ldentifying Entities That Change Together

Tudor Grbal, Stephane Ducas$eRadu Marinesciand Daniel Ratiti

1.2 Software Composition Group
University of Berne, Switzerland
{girba, ducassg@iam.unibe.ch

34 LOOSE Research Group
University of Timisoara, Romania
{radum, ratiud@cs.utt.ro

Abstract information concerning one property, and is mostly based
on file level information.

! Software system need to change over time to cope We propose an approach which detects evolutionary
with the new requirements. Furthermore, due to design groups based on more than one property. We first define
decisions, the new requirements happen to crosscut thea history meta model and based on this meta model
system’s structure. Understanding how changes appearwe define historical measurements which summarize the
in the system can reveal hidden dependencies betweemvolution of entities. We use these measurements to detect
different parts of the system. We propose to group entitieschanges between two versions, and build an Evolution
that change together according to a logical expression that Matrix [5] annotated with changes. We use the matrix as
specifies the change condition. Furthermore, we can groupan incidence table for the input into a concept analysis
entities at different levels of abstraction (i.e., method, class, machine which returns the groups of entities that changed
package). Our approach is based on an explicit history certain properties in the same versions. Also, for building
meta model that centers around the notion of history and the matrix of changes, we make use of logical expressions
which enables the definition of historical measurements which combine properties with thresholds and which run
which summarize the changes. We apply our approachon two versions of the system to detect interesting entities.
on two large case studies and show how we can identify Example. ShotgunSurgery appears when whenever we
groups of related entities and detect bad smells. have to change a class we have to change a number of

other classes[6]. We would suspect a group of classes of

such a bad smell, when they repeatedly keep their external
. Introduction behavior constant and change the implementation. We can

detect this kind of change in a class in the versions in

Software svstems need to change over time to co ewhich the number of methods did not change, while the
y 9 P& umber of statements changed.

with the new reqwremerlts [1]. As the requirements happen We can apply our approach on any kind of entities
to crosscut the system’s structure, changes will have to . .
we have in the meta model. In this paper we show

be madt_e in multiple plaltce.s. Understanding hO.W ch_angeshow we detect groups of packages, classes and methods.
appear in the system is important for detecting hidden We applied our approach on two large open source case
dependencies between its parts. studies

setec e oo s vt bt gy, N, e ey oduce e o of sy o a
pret group YKirst-class entity and define two generic historical measure-

together [2] [3] [4]. Yet, the detection is based on change ments. We introduce our approach for grouping histories

INinth IEEE Workshop on Empirical Studies of Software Maintenance using historical measurements ‘?md concept analysis, and
(WESS 2004) then show how we apply it on different levels of abstrac-

tions (.e., method, class, package). We discuss the resultslll. Grouping Mechanism
we obtained when applying our approach on two large
case open source studies, and in the end, we conclude and |n the left side of Figure 1 we display an Evolution

present the future work. Matrix in which each square represents a class version
and the number inside a square represents the number of
Il. History and History Measurements methods in that particular class version. A grayed square

shows a change in the number of methods of a class version

, . . as compared with the previo ersiall, (NOM .
We define ahistory to be a sequence of versions of S P w previous versiafi, (NOM) > 0)

th me kind of entit | histor tem histor Based on such a matrix we can build a concept lattice
€ same ore yelg.,class history, syste story, by considering the histories as entities and the properties
etc.). By a version we understand a snapshot of an entity a

tai ntin i | . . : tare given by "grayed in version Xx". In the right side of
atcer ain point in timeg.g.,class version, system version, Figure 1, we show the concept lattice obtained from the
etc.). . . Evolution Matrix on the left.
Example. In the left side of Figure 1 we use a

implified le of the Evolution Matrix I5] to displ Each concept in the lattice represents all the class
simpiified example o the Evo ptlon atrix [] to disp &Y histories which changed certain properties together in those
a system history with 6 versions. A cell in the matrix

) ked b d ; |) Agarticular versions. In the given example, class history A
IS marked by a square and represents a class version. 4,4 p changed their number of methods in version 2 and
line in the matrix represents a class history and a column

version 6.

represen_ts a system vgrsion. In the figure, class A was e\j’vg n?)t only want to detect entities that change one
present In all the version of t.he sy;tem, class B was ertain property in the same time, we want to detect entities
removed in the last system version wh|le. class E appeare hat change more properties, and/or do not change other
in the system only the third system version. properties. For example, to detect parallel inheritances it is

Addltlon of a Version Proper_t)_/ (A). We ‘?ef'”e a enough to just look at the number of children of classes;
generic measurement, called addition of a version propertyp . \when we want to look for classes which need to

P (A(P, 1)), as the addition of that property between Version .pange the internals of the methods in the same time

i — 1 andq of the history without adding any new functionality, we need to look
for classes which change their size, but not the number of
(i > 1) methods.
AP H) _{ 4 — Py (H)>0) We encode this information in a expressions which
ST 0, P(H)—-P_1(H) <0 consist of logical combination of historical measurements.
These expressions are applied at every version on the last
two versions. In the example from Figure 1, the expression
used wasE;(NOM) > 0 which we applied on class
histories.
In the followings we will introduce several expressions
applicable on packages, classes and respectively methods.

