
Characterizing the Evolution of Class Hierarchies

Tudor Ĝırba
Software Composition Group

University of Bern
Switzerland

girba@iam.unibe.ch

Michele Lanza
Faculty of Informatics
University of Lugano

Switzerland
michele.lanza@unisi.ch

St́ephane Ducasse
Software Composition Group

University of Bern
Switzerland

ducasse@iam.unibe.ch

Abstract

Analyzing historical information can show how a soft-
ware system evolved into its current state, which parts of the
system are stable and which have changed more. However,
historical analysis implies processing a vast amount of in-
formation making the interpretation of the results difficult.
To address this issue, we introduce the notion of thehis-
tory of source code artifacts as a first class entity and define
measurements which summarize theevolutionof such enti-
ties. We use these measurements to define rules by which to
detect different characteristics of the evolution of class hi-
erarchies. Furthermore, we discuss the results we obtained
by visualizing them using a polymetric view1. We apply our
approach on two large open source case studies and classify
their class hierarchies based on their history.

Keywords: reverse engineering, software evolution, his-
torical measurements, software visualization, polymetric
views

1 Introduction

History holds useful information that can be used when
reverse engineering a system. However, analyzing histor-
ical information is difficult due to the vast amount of in-
formation that needs to be processed, transformed, and un-
derstood. Therefore, we need higher level views of the data
which allow the reverse engineer to ignore the irrelevant de-
tails.

We concentrate on describing and characterizing the evo-
lution of class hierarchies. Class hierarchies provide a
grouping of classes based on similar semantics thus, char-
acterizing a hierarchy as a whole reduces the complexity of
understanding big systems. In particular, we seek answers
to the following questions:

1The visualizations in this paper make use of colors. Please obtain a
color-printed or electronic version for better understanding.

1. How old are the classes of a hierarchy?On one hand,
the old classes may be part of the original design and
thus hold useful information about the system’s de-
sign. On the other hand, a freshly introduced hierar-
chy might indicate places where future work will be
required.

2. Were there changes in the inheritance relationships?
Changes in the inheritance relationships might indi-
cate class renaming refactorings, introduction of ab-
stract classes, or removal of classes.

3. Are classes from one hierarchy modified more than
those from another one?Understanding which parts
of the system changed more is important because they
might be also changed in the future [9].

4. Are the changes evenly distributed among the classes
of a hierarchy? If we find that the root of the hierar-
chy is often changed, it might indicate that effort was
spent to factor out functionality from the subclasses
and push it to the superclass, but it might also be a sign
of violations of the open-closed principle [18].

All information needed to answer the above questions is
already in the history of a system, but in raw form and not
easily accessible. We want to stress that processing such a
huge amount of data and understanding the results are dif-
ficult, therefore there is a need for an adequate approach to
analyze and understand the amount of information. Further-
more, the above questions need a model which represents
semantical meaningful changes (e.g.,did the superclass of
a particular class change from one version to another) and
not just text-based change logs.

Rather than placing our analysis at the level of change
logs, we define a meta-model in which history is a first
class entity and which allows us to define history measure-
ments which summarize the evolution of an entity or a set
of entities. For example, we quantify how much a class was
changed in terms of number of methods.

1

We are set to detect four characteristics of class hierarchy
evolution: (1) the age of the hierarchy, (2) the inheritance
relationship stability, (3) the class size stability, and (4) the
change balance. We quantify these characteristics in a set
of measurements-based rules, and define a language for de-
scribing different evolution patterns of class hierarchies.

To analyze the obtained results we developed a visualiza-
tion calledHierarchy Evolution Complexity View, an evolu-
tionary polymetric view [12]. We usesoftware visualiza-
tion because visual displays allow the human brain to study
multiple aspects of complex problems – like reverse engi-
neering – in parallel [20].

We validated our approach on two open source case stud-
ies written in Java and Smalltalk.

The contributions of the paper are (1) the characteri-
zation of class hierarchy evolution based on explicit rules
which detect different change characteristics, and (2) the
definition of a new polymetric view which takes into ac-
count the history of entities.

