
1

Identifying Entities That Change Together

Tudor Ĝırba1, St́ephane Ducasse2, Radu Marinescu3 and Daniel Raţiu4

1,2 Software Composition Group
University of Berne, Switzerland
{girba, ducasse}@iam.unibe.ch

3,4 LOOSE Research Group
University of Timişoara, Romania

{radum, ratiud}@cs.utt.ro

Abstract

1 Software system need to change over time to cope
with the new requirements. Furthermore, due to design
decisions, the new requirements happen to crosscut the
system’s structure. Understanding how changes appear
in the system can reveal hidden dependencies between
different parts of the system. We propose to group entities
that change together according to a logical expression that
specifies the change condition. Furthermore, we can group
entities at different levels of abstraction (i.e., method, class,
package). Our approach is based on an explicit history
meta model that centers around the notion of history and
which enables the definition of historical measurements
which summarize the changes. We apply our approach
on two large case studies and show how we can identify
groups of related entities and detect bad smells.

I. Introduction

Software systems need to change over time to cope
with the new requirements [1]. As the requirements happen
to crosscut the system’s structure, changes will have to
be made in multiple places. Understanding how changes
appear in the system is important for detecting hidden
dependencies between its parts.

In the recent period work has been carried out to
detect and interpret groups of software entities that change
together [2] [3] [4]. Yet, the detection is based on change

1Ninth IEEE Workshop on Empirical Studies of Software Maintenance
(WESS 2004)

information concerning one property, and is mostly based
on file level information.

We propose an approach which detects evolutionary
groups based on more than one property. We first define
a history meta model and based on this meta model
we define historical measurements which summarize the
evolution of entities. We use these measurements to detect
changes between two versions, and build an Evolution
Matrix [5] annotated with changes. We use the matrix as
an incidence table for the input into a concept analysis
machine which returns the groups of entities that changed
certain properties in the same versions. Also, for building
the matrix of changes, we make use of logical expressions
which combine properties with thresholds and which run
on two versions of the system to detect interesting entities.

Example. ShotgunSurgery appears when whenever we
have to change a class we have to change a number of
other classes[6]. We would suspect a group of classes of
such a bad smell, when they repeatedly keep their external
behavior constant and change the implementation. We can
detect this kind of change in a class in the versions in
which the number of methods did not change, while the
number of statements changed.

We can apply our approach on any kind of entities
we have in the meta model. In this paper we show
how we detect groups of packages, classes and methods.
We applied our approach on two large open source case
studies.

Next, we briefly introduce the notion of history as a
first-class entity and define two generic historical measure-
ments. We introduce our approach for grouping histories
using historical measurements and concept analysis, and
then show how we apply it on different levels of abstrac-

2
tions (i.e., method, class, package). We discuss the results
we obtained when applying our approach on two large
case open source studies, and in the end, we conclude and
present the future work.

II. History and History Measurements

We define ahistory to be a sequence of versions of
the same kind of entity (e.g.,class history, system history,
etc.). By a version we understand a snapshot of an entity at
a certain point in time (e.g.,class version, system version,
etc.).

Example. In the left side of Figure 1 we use a
simplified example of the Evolution Matrix [5] to display
a system history with 6 versions. A cell in the matrix
is marked by a square and represents a class version. A
line in the matrix represents a class history and a column
represents a system version. In the figure, class A was
present in all the version of the system, class B was
removed in the last system version while class E appeared
in the system only the third system version.

Addition of a Version Property (A). We define a
generic measurement, called addition of a version property
P (A(P, i)), as the addition of that property between version
i− 1 and i of the historyH:

(i > 1)

Ai(P, H) =

{
Pi(H)− Pi−1(H), Pi(H)− Pi−1(H) > 0
0, Pi(H)− Pi−1(H) 6 0

(1)

Evolution of a Version Property (E). We define a
generic measurement, called evolution of a version prop-
erty P (Ei(P)), as being the absolute difference of that
property between versioni− 1 and i:

(i > 1) Ei(P, H) = |Pi(H)− Pi−1(H)| (2)

We instantiate the above mentioned measurements by
applying them on different version properties of different
types of entities:

• Method:NOS(number of statements),CYCLO(MC-
Cabe cyclomatic number [7]).

• Class:NOM (number of methods),WNOC (number
of all subclasses).

• Package:NOCls (number of classes),NOM (number
of methods).

The E measurement shows a change of a certain
property, while theA measurement shows the additions
of a certain version property. Thus, these measurements
summarize the evolution of properties.