Evolution of a Version Property (E). We define a
generic measurement, called evolution of a version prop-
erty P (E;(P)), as being the absolute difference of that
property between version— 1 andi:

(i>1) Ei(P,H)=|Pi(H)~ P—1(H)| (2> A. Method Histories Grouping Expressions.

We instantiate the above mentioned measurements byP Pfﬁrallllgl Corlnpl_texnz. A set r? f methodtf] are effelctgtd l.)y
applying them on different version properties of different araflel ~ompiexitywhen a change in the compiexity in
types of entities: one method involves changes in the complexity of other

_ methods. As a measure of complexity we used the McCabe
« Method:NOS(number of statementsfYCLO(MC- ¢y cjomatic number. Classes with parallel complexity could
Cabe cyclomatic number [7]).

reveal parallel conditionals.
o Class:NOM (number of methods)\WNOC (number
of all subclasses).
o PackageNOCIs (number of classesNOM (number
of methods).

ParallelComplexity : (A;(CYCLO) > 0) 3)

The E measurement shows a change of a certain Parallel Bugs. We name a change a bug fix, when no
property, while theA measurement shows the additions complexity is added to the method, but the implementation
of a certain version property. Thus, these measurementchanges. When we detect repetitive such bug fixes in more
summarize the evolution of properties. methods in the same versions, we group those methods in a

a [2] [2] [4] | ¢ait hist}, {no ver} |
8 [s] [e] [e] ~
| (a0.8 w2 | {4, B,C, D}, {v6} |
c [s] ~
o [& @ @ [e 2wy | [Dipewe | [(ABCLES e |
E [5] [6] [€] - | {DY, {v2, v, vB} | | {A}. {v2, v5, vB}] [{G},{vS. v5, B} |

—_1 —2 —3 — 4 —§ = ==
Legend: versians {na hist}, {all ver}

a tlass version with x
X
mathods

Legend:)
a class version in which the a concapt which represents
number of mathods . D0 v, 2} | lhe_-::lass historias X and_"r’
changed from tha praviouws which changed together in
Varsion varsion vl and v2

Fig. 1. Example of applying concept analysis to group class histories based on the changes in number
of methods. The Evolution Matrix on the left is the incident table used as the input for the concept
analysis machine which outputs the concept lattice on the right.

Parallel Bugsgroup. Such a group, might give indications
of similar implementation which could be factor out. As an

implementation measure we used number of statements. ParallelInheritance = (4:(WNOC) > 0) ©)

ParallelBugs : (Ei(NOS) > 0) A Ei(CYCLO) = 0) (4) Parralel Semantics.Methods specify the semantics of
a class. WithParallel Semanticave detect classes which
add methods in parallel. Such a characteristic could reveal

B. Class Histories Grouping Expressions hidden dependencies between classes.

Shotgun Surgery. The Shotgun Surgerypad-smell is ParallelSemantics = (A;(NOM) > 0) @)
encountered every time when a change operated in a class
involves a lot of small changes to a lot of different classes
[6]. We detect this bad smell, by looking at the classes
which do not change their interface, but change their C. Package Histories Grouping Expression
implementation together.

Package Parallel Semanticsif a group of classes is
ShotgunSurgery = (Ei(NOM) = 0A E;(NOS) > 0) (5) detected, as having parallel semantics, we would want to
relate the containing packages as wékckage Parallel
Semanticsdetects packages where some methods have
joeen added, but no class have been added or removed.

Parallel Inheritance. Parallel Inheritanceis detected in
the classes which change their number of children togethe
[6]. Such a characteristic is not necessary a bad smell, but
gives indications of a hidden link between two hierarchies. pqckage Paraliel Semantics = (E;(NOCls) = 0) A
For example, if we detect a main hierarchy and a test (A;(NOM) > 0) (8)
hierarchy as being parallel, gives us indication that the
tests were developed in parallel with the code.

. » o _ 4
IV. Experiments: JBoss positives as much as possible, in the detriment of having
true negatives.