Structure of the paper. In Section 2 we introduce the
notion of a history and then define history measurements
for characterizing the evolution of classes and class hierar-
chies. In Section 3 we define rules to detect different evolu-
tion patterns of the evolution of class hierachies and in Sec-
tion 4 we introduce the visualization based on the defined
measurements. In Section 5 we apply our approach on two
large case studies. Prior to concluding we discuss variation
points of our approach (Section 6), present its implementa-
tion (Section 7) and discuss related work (Section 8).

2 Modeling History

We define ahistory to be a sequence of versions of the
same kind of entity (e.g.,class history, system history, etc.).
By aversionwe understand a snapshot of an entity at a cer-
tain point in time (e.g.,class version, system version, etc.).
Centered around the notion of history we build a history
meta-model called Hismo [5].

We then define historical measurements which charac-
terize the evolution of classes and inheritance relationships
and then use them to characterize the evolution of class hi-
erarchies.

2.1 Measuring Class Histories

History Age. We define theAgeas being the number of
versions of a history. In this paper we talk about theAgeof
a class history (ClassAge), of an inheritance relationship
history (InhAge), or of a system history (SystemAge).

Removed history. A history has been removed if its last
version is not part of the last version of the system. De-
pending on the kind of history we analyze, we can refer to

a removed class history, a removed inheritance relationship
history, etc.

Evolution of a Version Property (E). We define
E1..n(P,H) as the sum of the absolute difference of prop-
erty P in subsequent versions from version1 (the first ver-
sion) to versionn (the latest version) of a historyH [9]:

(n > 1) E1..n(P, H) =
Pn

i=2 |Pi(H)− Pi−1(H)| (1)

We instantiate this measurement by applying it on differ-
ent version properties of classes such as:NOM (the number
of methods) orNOS(the number of statements). Thus we
have two class history measurements: Evolution of Number
of Methods (ENOM) and Evolution of Number of State-
ments (ENOS).

ENOM1..n(C) = E1..n(NOM, C) (2)

ENOS1..n(C) = E1..n(NOS, C) (3)

As a short notation, we useE(P,H) = E1..n(P,H).

1 3

2 2 2 2

D

B

ENOM AGE

7

0

5

7 3

5

2 4 3 5A

2 4 7C 5 3

8

2

7

1 2 3 4 5

Legend:

x a class version with x methods

Removed

No

No

No

Yes

versions

E 0 13 No

Figure 1. An example of history measure-
ments.

Example. In Figure 1 we display an Evolution Matrix
[13] of five system versions. Each cell in the matrix is a
class version and the number inside the cell represents the
number of methods in that particular version. We see that:

• ClassB was in the system from the very beginning to
the very end, but no methods were detected as being
added or removed during its history.

• ClassA was in the system almost twice as many ver-
sions as classD, but in both class histories there were
equal amounts of methods added or removed in subse-
quent versions.

2

• ClassC has been removed from the system in its sec-
ond last version. ClassE has been added to the system
in the last version.

2.2 Measuring Class Hierarchy Histories

We consider a class hierarchy as being a group of classes
and a group of inheritance relationships. To measure class
hierarchy histories, we apply group operators like average
(Avg), maximum (Max) and total (Tot). Thus we have the
average age of the class histories in a class hierarchyCh as
given by:Avg(ClassAge,Ch).

3 Characterizing Class Hierarchy Histories

We formulate a vocabulary based on four characteristics:
(1) hierarchy age, (2) inheritance relationship stability, (3)
class size stability, and (4) change balance.

These four characteristics are orthogonal with each other
(e.g.,the same hierarchy can be old but at the same time can
have unstable classes).

In the followings, we use the history measurements to
define rules to qualify a class hierarchy based on the four
characteristics:

1. How old is a hierarchy? We distinguish the following
types of hierarchy histories based on the average age
of their class histories:

• Newborn. A newborn hierarchy is a freshly in-
troduced hierarchy (i.e., on the average the age
of the class histories is no more than a tenth of
the age of the system).

Avg(ClassAge, Ch) < 0.1 ∗ SystemAge

• Young. A young hierarchy is older than a new-
born hierarchy, but its age is less than half of the
system age.