III. Grouping Mechanism

In the left side of Figure 1 we display an Evolution
Matrix in which each square represents a class version
and the number inside a square represents the number of
methods in that particular class version. A grayed square
shows a change in the number of methods of a class version
as compared with the previous version (Ei(NOM) > 0).

Based on such a matrix we can build a concept lattice
by considering the histories as entities and the properties
are given by ”grayed in version x”. In the right side of
Figure 1, we show the concept lattice obtained from the
Evolution Matrix on the left.

Each concept in the lattice represents all the class
histories which changed certain properties together in those
particular versions. In the given example, class history A
and D changed their number of methods in version 2 and
version 6.

We not only want to detect entities that change one
certain property in the same time, we want to detect entities
that change more properties, and/or do not change other
properties. For example, to detect parallel inheritances it is
enough to just look at the number of children of classes;
but, when we want to look for classes which need to
change the internals of the methods in the same time
without adding any new functionality, we need to look
for classes which change their size, but not the number of
methods.

We encode this information in a expressions which
consist of logical combination of historical measurements.
These expressions are applied at every version on the last
two versions. In the example from Figure 1, the expression
used wasEi(NOM) > 0 which we applied on class
histories.

In the followings we will introduce several expressions
applicable on packages, classes and respectively methods.

A. Method Histories Grouping Expressions.

Parallel Complexity. A set of methods are effected by
Parallel Complexitywhen a change in the complexity in
one method involves changes in the complexity of other
methods. As a measure of complexity we used the McCabe
cyclomatic number. Classes with parallel complexity could
reveal parallel conditionals.

ParallelComplexity : (Ai(CY CLO) > 0) (3)

Parallel Bugs. We name a change a bug fix, when no
complexity is added to the method, but the implementation
changes. When we detect repetitive such bug fixes in more
methods in the same versions, we group those methods in a

3

Fig. 1. Example of applying concept analysis to group class histories based on the changes in number
of methods. The Evolution Matrix on the left is the incident table used as the input for the concept
analysis machine which outputs the concept lattice on the right.

Parallel Bugsgroup. Such a group, might give indications
of similar implementation which could be factor out. As an
implementation measure we used number of statements.

ParallelBugs : (Ei(NOS) > 0) ∧ Ei(CY CLO) = 0) (4)

B. Class Histories Grouping Expressions

Shotgun Surgery. The Shotgun Surgerybad-smell is
encountered every time when a change operated in a class
involves a lot of small changes to a lot of different classes
[6]. We detect this bad smell, by looking at the classes
which do not change their interface, but change their
implementation together.

ShotgunSurgery = (Ei(NOM) = 0 ∧ Ei(NOS) > 0) (5)

Parallel Inheritance. Parallel Inheritanceis detected in
the classes which change their number of children together
[6]. Such a characteristic is not necessary a bad smell, but
gives indications of a hidden link between two hierarchies.
For example, if we detect a main hierarchy and a test
hierarchy as being parallel, gives us indication that the
tests were developed in parallel with the code.

ParallelInheritance = (Ai(WNOC) > 0) (6)

Parralel Semantics.Methods specify the semantics of
a class. WithParallel Semanticswe detect classes which
add methods in parallel. Such a characteristic could reveal
hidden dependencies between classes.

ParallelSemantics = (Ai(NOM) > 0) (7)

C. Package Histories Grouping Expression

Package Parallel Semantics.If a group of classes is
detected, as having parallel semantics, we would want to
relate the containing packages as well.Package Parallel
Semanticsdetects packages where some methods have
been added, but no class have been added or removed.

PackageParallelSemantics = (Ei(NOCls) = 0) ∧
(Ai(NOM) > 0) (8)

4
IV. Experiments: JBoss

For our experiments we chose 41 versions of JBoss2.
JBoss is an open source J2EE application server written
in Java. The versions we selected for the experiments are
at two weeks distance from one another starting from the
beginning of 2001 until the end of 2002. Table I shows
the characteristics of the case study. The first version has
632 classes, the last one has 4276 classes (we took into
consideration all test classes, interfaces and inner classes).

System Language Versions First Version
(Size)

Last Version
(Size)

JBoss Java 41 40 kLOC 281 kLOC
632 classes 4276 classes

TABLE I. Characteristics of the JBoss case
study.

Due to space limitation, we will only discuss the
ParallelInheritanceresults we obtained on JBoss.

