computeYW(S1,20,20)and get a result of 10%.
That means that the “climate” of the system is unpredictable
with respect to the important changes. In such a “climate”
it is not relevant to consider the latest changed classes to be
important for the next version.

If, on the other hand, we compute theYW(S2,5,5) and
get a result of 80%, it means that during the analyzed pe-
riod in 80% of the versions at least one of the 5 classes that
changed the most in the recent past is among the 5 classes
that change the most in the near future. Therefore, we have
a great chance to find, among the first 5 classes which were
heavily changed recently, at least one class which would be
important (from a reverse engineering point of view) for the
next version.

The value ofYW depends on the dimensions of the sets
we want to compare. For example, on each line in Table 1
we display different results we obtained, on the same his-
tory, depending on the sizes of the sets. For 40 versions of
Jun, when we considered theLENOM1..i set size to be 5
and theEENOMi..n set size to be 5, theYWwas 50% (i.e.,
YW(Jun40,5,5)= 50%). When theLENOM1..i set size was
10 and theEENOMi..n set size was 10, theYW was 79%
(YW(Jun40,10,10)= 79%).

In YW(S, candidates, really-changed)the dimensions of
thecandidatesandreally-changedsets represent thresholds
that can be changed to reduce or enlarge the scope of the
analysis. Thus, using higher thresholds increases the chance
of a hit but also increases the scope, while by using lower
tresholds we reduce the scope, but we also reduce the prob-
ability to have a hit. Both thresholds have specific interpre-
tations:

1. Thecandidatesset threshold represents the number of
the classes which changed the most in the recent past.
The lower this threshold is the more accurate the as-
sumption is. For example, imagine that for one system
we choose aLENOM threshold of 1 and anEENOM
threshold of 5 and we get aYW value of 60% (i.e.,
YW(S1,1,5)=60%). For another similar system we get
YW(S2,3,5)=60%. It means that in the first system you
have a 60% chance that the class identified as changing
the most in the recent past will be among the 5 classes
that change the most in the near future, while in the
second system, we have to investigate three candidate
classes to have a 60% chance to find one important
class for the near future.

2. The size of thereally-changedset is the second thresh-
old and it shows how important –i.e.,how affected by
changes – the candidates are. The lower this threshold
is, the more important the candidates are. Suppose we
haveYW(S1,5,5)= 60% in one system andYW(S2,5,1)
= 60% in another system. It means that in the first sys-
tem we have a 60% chance that one candidate will be
amongthe first 5 important classes in the next version,
while in the second system we have a 60% chance that
one of the candidates will bethe mostimportant class
in the next version.

4 Validation - Yesterday’s WeatherJun and
CodeCrawler

Our approach is difficult to validate. A real validation
would require repeatedly reverse engineering a real-system
over a long period of time with access to internal develop-
ment information. The validation would then be the com-
parison of the results we obtain with the reverse engineer-
ing results and with the next development facts. Instead, we
compute our approach on two case studies, Jun and Code-
Crawler, and discuss the the results from multiple perspec-
tives.

Jun3 is a 3D-graphics framework currently consisting of
more than 700 classes written in Smalltalk. The project
started in 1996 and is still under development. We have
access to over 500 of its versions. As experimental data
we took every 5th version starting from version 5 (the first
public version) to version 200. The time distance between
version 5 and version 200 is about two years, and the con-
sidered versions were released about 15-20 days apart. In
the first analyzed version there were 160 classes, in the last
analyzed version there were 740 classes. In total there were
814 different classes which were present in the system over
this part of its history, and there were 2397 methods added
or removed.

3See http://www.srainc.com/Jun/.
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History sample YW(3, 3) YW(5, 5) YW(10, 10)

40 versions of Jun 40% 50% 79%
20 versions of Jun 39% 55% 77%
10 versions of Jun 37% 37% 87%

40 versions of CC 68% 92% -
20 versions of CC 61% 94% -
10 versions of CC 62% 100% -

Table 1. YW(3,3), YW(5,5)andYW(10,10)computed on
different sets of versions of Jun and CodeCrawler.