Avg(ClassAge, Ch) > 0.1 ∗ SystemAge ∧
Avg(ClassAge, Ch) < 0.5 ∗ SystemAge

• Old. Old hierarchies have been in the system for
a long time, but not for the entire life of the sys-
tem.

Avg(ClassAge, Ch) > 0.5 ∗ SystemAge ∧
Avg(ClassAge, Ch) < 0.9 ∗ SystemAge

• Persistent. We say a hierarchy is persistent if the
classes were present in almost all versions of the
system (i.e., in more than 90% of the system ver-
sions).

Avg(ClassAge, Ch) > 0.9 ∗ SystemAge

2. Were there changes in the inheritance relationship? We
divide the hierarchies into two categories:

• Solid. We define a hierarchy as being solid when
the inheritance relationships between classes are
stable and old.

Tot(RemovedInh, Ch) < 0.3 ∗NOInh(Ch)

• Fragile. A hierarchy is fragile when there are
many inheritance relationships which disappear.

Tot(RemovedInh, Ch) > 0.3 ∗NOInh(Ch)

3. Are classes from one hierarchy modified more than
classes from another hierarchy? From the stability of
size point of view we detect two kind of hierarchies:

• Stable. In a stable hierarchy the classes have few
methods and statements added or removed com-
pared with the rest of the system.

Avg(ENOM, Ch) < Avg(ENOM, S) ∧
Avg(ENOS, Ch) < Avg(ENOS, S)

• Unstable. In an unstable hierarchy many meth-
ods are being added and removed during its evo-
lution.

Avg(ENOM, Ch) > Avg(ENOM, S) ∨
Avg(ENOS, Ch) > Avg(ENOS, S)

4. Are the changes evenly distributed among the classes
of a hierarchy? We distinguish two labels from the
change balance point of view:

• Balanced. In a balanced hierarchy, the changes
are evenly performed among its classes.

Avg(ENOM, Ch) > 0.8 ∗Max(ENOM, Ch)

• Unbalanced. An unbalanced hierarchy is one in
which the changes are not equally distributed in
the classes.

Avg(ENOM, Ch) < 0.8 ∗Max(ENOM, Ch)

4 Class Hierarchy History Complexity View

To analyze the results we obtain when applying the rules
defined in the previous section, we use visualization as it
allows one to identify cases where different characteristics
apply at the same time for a given hierarchy. The visualiza-
tion we propose is calledHierarchy Evolution Complexity
View and is a polymetric view[12].Hierarchy Evolution
Complexity Viewuses a simple tree layout to seemingly dis-
play classes and inheritance relationships. What is new is
that it actually visualizes thehistoriesof classes and of in-
heritance relationships.

3

A

B

D

C

Nodes:

Node Height:

Node Width:

Node Color:

Edges:

Edge Color:

Edge Width:

Inheritance Histories

AGE of the inheritance history

AGE of the inheritance history;
Cyan for removed history

Class Histories

ENOM of the class history

AGE of the class history;
Cyan for removed history

ENOS of the class history

Legend:

E

Figure 2. An example of the Hierarchy Evolution
Complexity View.

Nodes and edges which have been removed while the
system was evolving (i.e., they are not present anymore)
have a cyan color2. The color of the class history nodes
and the width of the inheritance edges represent their age:
the darker the nodes and the wider the edges, the more
groundedin time they are,i.e., the longer they have been
present in the system. Thus, lightly colored nodes and thin
edges representyoungerclasses and inheritance relation-
ships.

The width of the class history node is given by the Evolu-
tion of Number of Methods (i.e., ENOM) while the height is
given by the fifth part of the Evolution of Number of State-
ments (i.e., ENOS/5) 3. Thus, the wider a node is, the more
methods were added or removed in subsequent versions in
that class history; the greater the height of a node is, the
more statements were added or removed in subsequent ver-
sions in that class history.

We chose to useENOM andENOSbecause we wanted
to see the correlation between changes in the behavior of a
class and its internal implementation changes.