For our experiments we chose 41 versions of JBoss

'.JBOSS IS an Open source J2EE application Ser_/er written g:g:szjst)?slzf?;;/es?em::ServiceMBeanSupport \2/?1";?2;
in Java. The versions we selected for the experiments are | org::jboss: test::JBossTestCase 2930 32
at two weeks distance from one another starting from the 333437
beginning of 2001 until the end of 2002. Table | shows ii ?g ‘2‘8
the characteristics of the case study. The first version has [Javax:ejp-EBLocalHome 244128
632 classes, the last one has 4276 classes (we took into| javax:ejb::EJBLocalObject 303236
consideration all test classes, interfaces and inner classes). 373823

System| Language | Versions | First Version | Last Version TABLE II. Parallel Inheritance in JBoss

(Size) (Size)
JBoss | Java 41 40 kLOC 281 kLOC

After the filtering step, we obtained just two groups. In

632 classes 4276 classes . . h .
Table Il we show the class histories and the versions in

TABLE |. Characteristics of the JBoss case which they changed the number of children.
study. In the first group we have two classes which
change their number of children 15 times:
ServiceMBeanSupport and JBossTestCase
Due to space limitation, we will only discuss the The interpretation of this group is that the largest
Parallelinheritanceresults we obtained on JBoss. hierarchy in JBoss is highly tested.

After applying the mechanism described above, we ob- The second group detects a relationship
tained 68 groups of class histories which added subclassegetween the EJB interfacesEJBLocalHome and
in the same time. Manual inspection showed there weregjgLocalObject . This is due to the architecture of

a lot of repetitions (due to the way the concept lattice is gjB which requires that a bean has to havdcme and
built), and just a limited number of groups were useful. an Object component.

Furthermore, inside a group not all classes were relevant
for that particular group.

For example, in 19 versions a class was added in
the JBossTestCase hierarchy (BossTestCase is
the root of the JBoss test cases). Another example is We carried the experiments using a combination of
ServiceMBeanSupport which is the root of the largest ~ tools:
hierarchy of JBoss. In this hierarchy, classes were added « Van is our version analysis tool. It implements the

V. Implementation: Moose, Van and ConAn

in 18 versions. That means that baiBossTestCase history meta model (Hismo) and is built on top of
and ServiceMBeanSupport were present in a large Moose[8].

number of groups, but was not necessary related to the « ConAn is a concept analysis developed on top of
other classes in these groups. Moose.

These results showed that just applying concept analysis
produced too many false positives. That is why we added ay/|. Related Work
filtering step. The filtering step consists in identifying and
removing from the groups the entities that changed their
relevant properties.g., according to the expression) more
times than the number of properties detected in a group:

The first work to study the entities that change together
was performed by Galkt al. [2]. The authors use the
change information to define a proximity measurements
which they use to cluster related entities. The work has
> threshold (9) peen followed up by the same authors [9] and by I&to

al. [3].

In our experiments, we chose the threshold to be 3/4. Shirabadet al. employ machine learning techniques to
For example, ifJBossTestCase was part of a group detect files which are likely to need to be changed when
of classes which changed their number of subclasses in Particular file is changed [10]. _

10 versions, we would rule the class out of the group. We AS OPposite with the previous approaches, Zimmerman

chose an aggressive threshold to reduce the number of fals&t @l placed their analysis at the level of entities in the
meta model [4]. Their focus was to provide a mechanism

2See http://www.jboss.org for more information. to warn developers that: “Programmers who changed these

FilteringRule = groupV ersions

totalChangedV ersions

functions also changed. . . ”. Their approach differs from negatives. Further work is required to better undersstand
ours because they only look at syntactic changes, while wethe nature of this threshold and its interpretation.

identify changes based on the semantics of the changes. In the future we would also like to apply our approach
Furthermore, our approach takes into consideration differ-on more case studies and analyze in depth the results we
ent changes in the same time. obtain at different levels of abstractions.

Davey and Burd proposed the usage of concept analysis
to detect evolutionary concepts, but there was no imple- Acknowledgments
mentation evidence [11].

Detection of problems in the source code structure has Ducasse and Ta gratefully acknowledge the financial
long been a main issue in the quality assurance communitysupport of the Swiss National Science Foundation for
Marinescu [12] detects design flaws by defining detection the projects “Tools and Techniques for Decomposing and
strategies. Ciupke employed queries usually implementedComposing Software” (SNF Project No. 2000-067855.02,
in Prolog to detect “critical design fragments” [13]. Tourwe Oct. 2002 - Sept. 2004) and “RECAST: Evolution of
et al. also explored the use of logic programming to detect Object-Oriented Applications” (SNF Project No. 620-
design flaws [14]. vanEmden and Moonen detected bad066077, Sept. 2002 - Aug. 2006).
smells by looking at code patterns [15]. These approaches Girba would like to thank European Science Foundation
differs from ours because they use only the last version offor the financial support.
the code, while we take into account historical information.