CodeCrawler4 is a language independent reverse engi-
neering tool which combines metrics and software visual-
ization. In the first analyzed version there were 92 classes
and 591 methods, while in the last analyzed version there
were 187 classes and 1392 methods. In the considered his-
tory, there were 298 different classes present in the system
over the considered history and 1034 methods added or re-
moved in subsequent versions.

Jun has been developed by a team of developers while
CodeCrawler is a single developer project.

4.1 Yesterday’s Weatherin Jun and CodeCrawler

Table 1 presents the results of theYW for Jun and Code-
Crawler for different number of versions while keeping the
thresholds constant. High values (e.g.,79% for Jun or more
than 90% for CodeCrawler) denote a stable climate of the
case studies: the changes either went slowly from one part
to another of the system, or the changes were concentrated
into some classes.

When we choose more distance between releases, we
take into consideration the accumulation of changes be-
tween the releases. Therefore the candidate classes were not
necessarily heavily changed in one version, but they were
constantly changed over more versions.

Jun. When we doubled the thresholds when analyz-
ing 40 versions of Jun, we obtained 29% more in theYW
value. Moreover, when we doubled the thresholds when an-
alyzing 10 versions, we more than doubled theYW value.
These facts show that in Jun there were classes which were
changed over a long period of time, but these changes are
not identified when we analyze versions which are closer to
each other.

To show the relevance ofYWwe display the class histo-
ries that provoked a hit when computingYW(Jun,10,10)for
40 versions of Jun (see Table 2). We focused on the size of
the classes in terms of number of methods and determined

4See http://www.iam.unibe.ch/∼scg/Research/CodeCrawler/.

YW(Jun,10,10)hit class history NOM
JunOpenGLDisplayModel + 150
JunWin32Interface + 104
JunBody + 85
JunOpenGL3dObject + 75
JunOpenGL3dObjectclass + 71
JunOpenGL3dNurbsSurface 55
JunLoop 55
Jun3dLine 51
JunOpenGLProjection 48
JunUNION 47
JunOpenGL3dCompoundObject 41
JunPolygon 34
JunBodyclass 31
JunVertex 30
JunOpenGL3dVertexesObject 23
JunOpenGL3dCompoundObjectclass 21
JunOpenGL3dVertex 19
JunUNIONclass 19
JunOpenGL3dPolygon 15
JunOpenGLPerspective 12
JunOpenGLTestController * 9
JunOpenGLTestView * 1

Table 2. The class histories that provoked a hit in Jun
when computingYW(Jun,10,10)and their number of meth-
ods in their last version. (Legend: the “*” classes were not
present in the system’s last version; the “+” classes were in
the top 10 of number of methods in the last version).

thatYWpredicts changes in classes which are not necessar-
ily big classes (e.g.,JunOpenGLPerspective). We marked
with a “+” the 5 hit classes which were also in the top 10 of
the biggest classes in the last version. There are 5 classes
in the first 10 classes in terms of number of methods, which
did not provoke a hit in theYW. Thus, we say that in Jun,
a big class is not necessarily an important class in terms of
future changes.

CodeCrawler. CodeCrawler is a project developed
mainly by one developer, and as such can be considered
a system with a focused and guided development with little
external factors. This assumption is backed up by the data
which reveals very highYW values for low thresholds, re-
sulting in a ”stable climate” of the system. Note that Code-
Crawler is much smaller than Jun, the thresholds must thus
be seen as relatively lax.