Example. In Figure 2 we show an example of such a
view in which we display an imaginary hierarchy history of
the class histories presented in Figure 1. From the figure we
infer the following information:

• ClassesA andB are in the system from the very be-
ginning, and they appear colored in black. The inher-
itance relationship between these classes is black and
thick marking that the relationship is old. ClassE is
small and white, because it was recently introduced in
the system.

• ClassC was removed from the system and is colored

2In a gray-scale print of the paper cyan will look like light gray.
3We chose to divideENOSby 5 because in the case studies we analyzed

there was an average of 5 statements per method.

in cyan. ClassD has been introduced after several ver-
sions as a subclass ofC, but in the last version it has
become a subclass ofA.

• ClassB is small because there were no changes de-
tected in it. ClassesA andD have the same width, but
classD appears to have less statements added or re-
moved because the node is more wide than tall. Class
C is much taller compared to its width, denoting a
greater implementation effort.

Based on the visualization we can detect two more char-
acteristics:

• Heterogeneous. We characterize a class hierarchy his-
tory as being heterogeneous if the class histories have
a wide range of ages. Such a hierarchy will appear
colored with a wide range of grays.

• Unstable Root. In a hierarchy with an unstable root,
the root node is large compared with the rest of the
nodes.

5 Characterizing the Class Hierarchy Histo-
ries of JBoss and Jun

For our experiments we chose two open source systems:
JBoss4 and Jun5. Table 1 gives an overview of the case
studies.

System Language Versions First Version
(Size)

Last Version
(Size)

JBoss Java 14 35 kLOC 302 kLOC
628 classes 4975 classes

Jun Smalltalk 40 12 kLOC 132 kLOC
170 classes 740 classes

Table 1. Characteristics of the JBoss and Jun
case studies.

JBoss. For the first case study, we chose 14 versions
of JBoss. JBoss is an open source J2EE application server
written in Java. The versions we selected for the experi-
ments were at two months distance from one another start-
ing from the beginning of 2001 until 2003. The first version
has 628 classes, the last one has 4975 classes.

Jun. As a second case study we selected 40 versions of
Jun. Jun is a 3D-graphics framework written in Smalltalk
currently consisting of more than 700 classes. As exper-
imental data we took every 5th version starting from ver-
sion 5 (the first public version) to version 200. The time
distance between version 5 and version 200 is about two

4See http://www.jboss.org for more information.
5See http://www.srainc.com/Jun/ for more information.

4

years, and the considered versions were released about 15-
20 days apart. In terms of number of classes, in version 5 of
Jun there are 170 classes while in version 200 there are 740
classes.

Table 2 and Table 3 show some of the results we obtained
on six large hierarchies of both case studies. These results
are now explained using the visualization.

5.1 Case Study: JBoss

Figure 3 shows the largest hierarchy in JBoss
(ServiceMBeanSupport), and Figure 4 shows five
other hierarchies from JBoss: JBossTestCase,
J2EEManagedObject, Stats, MetaData and SimpleN-
ode (we name the hierarchies according to the names of
their root classes). For space reasons Figure 3 is scaled
with a 0.5 ratio (i.e., zoomed out) as compared with the
Figure 4. In Table 2 we show the characterization of each
hierarchy according to the proposed characteristics.

ServiceMBeanSupport is a large hierarchy with nodes
and edges of different colors and shapes: As a whole, we
classify it as heterogeneous from the age point of view, frag-
ile from the inheritance relationship point of view, and un-
stable and unbalanced from the changes point of view.

The J2EEManagedObject is a sub-hierarchy ofSer-
viceMBeanSupport and is heterogeneous and unbalanced
from the point of view of performed changes and is fragile
in terms of inheritance. In the visualization the hierarchy
is displayed with nodes colored in various grays and with
many cyan edges and nodes.

JBossTestCase is composed of classes of different age.
On average, the nodes are rather small, meaning that the
classes were stable. The hierarchy is heterogeneous from
the class age point of view which shows that the tests were
continuously developed along the project. Also, because
most of the nodes are small it means that most of the classes
are stable both from the methods and from the implementa-
tion point of view. In the unstable classes there were more
implementation changes than methods added or removed.
Also, once the test classes were created not many test meth-
ods were added or removed afterwards.