Furthermore, vanEmden and Moonen proposed as futureReferences

research the usage of historical information to detect

Shotgun Surgery or Parallel Inheritance. [1] M. M. Lehman and L. BeladyProgram Evolution — Processes of
We developed a previous approach to using the history Software Change London Academic Press, 1985.

of entities to detect design flaws. but in that case we [2] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling
' based on product release history,” fioceedings of the Interna-

extended the concept of detection strategies proposed by tjonal conference on Software Maintenance 1998 (ICSM,'2898,

Marinescu to take into account the time information and pp. 190-198.
showed how we improved the detection [16] [17]. [3] J. Itl_<onen, M.‘ Hillebrand, a_nd V. Lappal?lnen, “Appllcatlon of
T fth th | d d historical inf fi relation analysis to a small java software, mroceec_ilngs_ of the
W0 0 € authors already use Istorical information Conference on Software Maintenance and Reengineering (CSMR
to characterize how changes appear during the history of ~ 2004) 2004, pp. 233-239.
systems[18]. [4] T. Zimmermann, P. Wei3gerber, S. Diehl, and A. Zeller, “Mining

version histories to guide software changes,28th International
Conference on Software Engineering (ICSE 20@904.
VIl. Conclusions and Future Work [5] M. Lanza and S. Ducasse, “Understanding software evolution using
' a combination of software visualization and software metrics,” in
Proceedings of LMO 2002 (Langages et Nmba Objets 2002,
Understanding how a system changes can reveal hid- - I;)AP- F103v§|;4§- Beck, J. Brant, W. Opdyke, and D. Robefisfac
den dependenues between d|ﬁe_rent parts of the SyStem' toring: Imr’)roving th’e Design’of Existing éodeAddison Wesley,
Moreover, such dependencies might reveal bad smells in 1999.
the design. [7] T. McCabe, “A measure of complexity/JEEE Transactions on
. . . . Software Engineeringvol. 2, no. 4, pp. 308-320, Dec. 1976.
We proposed the usage of hlstorlcql information .tO [8] S. Ducasse, M. Lanza, and S. Tichelaar, “Moose: an extensi-
detect parts of the system that change in the same time, ble language-independent environment for reengineering object-

according to different rules. For that, we defined a history ~ oriented systems,” inProceedings of the Second International
Symposium on Constructing Software Engineering Tools (CoSET

meta model and history measurements. Based on this 5000) june 2000.
model we built queries which detect different types of [9] H. Gall, M. Jazayeri, and J. Krajewski, “Cvs release history data
changes. By applying these queries on every version we for detecting logical couplings,” ininternational Workshop on

. . . - Principles of Software Evolution (IWPSE 2003p03, pp. 13-23.
obtained an Evolution Matrix annotated with the change [1¢) ;s pShirabad T C Lethbridg(e and S. OMEMinpeMimng the

information which we then used as input for a concept maintenance history of a legacy software system Jnternational
analysis machine. The result obtained by the machine were ~ Conference on Software Maintenance (ICSM 20@8p3, pp. 95~

f entities that ch her and the versions in;; 5 e
groups of entities that change together and the Versions i1} 3 pavey and E. Burd, “Clustering and concept analysis for software

which they changed. We applied our approach on one large evolution,” in Proceedings of the 4th international Workshop on

open source case study and discussed some of the results gggfipgzs f;esgf‘tl‘g’afe Evolution (IWPSE 2001jenna, Austria,
we Obtam.ed') . [12] R. Mérinescu, “Measurement and quality in object-oriented design,”
According to our algorithm the effectiveness of the Ph.D. Thesis, Department of Computer Science, "Politehnica” Uni-

approach is highly affected by the value of the threshold. versity of Timisoara, 2002. _ o
[13] O. Ciupke, “Automatic detection of design problems in object-

When the threshold is highi.é., close t(? 1) V_Velwam oriented reengineering,” iRroceedings of TOOLS 30 (USA)999,
to remove the false positives but we risk missing true pp. 18-32.

(14]

(15]

(16]

(17]

(18]

K. Mens, T. Mens, and M. Wermelinger, “Maintaining software
through intentional source-code views,” Rroceedings of SEKE
2002 ACM Press, 2002, pp. 289-296.

E. van Emden and L. Moonen, “Java quality assurance by detecting
code smells,” inProc. 9th Working Conf. Reverse Engineering
IEEE Computer Society Press, Oct. 2002, pp. 97-107.

D. Ratiu, “Time-based detection strategies,” Master’s thesis, Faculty
of Automatics and Computer Science, "Politehnica” University of
Timisoara, Sept. 2003.

D. Ratiu, S. Ducasse, T.1ha, and R. Marinescu, “Using history
information to improve design flaws detection,” Proceedings

of the Conference on Software Maintenance and Reengineering
(CSMR 2004)2004, pp. 233-232.

T. Girba, S. Ducasse, and M. Lanza, “Yesterday's weather: Guiding
early reverse engineering efforts by summarizing the evolution of
changes,” in20th International Conference on Software Mainte-
nance (ICSM 2004)2004.