Table 3 displays, using the same notation as in Table 2,
the class histories that provoked a hit inYW(5,5). As in
the case of Jun, the hits were not necessarily provoked by
big classes and not all big classes provoked a hit. This
shows that in CodeCrawler there is not always a relation-
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YW(CC,5,5)hit class history NOM
CCDrawing + 123
CCAbstractGraph + 99
CCGraph + 69
CCNode + 47
CodeCrawler + 42
CCConstantsclass + 39
CCEdge * 36
CCControlPanel 29
CCGroupNodePlugIn 25
CCModelSelector * 24
CCRepositorySubcanvas 17
CodeCrawlerclass 15
CCService 0

Table 3. The class histories that provoked a hit in Code-
Crawler when applyingYW(CC,5,5)and their number of
methods in their last version. (Legend: the “*” classes were
not present in the system last version; the “+” classes were
in the top 10 of number of methods in the last version).

ship between changes and size. Therefore, identifying the
big classes from the last version, is not necessarily a good
indicator for detecting classes which are important, in terms
of change, for the next versions.

4.2 The Evolution ofYesterday’s Weatherin Jun

In Figure 6 we represent a chart which shows Jun’s evo-
lution of Yesterday’s Weatherover time. The points in the
chart show the value ofYesterday’s Weatheruntil that ver-
sion: in version 15Yesterday’s Weatheris 100%, drops in
version 25, grows again until version 100 and then finally
has an oscillating descending shape.

Based on this view we can detect phases in the evolu-
tion where the changes were focused and followed by other
changes in the same part of the system (the ascending trends
in the graph) and phases where the changes were rather un-
focused (the descending trends in the graph). In the first half
of the analyzed versions, in 90% of the cases at least one
class which was in the top 10 of the most changed classes
in the last period was also in the top 10 of the most changed
classes in the next version. In the last 20 versions that we
analyzed, the probability drops. Therefore, in the first half
of the analyzed period the development was more continu-
ous and focused than in the second half.

Figure 6. The values ofYW(Jun,10,10)over 40 versions
of Jun. The diagram reveals phases in the which the pre-
dictability increases and during which changes are more
focused (e.g., the first part of the history) and phases in
which the predictability decreases and changes are more un-
focused (e.g.,the second part of the history).

5 Analyzing the Yesterday’s WeatherAp-
proach

In this section we explain the impact of the decisions we
took when defining theYWmeasurement.

About the Impact of the Weighting Function. The
LENOM measure weighs each change using the function
2i−k (see Equation 3 and Figure 3). This function actu-
ally acts like a window over the complete history of the
changes by considering as relevant only the last four ver-
sions. This window is important as it lowers the impact of
early development. For example, if a big class was devel-
oped in the early versions but now suffers only bug-fixes,
it will not be selected as a candidate for future important
changes. Increasing the window length favors the candi-
dacy of the large classes in the system, even if they are not
changing anymore, and reduces the relevancy of the predic-
tion. Note that although the value ofLENOM takes into
account only the last four versions, theYWmeasurement is
computed over the complete history.

About the Impact of the At LeastCondition. With the
currentYWassumption we consider to have a hit if we have
at least oneclass which was heavily changed recently and
which also gets changed a lot in the next versions. If we
haveYW(S,10,10)= 60%, we do not know if the assumption
held for 10 out of the 10 candidate class histories or just for
one of them.YWgives relevant results in two cases:

1. High value ofYW when considering low thresholds.
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Low thresholds mean low scope (both of candidates or
of the importance of thereally-changedentities), and
if for such low thresholds we obtain a highYWvalue,
we can characterize the changes as being continuous,
and therefore it is relevant to look at the most recently
changed classes to detect one which will probably un-
dergo an important change during the near future,e.g.,
the next versions.

2. Low value of YW when considering high thresh-
olds. When obtaining lowYW values for high thresh-
olds, we can characterize the changes as being dis-
continuous, and therefore looking at the most recently
changed classes is not necessarily relevant for the fu-
ture changes in the system.

A possible alternative would be to compute an average
of the number of class histories that matched theYWi as-
sumption. The result of this average would complement the
YWvalue, by showing its overall accuracy.