TheStats hierarchy has been recently introduced and did
not yet experience major changes.

MetaData is represented with nodes of different sizes
colored either in dark colors or in cyan: It is an old hierar-
chy which is unstable and unbalanced from the performed
changes point of view. The edges are either thick and dark
or cyan, and as the number of removed edges are not high,
we characterize the inheritance relationships as being solid.

TheSimpleNode hierarchy is fairly old and experienced
very few changes during its lifetime, making it thus a very
stable hierarchy.

Service
MBean
Support

J2EE
Managed
Object

Figure 3. A Hierarchy Evolution Complexity View
of the evolution of the largest hierarchy from
14 versions of JBoss.

5

JBossTestCase

Stats MetaData SimpleNode

J2EE
ManagedObject

Figure 4. A Hierarchy Evolution Complexity Viewof the evolution of five hierarchies from 14 versions of
JBoss.

Hierarchy Age Inheritance Relationships Stability Change Balance

ServiceMBeanSupport Old, Heterogeneous Fragile Unstable Unbalanced
JBossTestCase Old, Heterogeneous Solid Stable Balanced
J2EEManagedObject Old, Heterogeneous Fragile Unstable Unbalanced
Stats Newborn Solid Stable Balanced
MetaData Old Solid Unstable Unbalanced
Simple Node Old Solid Stable Balanced

Table 2. The characterization of five class hierarchies from JBoss.

5.2 Case Study: Jun

Figure 5 shows six of the hierarchies of Jun:Topol-
ogy, CodeBrowser, OpenGL3dObject, Vrml, OpenGLDis-
playModel, andProbabilityDistribution. In Table 3 we show
the characterization of each hierarchy according to the pro-
posed characteristics.

The Topology hierarchy is the largest and oldest hierar-
chy in the system. In Figure 5 we marked the two sub-
hierarchies:AbstractOperator andTopologicalElement. The
TopologicalElement sub-hierarchy is composed of classes
which were changed a lot during their life time. Three of
the leaf classes were detected as being God Classes [19].
A large part of theAbstractOperator hierarchy has been in
the system from the first version, but there is a young sub-
hierarchy which looks different.

The CodeBrowser hierarchy is thin and lightly colored,
meaning that it has been recently added to the system.

TheOpenGL3dObject hierarchy experienced three times
an insertion of a class in the middle of the hierarchy: There
are removed inheritance relationships colored in cyan.

TheVrml hierarchy proved to have undergone extensive
renaming refactorings: We see many removed nodes and
removed inheritance relationships. Even the root class has
been removed at a certain point in time: The original hier-
archy has thus been split in two distinct hierarchies.

TheOpenGLDisplayModel hierarchy has an old and un-
stable root. This is denoted by a large rectangle colored in
dark gray. TheChart sub-hierarchy is thin and lightly col-
ored denoting it is newborn.

ProbabilityDistribution is an old hierarchy and very stable
from the inheritance relationships point of view. Also, the
classes in the hierarchy were changed very little during its
history.

6 Discussion and Variation Points

It is difficult to empirically validate and prove the value
of our approach. However, our experience with two large
and significant industrial applications shows that the ap-
proach provides valuable information in a short time.

6

OpenGL3dObjectProbability
Distribution

Vrml

Topology OpenGL
DisplayModel

Code
BrowserTopological

Element
Abstract
Operator

Chart

OpenGL3d
Primitive
Object

Figure 5. A Hierarchy Evolution Complexity Viewof the evolution of six hierarchies from the 40 versions
of Jun.

Hierarchy Age Inheritance Relationships Stability Change Balance

Topology Old Solid Unstable Unbalanced
CodeBrowser Newborn Solid Stable Balanced
OpenGL3dObject Old Fragile Unstable Unbalanced, Unstable Root
Vrml Persistent Fragile Stable Balanced
OpenGLDisplayModel Old Solid Stable Balanced, Unstable Root
ProbabilityDistribution Old Solid Stable Balanced

Table 3. The characterization of six class hierarchies from Jun.