After applying the mechanism described above, we ob-
tained 68 groups of class histories which added subclasses
in the same time. Manual inspection showed there were
a lot of repetitions (due to the way the concept lattice is
built), and just a limited number of groups were useful.
Furthermore, inside a group not all classes were relevant
for that particular group.

For example, in 19 versions a class was added in
the JBossTestCase hierarchy (JBossTestCase is
the root of the JBoss test cases). Another example is
ServiceMBeanSupport which is the root of the largest
hierarchy of JBoss. In this hierarchy, classes were added
in 18 versions. That means that bothJBossTestCase
and ServiceMBeanSupport were present in a large
number of groups, but was not necessary related to the
other classes in these groups.

These results showed that just applying concept analysis
produced too many false positives. That is why we added a
filtering step. The filtering step consists in identifying and
removing from the groups the entities that changed their
relevant properties (i.e., according to the expression) more
times than the number of properties detected in a group:

FilteringRule =
groupV ersions

totalChangedV ersions
> threshold (9)

In our experiments, we chose the threshold to be 3/4.
For example, ifJBossTestCase was part of a group
of classes which changed their number of subclasses in
10 versions, we would rule the class out of the group. We
chose an aggressive threshold to reduce the number of false

2See http://www.jboss.org for more information.

positives as much as possible, in the detriment of having
true negatives.

Class Histories Versions
org::jboss::system::ServiceMBeanSupport
org::jboss::test::JBossTestCase

24 27 28
29 30 32
33 34 37
38 39 40
41 19 20

javax::ejb::EJBLocalHome
javax::ejb::EJBLocalObject

24 41 28
30 32 36
37 38 23

TABLE II. Parallel Inheritance in JBoss

After the filtering step, we obtained just two groups. In
Table II we show the class histories and the versions in
which they changed the number of children.

In the first group we have two classes which
change their number of children 15 times:
ServiceMBeanSupport and JBossTestCase .
The interpretation of this group is that the largest
hierarchy in JBoss is highly tested.

The second group detects a relationship
between the EJB interfaces:EJBLocalHome and
EJBLocalObject . This is due to the architecture of
EJB which requires that a bean has to have aHomeand
an Object component.

V. Implementation: Moose, Van and ConAn

We carried the experiments using a combination of
tools:

• Van is our version analysis tool. It implements the
history meta model (Hismo) and is built on top of
Moose[8].

• ConAn is a concept analysis developed on top of
Moose.

VI. Related Work

The first work to study the entities that change together
was performed by Gallet al. [2]. The authors use the
change information to define a proximity measurements
which they use to cluster related entities. The work has
been followed up by the same authors [9] and by Itkoet
al. [3].

Shirabadet al. employ machine learning techniques to
detect files which are likely to need to be changed when
a particular file is changed [10].

As opposite with the previous approaches, Zimmerman
et al. placed their analysis at the level of entities in the
meta model [4]. Their focus was to provide a mechanism
to warn developers that: “Programmers who changed these

5
functions also changed. . . ”. Their approach differs from
ours because they only look at syntactic changes, while we
identify changes based on the semantics of the changes.
Furthermore, our approach takes into consideration differ-
ent changes in the same time.

Davey and Burd proposed the usage of concept analysis
to detect evolutionary concepts, but there was no imple-
mentation evidence [11].

Detection of problems in the source code structure has
long been a main issue in the quality assurance community.
Marinescu [12] detects design flaws by defining detection
strategies. Ciupke employed queries usually implemented
in Prolog to detect “critical design fragments” [13]. Tourwe
et al. also explored the use of logic programming to detect
design flaws [14]. vanEmden and Moonen detected bad
smells by looking at code patterns [15]. These approaches
differs from ours because they use only the last version of
the code, while we take into account historical information.
Furthermore, vanEmden and Moonen proposed as future
research the usage of historical information to detect
Shotgun Surgery or Parallel Inheritance.

We developed a previous approach to using the history
of entities to detect design flaws, but in that case we
extended the concept of detection strategies proposed by
Marinescu to take into account the time information and
showed how we improved the detection [16] [17].

Two of the authors already used historical information
to characterize how changes appear during the history of
systems[18].

VII. Conclusions and Future Work

Understanding how a system changes can reveal hid-
den dependencies between different parts of the system.
Moreover, such dependencies might reveal bad smells in
the design.

We proposed the usage of historical information to
detect parts of the system that change in the same time,
according to different rules. For that, we defined a history
meta model and history measurements. Based on this
model we built queries which detect different types of
changes. By applying these queries on every version we
obtained an Evolution Matrix annotated with the change
information which we then used as input for a concept
analysis machine. The result obtained by the machine were
groups of entities that change together and the versions in
which they changed. We applied our approach on one large
open source case study and discussed some of the results
we obtained.

According to our algorithm the effectiveness of the
approach is highly affected by the value of the threshold.
When the threshold is high (i.e., close to 1) we want
to remove the false positives but we risk missing true

negatives. Further work is required to better understand
the nature of this threshold and its interpretation.

In the future we would also like to apply our approach
on more case studies and analyze in depth the results we
obtain at different levels of abstractions.

Acknowledgments

Ducasse and Ĝırba gratefully acknowledge the financial
support of the Swiss National Science Foundation for
the projects “Tools and Techniques for Decomposing and
Composing Software” (SNF Project No. 2000-067855.02,
Oct. 2002 - Sept. 2004) and “RECAST: Evolution of
Object-Oriented Applications” (SNF Project No. 620-
066077, Sept. 2002 - Aug. 2006).

Gı̂rba would like to thank European Science Foundation
for the financial support.

References

[1] M. M. Lehman and L. Belady,Program Evolution — Processes of
Software Change. London Academic Press, 1985.

[2] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling
based on product release history,” inProceedings of the Interna-
tional Conference on Software Maintenance 1998 (ICSM ’98), 1998,
pp. 190–198.

[3] J. Itkonen, M. Hillebrand, and V. Lappalainen, “Application of
relation analysis to a small java software,” inProceedings of the
Conference on Software Maintenance and Reengineering (CSMR
2004), 2004, pp. 233–239.

[4] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” in26th International
Conference on Software Engineering (ICSE 2004), 2004.

[5] M. Lanza and S. Ducasse, “Understanding software evolution using
a combination of software visualization and software metrics,” in
Proceedings of LMO 2002 (Langages et Modèles à Objets, 2002,
pp. 135–149.

[6] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,Refac-
toring: Improving the Design of Existing Code. Addison Wesley,
1999.

[7] T. McCabe, “A measure of complexity,”IEEE Transactions on
Software Engineering, vol. 2, no. 4, pp. 308–320, Dec. 1976.

[8] S. Ducasse, M. Lanza, and S. Tichelaar, “Moose: an extensi-
ble language-independent environment for reengineering object-
oriented systems,” inProceedings of the Second International
Symposium on Constructing Software Engineering Tools (CoSET
2000), June 2000.

[9] H. Gall, M. Jazayeri, and J. Krajewski, “Cvs release history data
for detecting logical couplings,” inInternational Workshop on
Principles of Software Evolution (IWPSE 2003), 2003, pp. 13–23.

[10] J. S. Shirabad, T. C. Lethbridge, and S. Matwin, “Mining the
maintenance history of a legacy software system,” inInternational
Conference on Software Maintenance (ICSM 2003), 2003, pp. 95–
104.

[11] J. Davey and E. Burd, “Clustering and concept analysis for software
evolution,” in Proceedings of the 4th international Workshop on
Principles of Software Evolution (IWPSE 2001), Vienna, Austria,
2001, pp. 146–149.

[12] R. Marinescu, “Measurement and quality in object-oriented design,”
Ph.D. Thesis, Department of Computer Science, ”Politehnica” Uni-
versity of Timişoara, 2002.

[13] O. Ciupke, “Automatic detection of design problems in object-
oriented reengineering,” inProceedings of TOOLS 30 (USA), 1999,
pp. 18–32.

6
[14] K. Mens, T. Mens, and M. Wermelinger, “Maintaining software

through intentional source-code views,” inProceedings of SEKE
2002. ACM Press, 2002, pp. 289–296.

[15] E. van Emden and L. Moonen, “Java quality assurance by detecting
code smells,” inProc. 9th Working Conf. Reverse Engineering.
IEEE Computer Society Press, Oct. 2002, pp. 97–107.

[16] D. Ratiu, “Time-based detection strategies,” Master’s thesis, Faculty
of Automatics and Computer Science, ”Politehnica” University of
Timişoara, Sept. 2003.

[17] D. Ratiu, S. Ducasse, T. Gı̂rba, and R. Marinescu, “Using history
information to improve design flaws detection,” inProceedings
of the Conference on Software Maintenance and Reengineering
(CSMR 2004), 2004, pp. 233–232.

[18] T. Gı̂rba, S. Ducasse, and M. Lanza, “Yesterday’s weather: Guiding
early reverse engineering efforts by summarizing the evolution of
changes,” in20th International Conference on Software Mainte-
nance (ICSM 2004), 2004.