About the Impact of the Release Period. Another vari-
ation point when computingYesterday’s Weatheris the re-
lease period. If we consider the release period of one week,
we focus the analysis to immediate changes. If, on the other
hand, we consider the release period of half a year, we em-
phasize the size of the changes that accumulate in the class
histories.

Example. Suppose that when we consider the release period
of a big system of one week we obtainYW(S,5,5)= 60% and when
we consider the release period of half a year we obtainYW(S,5,5)
= 20%. It means that from one week to another the development is
quite focused, and the bigger parts of the system tend to stabilize
over a long period of time, thus leading to apparently unexpected
changes,e.g.,bug-fixing, patching, small functionality increase all
over the system.

The variation ofYW allows one to fine-tune the infor-
mation. It is the combination of short and focused releases
and the fact thatYWdrops that allows one to conclude that
the system stabilizes. Note that, by considering longer re-
lease periods, the additions and removals of methods from
the same class between consecutive releases will not show
in the history measurements.

About the Impact of the Number of Versions. The num-
ber of versions makes another variation point when comput-
ing YW. Increasing or decreasing the number of versions
affects the overallYW, but has little effect on the value of
individual YWi. The longer the considered history, the less
important is a hit/non-hit. By increasing the number of ver-
sions while keeping the same period between versions, we
let the early changes affect the overallYW. Therefore, by
increasing the number of versions we obtain a long-term

trend, while by decreasing the number of versions we con-
centrate on the short-term trend.

6 Related Work

Metrics have traditionally been used to deal with the
problem of analyzing the history of software systems.

Lehmann used them starting from the 1970’s when he
analyzed the evolution of the IBM OS/360 system [14].
Lehmann, Perry and Ramil explored the implication of the
evolution metrics on software maintenance [15] [13]. They
used the number of modules to describe the size of a version
and defined evolutionary measurements which take into ac-
count differences between consecutive versions.

Gall et al. [8] also employed the same kind of metrics
while analyzing the continuous evolution of the software
systems.

Burd and Munro analyzed the influence of changes on
the maintainability of software systems. They define a set
of measurements to quantify the dominance relations which
are used to depict the complexity of the calls [1].

Gold and Mohan defined a framework to understand the
conceptual changes in an evolving system [9]. Based on
measuring the detected concepts, they could differentiate
between different maintenance activities.

Visualization proved to be an effective technique to ana-
lyze the history of software systems.

Lanza’s Evolution Matrix [12] displays the system’s his-
tory in a matrix in which each row is the history of a class
(see a simplified version in Figure 2). A cell in the Evo-
lution Matrix represents a class and the dimensions of the
cell are given by evolutionary measurements computed on
subsequent versions.

Jazayeri analyzed the stability of the architecture [11] by
using colors to depict the changes.

Rysselberghe and Demeyer used a simple visualization
based on information in version control systems to provide
an overview of the evolution of systems [18].

Grosser, Sahraoui and Valtchev applied Case-Based Rea-
soning on the history of object-oriented system as a solution
to a complementary problem to ours: to predict the preser-
vation of the class interfaces [10]. They also considered the
interfaces of a class to be the relevant indicator of the sta-
bility of a class. Sahraouiet al. employed machine learning
combined with a fuzzy approach to understand the stability
of the class interfaces [17].

Our approach differs from the above mentioned ones
because we consider the history to be a first class entity
and define history measurements which are applied on the
whole history of the system and which summarize the evo-
lution of that system. The drawback of our approach con-
sists in the inherent noise which resides in compressing
large amounts of data into numbers.
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Gall et al. [7] analyzed the history of changes in soft-
ware systems to detect the hidden dependencies between
modules. However, their analysis was at the file level, rather
than dealing with the real code. In contrast, our analysis is
placed at the class level making the results finer grained.
Zimmermanet al. placed their analysis at the level of
entities in the meta model [19]. Their focus was to pro-
vide a mechanism to warn developers that: “Programmers
who changed these functions also changed.. . . ”. Their ap-
proach differs from ours because they only look at syntactic
changes, while we identify changes based on the semantics
of the changes.