6.1 Measurements Variation Points

The presented measurements have already been used by
the authors to describe changes in a system and on that oc-
casion some variation points have been discussed [9]:

• A variation point when computingE measurement is
the release period. If, for example, we consider the
release period of one week, we focus the analysis to
immediate changes. If we consider the release period
of half a year, we emphasize the size of the changes
that accumulate in the class histories.

• The number of versions is another variation point when
computing the measurements. By increasing the num-
ber of analyzed versions we obtain a long-term indica-
tor of effort, while by decreasing the number of ver-
sions we concentrate on the short-term indicator of ef-
fort.

• Changing the threshold used for characterizing the
evolution is also a variation point. For example, in-
stead of using 10% of the total number of system ver-
sions for qualifying a class hierarchy as young, we

can use 3 versions as the threshold (that is the classes
should be introduced no later than 2 versions ago).

6.2 Visualization Variation Points

In our visualization we sought answers to four questions
regarding the age of the hierarchy, the inheritance relation-
ship stability, the class size stability and the change balance.
The purpose of the visualization is to provide an overview
of the evolution of hierarchies, but is of limited use when a
deep understanding is required.

However, we are convinced that the information that one
can extract from the analysis we propose and the use of an
evolutionary polymetric view such as theHierarchy Evolu-
tion Complexity Viewis useful: It reveals information about
the system which would be otherwise difficult to extract
(e.g.,knowing that a hierarchy is stable/unstable in time is
valuable for deciding maintenance effort and doing quality
assessment). In addition, we have to stress that polymetric
views, as we implement them, are intrinsically interactive
and that just looking at the visualization is only of limited
value. Indeed, the viewer must interact with the visualiza-

7

OpenGL3dObjectProbability
Distribution

Vrml

Topology OpenGL
DisplayModel

Code
Browser

Chart

Topological
Element

Abstract
Operator

OpenGL3d
PrimitiveObject

Figure 6. A modified Hierarchy Evolution Complexity Viewof the evolution of six hierarchies from the Jun
case study (node width = NOM instability; node height = last NOM).

tion to extract finer-grained and more useful information,
e.g.,accessing the source code.

Example. In Figure 5 one would like to know what class
has been removed from theTopology hierarchy and also
why, since this quite large hierarchy has been very stable
in terms of inheritance relationships. The viewer can do so
by pointing and inspecting the cyan class history node.

Figure 6 shows a modifiedHierarchy Evolution Com-
plexity Viewapplied on the Jun hierarchies. In this view
we used for the width and the height of the nodes other
measurements, namely the last number of methods (NOM)
as the height and the instability of the number of meth-
ods (INOM) as the width. The instability of the number
of methods is computed as the number of versions in which
the number of methods changed over the total number of
versions in which it could have changed.

While in the original view the nodes dimensions show
the correlation between implementation effort and the be-
havior addition and removal effort, this view shows the cor-
relation of the actual size in terms of number of methods
and the number of times methods were added or removed
in the classes. Thus, in this view we can detect whether the
instability is correlated with actual size.

For example, in theOpenGLDisplayModel hierarchy
there is a correlation of the instability of number of meth-
ods and the size of the root class because the node is tall
and wide. On the other hand, theChart hierarchy is new-
born and appears small in the original view, while in this
view the root is tall meaning that it is a large class.

6.3 History Meta-Model Design Decisions

The history meta-model on which the work presented in
this paper is built, is calledHismo[5]. The novelty of this
meta-model is the introduction of the notion of history as a
first class entity.

Figure 7 shows how a meta-model centered around the
notion of history can be built: each cell in the matrix is a
Class Version which makes each line represent a Class His-
tory. Moreover, the whole matrix is actually a line formed
by SystemVersions, which means that the whole matrix can
be seen as a SystemHistory. In the right side of the fig-
ure we built a small meta-model which shows that a Sys-
temHistory has more ClassHistories. If we have a structural
meta-model in which we have other entities defined (i.e.,
other than System and Class), we can build in the same way
the corresponding history entities and their relationships. In
our implementation, Hismo is based onFAMIX, a language
independent meta-model [4].

The use of a meta-model allows one to express rules at a
high-level of abstraction as shown in Section 3. The current
analysis and the way it is expressed is an illustration of the
power given by such a meta-model.

7 Implementation: CodeCrawler, Van, and
Moose

The focus of our tools is on dynamic queries and on in-
teractivity rather than on static report generation.

8

**

*
*

ver.
1

ver.
2

ver.
3

ver.
4

ClassHistory

SystemHistory

ClassVersion

SystemVersion

*
*

* *

*

Figure 7. Example of building Hismo.

The presented visualizations are generated usingCode-
Crawler [14]. CodeCrawler supports reverse engineering
through a lightweight combination of metrics and software
visualization. In its latest implementation CodeCrawler has
become a general-purpose information visualization tool.
The underlying evolutionary model is implemented inVan
which is our history analysis tool.

Both Van and CodeCrawler are based on theMoose
[6] reengineering environment, which is an imple-
mentation of the FAMIX meta model. Both the
FAMIX and the Hismo metamodels are language in-
dependent. Our complete toolset is implemented
in Smalltalk and is open-source and available at:
http://www.iam.unibe.ch/∼scg/Research/Moose/index.html.

8 Related Work

Metrics and visualization are two traditional techniques
used to deal with the problem of analyzing the history of
software systems.

Lehmann used metrics starting from the 1970’s to an-
alyze the evolution of the IBM OS/360 system [16].
Lehmannet al. explored the implication of the evolution
metrics on software maintenance [15] [17]. They used the
number of modules to describe the size of a version and de-
fined evolutionary measurements which take into account
differences between consecutive versions. Gallet al. also
employed the same kind of metrics while analyzing the con-
tinuous evolution of the software systems [8].

Burd and Munro analyzed the influence of changes on
the maintainability of software systems. They defined a set
of measurements to quantify the dominance relations which
are used to depict the complexity of the calls [2].

Lanza’s Evolution Matrix [13] visualized the system’s
history in a matrix in which each row is the history of a
class (see a simplified version in Figure 1). A cell in the
Evolution Matrix represents a class and the dimensions of
the cell are given by evolutionary measurements computed

on subsequent versions. Jazayeri analyzed the stability of
the architecture [11] by using colors to depict the changes.
Jingwei Wuet al. used the spectograph metaphor to visual-
ize how changes occur in software systems. [23]. Ryssel-
berghe and Demeyer use a simple visualization based on in-
formation in version control systems to provide an overview
of the evolution of systems [22].

Our approach differs from the above mentioned ones be-
cause we consider history to be a first class entity and de-
fine history measurements which are applied on the whole
history of an entity and which summarize the evolution of
that entity. The authors already used the notion of history
to analyze how changes appear in the software systems [9].
The drawback of our approach consists in the inherent noise
which resides in compressing large amounts of data into
numbers.

Taylor and Munro [21] visualized CVS data with a tech-
nique calledrevision towers. Ball and Eick [1] developed
visualizations for showing changes that appear in the source
code. These approaches reside at a different granularity
level, i.e., files, and thus does not display source code ar-
tifacts as in our approach.

Holt and Pak [10] proposed a detailed visualization of
the old and new dependencies between modules. Collberg
et al. used graph-based visualizations to display the changes
authors make to class hierarchies. However, they did not
give any representation of the dimension of the effort and
of the removals of entities.

Gall et al. [7] analyzed the history of changes in software
systems to detect the hidden dependencies between mod-
ules. Xiaomin Wuet al. also visualized [24] the change
log information to provide for an overview of the active
places in the system as well as of the authors activity. How-
ever, their analysis was at the file level, rather than dealing
with the real code. In contrast, our analysis is placed at the
class and inheritance level making the results finer grained.
These approaches, are based on information that is outside
the code, while our analysis requires only the code.

Another metrics-based approach to detect refactorings of
classes was developed by Demeyeret al. [3]. While they fo-
cused on detecting refactorings, we focus on offering means
to understand where and how the development effort was
spent in a hierarchy.

9 Conclusions and Future Work

This work set to answer four questions: (1) How old are
the classes of a hierarchy?, (2) Were there changes in the
inheritance relationship?, (3) Are classes from one hierar-
chy modified more than those from another one?, and (4)
Are the changes evenly distributed among the classes of a
hierarchy?

The history of a system holds the information necessary

9

for answering the above questions, but the analysis is dif-
ficult due to the large amount of data. We approached this
problem by defining the history as a first class entity and
then we defined history measurements which summarize
the evolution of an entity.

Based on the questions we formulated a vocabulary of
terms and we used the measurements to formulate rules to
characterize the evolution of class hierachies. Furthermore,
we displayed the results using a new polymetric view of
the evolution of class hierarchies calledHierarchy Evolu-
tion Complexity View.

We applied our approach on two large open source
projects and showed how we could describe the evolution
of class hierarchies.

In the future, we want to investigate possibilities of using
other measurements and of adding more semantic informa-
tion to the view we propose. For example, we want to add
information like refactorings that have been performed.

Acknowledgments. We gratefully acknowledge the financial
support of the Swiss National Science Foundation for the projects
“Tools and Techniques for Decomposing and Composing Soft-
ware” (SNF Project No. 2000-067855.02, Oct. 2002 - Sept. 2004)
and “RECAST: Evolution of Object-Oriented Applications” (SNF
Project No. 620-066077, Sept. 2002 - Aug. 2006).

References

[1] T. Ball and S. Eick. Software visualization in the large.IEEE
Computer, pages 33–43, 1996.

[2] E. Burd and M. Munro. An initial approach towards measur-
ing and characterizing software evolution. InProceedings
of the Working Conference on Reverse Engineering, WCRE
’99, pages 168–174, 1999.

[3] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refac-
torings via change metrics. InProceedings of OOPSLA
’2000 (International Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications), pages
166–178, 2000.

[4] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 —
The FAMOOS Information Exchange Model. Technical re-
port, University of Bern, 2001.

[5] S. Ducasse, T. Ĝırba, and J.-M. Favre. Modeling software
evolution by treating history as a first class entity. InWork-
shop on Software Evolution Through Transformation (SETra
2004), pages 71–82, 2004.

[6] S. Ducasse, T. Ĝırba, M. Lanza, and S. Demeyer. Moose: a
collaborative and extensible reengineering environment. In
Reengineering Environments. tba, 2004. to appear.

[7] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical
coupling based on product release history. InProceedings
of the International Conference on Software Maintenance
1998 (ICSM ’98), pages 190–198, 1998.

[8] H. Gall, M. Jazayeri, R. R. Kl̈osch, and G. Trausmuth. Soft-
ware evolution observations based on product release his-
tory. InProceedings of the International Conference on Soft-
ware Maintenance 1997 (ICSM ’97), pages 160–166, 1997.

[9] T. Gı̂rba, S. Ducasse, and M. Lanza. Yesterday’s weather:
Guiding early reverse engineering efforts by summarizing
the evolution of changes. InProceedings of ICSM 2004
(International Conference on Software Maintenance), pages
40–49, 2004.

[10] R. C. Holt and J. Pak. GASE: Visualizing software
evolution-in-the-large. InProceedings of WCRE ’96, pages
163–167, 1996.

[11] M. Jazayeri. On architectural stability and evolution. In
Reliable Software Technlogies-Ada-Europe 2002, pages 13–
23. Springer Verlag, 2002.

[12] M. Lanza.Object-Oriented Reverse Engineering — Coarse-
grained, Fine-grained, and Evolutionary Software Visual-
ization. PhD thesis, University of Berne, May 2003.

[13] M. Lanza and S. Ducasse. Understanding software evolution
using a combination of software visualization and software
metrics. InProceedings of LMO 2002 (Langages et Modèles
à Objets, pages 135–149, 2002.

[14] M. Lanza and S. Ducasse. Codecrawler an extensible and
language independent 2d and 3d software visualization tool.
In Reengineering Environments. tba, 2004. to appear.

[15] M. Lehman, D. E. Perry, J. F. Ramil, W. M. Turski, and
P. D. