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Abstract system, its growth, decay, refactoring operations, and bug-
fixing phases.

'Knowing where to start reverse engineering a large  The code history of a system holds useful information
software system, when no information other than the sys-that can be used to reverse engineer the most recent version
tem’s source code itself is available, is a daunting task. of the system and to get an overall picture of its evolution.
Having the history of the code (i.e., the versions) could be Nevertheless, it requires one to create higher level views of
of help if this would not imply analyzing a huge amount of the data.

data. In this paper we present an approach for identify-  The basic assumption of this work is that the parts of
ing candidate classes for reverse engineering and reengi-the system which change are those that need to be under-
neering efforts. Our solution is based on summarizing the stood first. We can find about the tendencies of changes by
changes in the evolution of object-oriented software systemgooking at the history of the system. However, not every
by defining history measurements. Our approach, namedchange in the history of the system is relevant for the future
Yesterday's Weathefs an analysis based on the retrospec- changes. For example, the parts of a system which were
tive empirical observation that classes which changed the changed in its early versions are not necessarily impdrtant
most in the recent past also suffer important changes in thefor the close future: Mens and Demeyer suggested that the
near future. We apply this approach on two case studies andeyolution-proneparts of a system are those which changed
show how we can obtain an overview of the evolution of a a |ot lately [16].

system and pinpoint its classes that might change in the next |, this paper we aim to measure how relevant it is to

versions. start reverse engineering from the parts of the system which
changed the most in the recent past. Based on historical in-
Keywords: software evolution, reverse engineering, formation, we identify the parts of the system that changed
object-oriented programming, program understanding the most in the recent past and check the assumption that
they are likely to be among the most changed classes in the
near future. If this assumption held many times in the sys-
tem history, then the recently changed parts are good candi-
dates for reverse engineering. Our experiments showed that
When starting a reverse engineering effort, knowing important changes do not necessarily imply that they only
where to start is a key question. When only the code of occur in big classes (in terms of lines of code, methods or
the application is available, the history of a software system attributes). Therefore identifying the big classes in the last
could be helpful. However, analyzing a software system'’s version of a software system is not necessarily relevant for
history is difficult due to the large amount of complex data its near future.
that needs to be interpreted. Suppose we had as case study In this paper we analyze the evolution of object-oriented
40 versions of a software system’s code, each version consystems. We analyze classes as they are the primary abstrac-
sisting on average of ca. 400 classes. We would have totions from which applications are built. We identify classes
analyze ca. 16000 classeg,, class versions, which would  that are likely to change by defining evolutionary measure-
make the analysis more difficult. Still, the history of the ments which summarize the history of object-oriented sys-
system contains valuable information about the life of the tems. We show the relevance of these measurements in our

1 Introduction

Iproceedings of ICSM 2004 (International Conference on Software 2By importantwe denote the fact that these classes will be affected by
Maintenance), 2004, pp. 40-49 changes.



approach which we nametesterday’s Weatheit is simi- tion would be fairly easy to predict. During repairing phases
lar to the historical observation of the weather: a good way due to bug reports or little fixes the developers change the
of guessing what the weather will be like tomorrow is to software system apparently at random places which leads to
think it will stay the same as today, which depending on adecrease of predictability€.,the weather becomes unsta-
the location can have very high success rates. Howeverple). On the other hand it also gives a general impression of
this probability is not the same in all places. For example, the systemi(e., how stable is the climate of the whole sys-
in the Sahara desert the chance that the weather stays thiem?). By interpreting th¥Wwe identify that the changes
same from one day to the next is higher than in Switzer- are either focused on some classes over a certain period of
land, where the weather can change in a few hours. Theretime, or they move unpredictably from one place to another.
fore, before we carl use such a predictive and ir!’trinsically Example. If the YWvalue of a software systes is 10%, this
fl?zzy _app_roach fo_r successful Wgather forecasts”, we I’](E(Edimplies that the changes in the system were rather discontinuous —
h|stor|cal |r_1format|on about the climate of the place we are maybe due to new development or bug fix phases. IFthgyields
interested 'n" . . an 80% value for a systeSh, this implies the changes in the sys-

Ye§terdays Weathes a measurergept appilled ON & SYS- tem were continuous. In such a system, we say it is relevant to
tem history and it chgracterlzes th? climate” of ‘_"‘ software start the reverse engineering from the classes which were heavily
;y;tem. More specificall)festerday’s Weathgrovides an changed lately, while this is not the case in systém
indication that allows one to evaluate the relevance of start-
ing reverse engineering from the classes that changed the
most recently. , _ .

We start by presenting an overview of our approach in 3 Yesterday's Weathen Detail
Section 2. In Section 3 we define the measurements needed
to compute th&esterday’s Weathem Section 4 we present
the results obtained on two case studies, and then discuss We define ahistoryto be a sequence of versions of the
the variation points of our approach. Before concluding, we same kind of entity€.g.,class history, system history, etc.).
discuss related work. In the appendix we show key aspectsBy a version we understand a snapshot of an entity at a cer-
of the implementation of the tools we use. tain point in time €.g.,class version, system version, etc.).

2 Yesterday’s Weathdn a Nutshell

We defineYesterday's Weathglr\W) to be the retrospec- Class History A |:|
tive empirical observation of the phenomenon that at least
one of the classes which were heavily changed in the recen
history is also among the most changed classes in the nea Class History B |:|

future.
Our approach consists in identifying, for each version of : : :
a subject system, the classes that were changed the most i ClassHistory C . D X |:| | |:|
the recent history and in checking if these are also among ! ! !
the most changed classes in the successive versions. W versions — 1 —— 2 — 3 - 4

count the number of versions in which this assumption

holds and divide it by the total number of analyzed versions

to obtain the value ofesterday’s Weather Figure 1. Example of a system history displayed in an
Example. Suppose that for a systeYiwyields a value of 50%. Evolution Matrix.

This means that the history of the system has shown that in 50%

of the cases at least one of the classes that was changed a lot in the

recent past would also be among the most changed classes in the

near future. Example. In Figure 1 we use a simplified example of the Evo-
YW characterizes the history of a system and is useful lution Matrix [12] to display a system history with four versions.

from a reverse engineering point of view to identify classes A cell in the matrix is marked by a square and represents a class

that are likely to change in the next version. On one hand weversion. A line in the matrix represents a class history and a col-

use such information to make out progressive developmentumn represents a system version. In Figure 1, class A was present

phases in the evolution of the systeeng.,what is/was the in all four versions of the system, class B was removed in the last

current focus of development?). In phases where the develsystem version, while class C appeared in the system only after the

opers concentrate on a certain part of the system, the evolufirst system version.



3.1 History Measurements over the changes that appear closer to the latest version
of the considered history (see Equation 4).

A class is the primary unit of design and structure in
object-oriented systems. The functionality of the system
is defined by classes and their methods. We consider as
change to a class an addition or a removal of at least one
method. Therefore, to measure the changes in the history of
a class we measure the differences in their number of meth-
ods in different versions. In the following paragraphs we _
define 3 measurements that are necessary to compute thé-1-1 Intérpretation of the Measurements
YW value of a software system, namely the Eholution
of Number of Method€ENOM), the (2)Latest Evolution of ENOM, | LENOW, . EENOM, ,

Number of MethoddLENOM), and the (3)Earliest Evolu-
tion of Number of MethodEEENOM). 7 350 825

(1<j<k<n)

EENOM,; 4(C) = Y%, ENOM;(C)2F=1+1  (4)

>

1. Evolution of Number of Methods (ENOM) B IEI ’ 575 13
We defineENOM,; as being the difference in the num- c 3 125 212
ber of methods between version 1 andi of the class
C: D 0 0 0

(i>1) ENOM;(C) = |NOM;(C)— NOM,;_1(C)| (1) e [off«]fz]fs]s] 7 s sas

—1 -2-3-4-5

versioni
. L d:

ENOM,; 1, is the sum of the number of methods added cgen
or removed in subsequent versions from versjao

versionk out of n versions of a class C:

a class version with x methods

Figure 2. Examples of the computation of tHENOM,
LENOMandEENOMclass history measurements. Figure 3
(1<j<k<n) shows in more details how we obtained the values applied

on the history of class A.

ENOM; 1 (C) = ENOM;(C) )

k
i=j+1
We use this measurement to show the overall changes

performed during the lifetime of a class.

ENOM, . = 2 + 1 + 2 + 2 =7
2. Latest Evolution of Number of Methods LENOM)

A 2 4 3 ﬁ‘7
When computingENOM,;_; all the changes have the \y

same importance. WithENOM,; ; (see Equation 3) LENOM, = 223+ po2+ppi+ol =350
we favor the recent changes over the changes further in )0 e iy 24 3oy
the past by applying a weighting functi@i* which EENOM, 5 = 227tz e =325

decreases the importance of a change as the version
in which it occurs is more distant from the latest con-
sidered versionk).

Figure 3. Detailed computation dENOM, LENOM and
EENOMfor class history A.

(1<j<k<n)

LENOM; 4(C) = S, ENOM,(C)2i~F  (3) Figure 2 presents an example of a system history dis-

played with an Evolution Matrix view [12] in which each
square represents a class version and the number inside the
. . square represents the number of methods of that particular
3. Earliest Evolution of Number of Methods class version. On the right side of Figure 2 we display the
(EENOM) computed values ENOM, LENOM, andEENOM for the
As opposed td.ENOM, we defineEEENOM to favor 5 class histories (A, B, C, D and E). Figure 2 shows the
the changes closer to the first version of the history following:



e During the displayed history (5 versions) of class Dthe ~ We formally define theresterday’s Weatheapplied on
number of methods remained 2. We consider that non versions of a system histo§y/ given two threshold values
methods were added or removed, therefore the values; andts as in Equation 7.
of ENOM; 5, EENOM, 5 and of LENOM, 5 of this
class history are 0. (n>2;t1,t2 > 1)

S YWi(S, 1, t2)

n—2

e In the histories of class A, of class B and of class E, YW1 n(S,t1,t2) = (7
7 methods were detected as being added or removed.
The class histories differ in theltENOM, 5 and

EENOM, 5 values which means that (i) the changes

are more recent in the history of class B, (ii) in class E A E

the changes occurred in its early history, and (jii) in the

history of class A the changes were scattered through B IE, IE,

the history more evenly. c
e The histories of class C and E have almost the same

LENOM,; 5 value, because of the similar amount of D

changes in their recent history. TIEENOM, 5 val-
ues differ heavily because class E was changed more E

throughout its history than class C.
[¢]
3.2 MeasuringYesterday’s Weather . hit

Before defining theyW function, we introduce the no- past present __future
tion of top n of entities out of an original se$ of entities versions version - versions
with the highesM measurement value:

m

(=] ) D ] ] = [

Legend:

a candidate history (i.e., in TODLENOVH )
]
S, g Sv
15 =n
VeeS vyes—g ©
M(z) > M(y)

(0<n<1) Topu(S,n)=5 a really-changed history (i.e., in TOPEENO\/| o )

. Figure 4. The detection of ¥esterday's Weathéhit.
For a system version, we compare the set of class

histories with the highestENOM,; ; values (thecandi-

datesset) with the set of the class histories with the high-

estEENOM, _, values (theeally-changedset). TheYester-

day’s Weatheassumption holds if the intersection of these System 2 3 4 5 6

7 8 9 10
sets is not empty, that is at least one class history belongs Versions O Q\? 000aQ

11

to both sets. This means that for the classes in versain
least one of the recently most changed classes is among the 6 his
most changed classes in the near future relative to veision YW= —————— =60%
If the assumption holds for versiarwe have a hit. 10 possible hits
We formally define thé/esterday’s Weathdnit function

applied on version of a system histong and given the two Figure 5. The computation of the overalfesterday’s
threshold values, andt, as follows: Weather

(’i > 1;t1,ta > 1)
1, Toprenom, ;(S,t1)N

YWi(S,tr,t2) = TopgenowMm, , (S,t2) #0 ®) Example. In Figure 4 we present an example of how we check
e 0, Toprenom, ;(S,t1)N Yesterday's Weathewith respect to a certain version. We display
ToppeNoOM;. ., (5,t2) =0 6 versions of a system with 7 classes (A-G). We want to check

, . . . Yesterday's Weathewhen considering the 4th version to be the
Yesterday's Weathés computed by counting the hits for - yresent one. Therefore, the versions between 1 to 3 are the past
a” versions and dIVIdIhg them by the tOtal number Of pOS' Versionsy and the 5th and 6th are the future ones.

sible hits. Thus, we obtain the result as a percentage with e also consider the dimensions of thendidatesand the
values between 0% and 100%. really-changedset to be 3, that is, we want to check the assump-



tion that at least one of the top three classes which were changed 1. Thecandidatesset threshold represents the number of

in the recent history will also be among the top three most changed
classes in the near future. We draw circles with a continuous line
around the A, C and F classes to mark them as being the top three
classes which changed the most in the recent history with respect
to the 4th version. A, C and F are therefore, candidatesYester-
day’s Weathehit. While B changed recently, it is not a candidate
because A, C and F changed more than B and in this case we only
concentrate on the top three most changed classes. We marked
with a dotted circle the classes which change the most in the next
versions after the 4th one. We get a hit if the intersection between
the continuous line circles and the dotted circles is not empty. In
the presented example we get a hit because of class F.

In Figure 5 we show how we compute the oveiisterday’s
Weatherfor a system history with 10 versions. The grayed fig-
ures show that we had a hit in that particular version, while the
white ones show we did not. In the example we have 6 hits out of
possible 10, making the value Wésterday’s Weathdo be 60%.

3.3 Yesterday's Weathdnterpretation

Suppose we have to analyze a 40 version system history,
each version consisting on average of 400 classes and sup-
pose we comput&'W(5:,20,20)and get a result of 10%.
That means that the “climate” of the system is unpredictable
with respect to the important changes. In such a “climate”
it is not relevant to consider the latest changed classes to be
important for the next version.

If, on the other hand, we compute tN&V(S,,5,5) and
get a result of 80%, it means that during the analyzed pe-
riod in 80% of the versions at least one of the 5 classes that

the classes which changed the most in the recent past.
The lower this threshold is the more accurate the as-
sumption is. For example, imagine that for one system
we choose & ENOM threshold of 1 and aEENOM
threshold of 5 and we get ¥W value of 60% (..,
YW(51,1,5)=60%). For another similar system we get
YW(5-,3,5)=60%. It means that in the first system you
have a 60% chance that the class identified as changing
the most in the recent past will be among the 5 classes
that change the most in the near future, while in the
second system, we have to investigate three candidate
classes to have a 60% chance to find one important
class for the near future.

2. The size of theeally-changedset is the second thresh-

old and it shows how importanti-e., how affected by
changes — the candidates are. The lower this threshold
is, the more important the candidates are. Suppose we
haveYW(51,5,5)= 60% in one system andw(S-,5,1)
=60% in another system. It means that in the first sys-
tem we have a 60% chance that one candidate will be
amongthe first 5 important classes in the next version,
while in the second system we have a 60% chance that
one of the candidates will bthe mostimportant class

in the next version.

Validation - Yesterday’s Weathedun and
CodeCrawler

changed the most in the recent past is among the 5 classes Our approach is difficult to validate. A real validation
that change the most in the near future. Therefore, we havevould require repeatedly reverse engineering a real-system
a great chance to find, among the first 5 classes which were®Ver a long period of time with access to internal develop-
heavily changed recently, at least one class which would bement information. The validation would then be the com-
important (from a reverse engineering point of view) for the parison of the results we obtain with the reverse engineer-

next version.

ing results and with the next development facts. Instead, we

The value ofYW depends on the dimensions of the sets COmPpute our approach on two case studies, Jun and Code-
we want to compare. For example, on each line in Table 1 Crawler, and discuss the the results from multiple perspec-
we display different results we obtained, on the same his-tIVes.

tory, depending on the sizes of the sets. For 40 versions of

Jun, when we considered th&NOM, ; set size to be 5
and theEENOM, _,, set size to be 5, theWwas 50% (.e.,
YW ungg,5,5)= 50%). When the ENOM, ; set size was
10 and theEENOM,_,, set size was 10, th€W was 79%
(YW un4p,10,10)= 79%).

In YW(S, candidates, really-changeb® dimensions of

thecandidatesandreally-changedsets represent thresholds

Jur? is a 3D-graphics framework currently consisting of
more than 700 classes written in Smalltalk. The project
started in 1996 and is still under development. We have
access to over 500 of its versions. As experimental data
we took every 5th version starting from version 5 (the first
public version) to version 200. The time distance between
version 5 and version 200 is about two years, and the con-
sidered versions were released about 15-20 days apart. In

that can be changed to reduce or enlarge the scope of th&he first analyzed version there were 160 classes, in the last

analysis. Thus, using higher thresholds increases the chanc
of a hit but also increases the scope, while by using lower
tresholds we reduce the scope, but we also reduce the pro

analyzed version there were 740 classes. In total there were
814 different classes which were present in the system over

gthis part of its history, and there were 2397 methods added

ability to have a hit. Both thresholds have specific interpre- °f removed.

tations:

3See http://www.srainc.com/Jun/.



History sample  YW(3,3) YW(5,5) YW(10, 10) YW(Jun,10,10it class history NOM

JunOpenGLDisplayModel + 150
40 versions of Jun  40% 50% 79% JunWin32Interface + 104
20 versionsof Jun  39% 55% 77% JunBody + 85
10versionsof Jun 37% 37% 87% JunOpenGL3dObject + 75
JunOpenGL3dObjeatlass + 71
40 versions of CC  68% 92% - JunOpenGL3dNurbsSurface 55
20 versionsof CC  61% 94% - JunLoop 55
10versionsof CC  62% 100% - Jun3dLine 51
JunOpenGLProjection 48
Table 1. YW(3,3) YW(5,5)andYW(10,10computed on JunUNION a7
different sets of versions of Jun and CodeCrawler. JunOpenGL3dCompoundObject a1
JunPolygon 34
JunBodyclass 31
JunVertex 30
CodeCrawleft is a language independent reverse engi- JunOpenGL3dVertexesObject 23
neering tool which combines metrics and software visual- JunOpenGL3dCompoundObjedass 21
ization. In the first analyzed version there were 92 classes JunOpenGL3dVertex 19
and 591 methods, while in the last analyzed version there —3;,nUNIONCclass 19
were 187 classes and_1392 methods. In the cqnsidered his- JunOpenGL3dPolygon 15
tory, there were 298 d_n‘ferent classes present in the system JunOpenGLPerspective 12
over the considered history and 1034 methods added or re- JunOpenGLTestController * 9
moved in subsequent versions. JunOpenGLTestView * 1
Jun has been developed by a team of developers while
CodeCrawler is a single developer project. Table 2. The class histories that provoked a hit in Jun
when computingr W(Jun,10,10&nd their number of meth-
4.1 Yesterday's Weathen Jun and CodeCrawler ods in their last version. (Legend: the “*” classes were not
present in the system’s last version; the “+” classes were in
Table 1 presents the results of t@/for Jun and Code- the top 10 of number of methods in the last version).

Crawler for different number of versions while keeping the
thresholds constant. High valuesd.,79% for Jun or more
than 90% for CodeCrawler) denote a stable climate of the
case studies: the changes either went slowly from one parthatyw predicts changes in classes which are not necessar-
to another of the system, or the changes were concentrateqy big classes &.g.,JunOpenGLPerspective). We marked
into some classes. _ with a “+” the 5 hit classes which were also in the top 10 of
When we choose more distance between releases, Wene biggest classes in the last version. There are 5 classes

take into consideration the accumulation of changes be-jn the first 10 classes in terms of number of methods, which
tween the releases. Therefore the candidate classes were ngig not provoke a hit in th&W. Thus, we say that in Jun,
necessarily heavily changed in one version, but they were, pig class is not necessarily an important class in terms of
constantly changed over more versions. future changes.

_Jun. When we doubled the.threshcz)lds when analyz-  codeCrawler. CodeCrawler is a project developed
ing 40 versions of Jun, we obtained 29% more i  mainly by one developer, and as such can be considered
valug. Moreover, when we doubled the thresholds when an-5 system with a focused and guided development with little
alyzing 10 versions, we more than doubled &/ value. external factors. This assumption is backed up by the data
These facts show that in Jun there were classes which wergnich reveals very higlyW values for low thresholds, re-
changed over a long period of time, but these changes argting in a "stable climate” of the system. Note that Code-
not identified when we analyze versions which are closer to crawiler is much smaller than Jun. the thresholds must thus
each other. _ _ be seen as relatively lax.

~ To show the relevance 6fWwe display the class histo- Table 3 displays, using the same notation as in Table 2,
ries that provoked a hit when computif§V(Jun,10,100r e class histories that provoked a hitYw(5,5) As in

40 versions of Jun (see Table 2). We focused on the size Ofihe case of Jun, the hits were not necessarily provoked by
the classes in terms of number of methods and determlneq)ig classes and not all big classes provoked a hit. This

4See http://ww.iam.unibe.ckkcg/Research/CodeCrawler/. shows that in CodeCrawler there is not always a relation-




YW(CC,5,5hit class history NOM !
CCDrawing + 123 08
CCAbstractGraph + 99 S
CCGraph + 69 2T
CCNode + a7 R
CodeCrawler + 42 e —
CCCOHStantS:'aSS + 39 ‘gu_z‘ .......................................................................
CCEdge * 36 03
CCControlPanel 59 002
CCGroupNodePlugin 55 S S
CCMOdeISeIeCtOr * 24 ’ 15 35 55 75 95 115 135 155 175 195
CCRepositorySubcanvas 17 Jun versions
CodeCrawlerclass 15
CCService 0 Figure 6. The values offW(Jun,10,10pver 40 versions

of Jun. The diagram reveals phases in the which the pre-
Table 3. The class histories that provoked a hit in Code- dictability increases and during which changes are more
Crawler when applying’W(CC,5,5)and their number of focused €.g., the first part of the history) and phases in

which the predictability decreases and changes are more un-

methods in their last version. (Legend: the “*” classes were )
focused €.g.,the second part of the history).

not present in the system last version; the “+” classes were
in the top 10 of number of methods in the last version).

5 Analyzing the Yesterday’s WeatherAp-
proach

ship between changes and size. Therefore, identifying the

big classes from the last version, is not necessarily a good In this section we explain the impact of the decisions we
indicator for detecting classes which are important, in terms took when defining th& W measurement.

of change, for the next versions.

About the Impact of the Weighting Function. The
LENOM measure weighs each change using the function
2i—F (see Equation 3 and Figure 3). This function actu-
ally acts like a window over the complete history of the
changes by considering as relevant only the last four ver-
sions. This window is important as it lowers the impact of
early development. For example, if a big class was devel-
oped in the early versions but now suffers only bug-fixes,
it will not be selected as a candidate for future important
changes. Increasing the window length favors the candi-
dacy of the large classes in the system, even if they are not
changing anymore, and reduces the relevancy of the predic-
tion. Note that although the value @ENOM takes into
Based on this view we can detect phases in the evolu-account only the last four versions, tf&/ measurement is
tion where the changes were focused and followed by othercomputed over the complete history.
changes in the same part of the system (the ascending trends
in the graph) and phases where the changes were rather umbout the Impact of the At LeastCondition. With the
focused (the descending trends in the graph). In the first halfcurrentYWassumption we consider to have a hit if we have
of the analyzed versions, in 90% of the cases at least oneat least oneclass which was heavily changed recently and
class which was in the top 10 of the most changed classesyhich also gets changed a lot in the next versions. If we
in the last period was also in the top 10 of the most changedhaveYW(S,10,105 60%, we do not know if the assumption
classes in the next version. In the last 20 versions that weheld for 10 out of the 10 candidate class histories or just for

analyzed, the probability drops. Therefore, in the first half gne of themYW gives relevant results in two cases:
of the analyzed period the development was more continu-

ous and focused than in the second half. 1. High value of YW when considering low thresholds.

4.2 The Evolution of Yesterday’s Weathén Jun

In Figure 6 we represent a chart which shows Jun’s evo-
lution of Yesterday’s Weathever time. The points in the
chart show the value ofesterday’s Weathamtil that ver-
sion: in version 15vesterday’s Weathds 100%, drops in
version 25, grows again until version 100 and then finally
has an oscillating descending shape.



Low thresholds mean low scope (both of candidates or trend, while by decreasing the number of versions we con-
of the importance of theeally-changedentities), and  centrate on the short-term trend.

if for such low thresholds we obtain a higtW value,

we can characterize the changes as being continuousg  Re|ated Work

and therefore it is relevant to look at the most recently
changed classes to detect one which will probably un-
dergo an important change during the near futarg,,

the next versions.

Metrics have traditionally been used to deal with the

problem of analyzing the history of software systems.
Lehmann used them starting from the 1970's when he

2. Low value of YW when considering high thresh- analyzed the evolution of the IBM OS/360 system [14].
olds. When obtaining lowyW values for high thresh- ~ Lehmann, Perry and Ramil explored the implication of the
olds, we can characterize the changes as being dis€volution metrics on software maintenance [15] [13]. They
continuous, and therefore looking at the most recently Used the number of modules to describe the size of a version
changed classes is not necessarily relevant for the fu-2nd defined evolutionary measurements which take into ac-
ture changes in the system. count differences between consecutive versions.

Gall et al. [8] also employed the same kind of metrics

A possib]e alternative would be to compute an averageWh”e anaIyZing the continuous evolution of the software

of the number of class histories that matched YW¢ as- systems. _
sumption. The result of this average would complement the ~ Burd and Munro analyzed the influence of changes on
YW value, by showing its overall accuracy. the maintainability of software systems. They define a set

of measurements to quantify the dominance relations which
are used to depict the complexity of the calls [1].

. . . , ) Gold and Mohan defined a framework to understand the
ation point when computinyesterday’s Weathas the re- conceptual changes in an evolving system [9]. Based on

lease period. If we c_on3|_der the_ release period of one W%k*measuring the detected concepts, they could differentiate
we focus the analysis to immediate changes. If, on the Otherbetween different maintenance activities

hand, we consider the release period of half a year, we em-
phasize the size of the changes that accumulate in the clas
histories.

Example. Suppose that when we consider the release period
of a big system of one week we obtafWV/(S,5,5¥F 60% and when
we consider the release period of half a year we obtal\(S,5,5)

About the Impact of the Release Period. Another vari-

Visualization proved to be an effective technique to ana-
R/ze the history of software systems.

Lanza’s Evolution Matrix [12] displays the system’s his-
tory in a matrix in which each row is the history of a class
(see a simplified version in Figure 2). A cell in the Evo-
=20%. It means that from one week to another the development isIlJtlon MaFrlx represents_ a class and the dimensions of the

s i .. _cell are given by evolutionary measurements computed on
quite focused, and the bigger parts of the system tend to Stab'hzesubsequent versions.

over a long period of time, thus leading to apparently unexpected Jazayeri analyzed the stability of the architecture [11] by

changhese.g.,bug-flxmg, patching, small functionality increase all using colors to depict the changes.

overrt] € sys_ter_n. AW all G he inf Rysselberghe and Demeyer used a simple visualization
The variation ofYW allows one to fine-tune the infor- 504 o information in version control systems to provide

mation. It is the combination of short and focused releasesan overview of the evolution of systems [18].

and the fact thavW drops that allows one to conclude that Grosser, Sahraoui and Valtchev applied Case-Based Rea-

the system stabilizes. Note that, by considering longer re'soning on the history of object-oriented system as a solution

lease periods, the additions and removals of methods from, complementary problem to ours: to predict the preser-

Fhe same class between consecutive releases will not Sho"\\9ation of the class interfaces [10]. They also considered the
in the history measurements.

interfaces of a class to be the relevant indicator of the sta-
bility of a class. Sahraouwt al. employed machine learning
About the Impact of the Number of Versions. The num- combined with a fuzzy approach to understand the stability
ber of versions makes another variation point when comput-of the class interfaces [17].

ing YW. Increasing or decreasing the number of versions  Our approach differs from the above mentioned ones
affects the overalYW, but has little effect on the value of because we consider the history to be a first class entity
individual YW.. The longer the considered history, the less and define history measurements which are applied on the
important is a hit/non-hit. By increasing the number of ver- whole history of the system and which summarize the evo-
sions while keeping the same period between versions, wdution of that system. The drawback of our approach con-
let the early changes affect the overdW. Therefore, by  sists in the inherent noise which resides in compressing
increasing the number of versions we obtain a long-term large amounts of data into numbers.



Gall et al. [7] analyzed the history of changes in soft- with the changes in the team or with the changes in the de-
ware systems to detect the hidden dependencies betweewelopment process.
modules. However, their analysis was at the file level, rather
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Figure 7. The HisMo meta model is an extension of the
FAMIX meta model (This a reduced schema of the meta
model).

In Figure 7 we schematically present the relationship be-
tween HisMo and FAMIX. HisMo recognizes the history as
being a first-class entity which is formed by multiple ver-
sions, each version having a one-to-one relationship with a
FAMIX entity.
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