Fischeret al. [6] analyzed the evolution of systems in
relation with bug reports to track the hidden dependencies
between features. Demeyeret al. [3] propose practical as-
sumptions to identify where to start a reverse engineering
effort: working on the most buggy part first or focusing
on clients most important requirements. These approaches,
are based on information that is outside the code, while our
analysis is based on code alone.

7 Conclusions and Future Work

When starting a reverse engineering effort, knowing
where to start is the key problem. When only the code of
the application is available, the history of a software system
could be of help. However, analyzing the history is difficult
because of the interpretation of large quantities of complex
data. In this paper we presented our approach of summariz-
ing the history by defining history measurements.

We used the termYesterday’s Weatherto depict the retro-
spective empirical observation that at least one of the classes
which were heavily changed in the last period will also be
among the most changed classes in the near future. We
computed it on two case studies and showed how it can
summarize the changes in the history of a system. We use
the approach to pinpoint classes in the latest versions which
would make good candidates for a first step in reverse en-
gineering. We looked at how the big changes are related
with the size of the classes, and validated our approach by
showing that big changes can occur in classes which are
not big in terms of size (i.e., number of methods). Thus,
our approach is useful to reveal candidates for reengineer-
ing which are otherwise undetectable if we only analyze the
size of the classes of the system’s last version.

In the future, we would like to correlate our approach
with information from outside the source code. Conway’s
law [2] states that “Organizations which design systems are
constrained to produce designs which are copies of the com-
munication structures of these organizations.” Therefore,
when reverse engineering, we should take the auxiliary de-
velopment information into account. For example, we could
correlate the shape of the evolution ofYesterday’s Weather

with the changes in the team or with the changes in the de-
velopment process.
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A Implementation - Van and Moose

Van is our history analysis tool which is based on the
Moose[5] reengineering platform. Van is an implementa-
tion of theHisMohistory meta model which is an extension
of theFAMIX [4] meta model. The FAMIX and the HisMo
metamodels are both language independent.
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Figure 7. The HisMo meta model is an extension of the
FAMIX meta model (This a reduced schema of the meta
model).

In Figure 7 we schematically present the relationship be-
tween HisMo and FAMIX. HisMo recognizes the history as
being a first-class entity which is formed by multiple ver-
sions, each version having a one-to-one relationship with a
FAMIX entity.

B Weighted Evolution of a Version Property
(WE)

We define a generic evolutionary measurementWE
(Equation 8) which takes as arguments the history (H), a
weight function (w) and a propertyP . WE is the sum of the
changes in a propertyP in subsequent versions, where each
change is given a weight according to the versioni in which
the change occurred compared to the analyzed history (i.e.,
from versionj to versionk, out ofn total versions).

(1 6 j < k 6 n)

WEj..k(H, P, w(i, j, k, n)) =
kX

i=k

|Pi(H)− Pi−1|w(i, j, k, n)

(8)

ENOM, LENOM and EENOM are instances ofWE.
ENOM is an instance ofWE where the weight function is
1, and whereP = NOM .

(1 6 j < k 6 n)

ENOMj..k(C) = WEj..k(C, NOM, w(i, j, k, n) = 1)

(9)

TheLENOMmeasurement is an instance of theWEmea-
surement wherew(i, j, k, n) = 2i−k.

(1 6 j < k 6 n)

LENOMj..k(C) = WEj..k(C, NOM, w(i, j, k, n) = 2i−k)

(10)

TheEENOMmeasurement is an instance of theWEmea-
surement wherew(i, j, k, n) = 2k−i+1.

(1 6 j < k 6 n)

EENOMj..k(C) = WEj..k(C, NOM, w(i, j, k, n) = 2k−i+1)

(11)
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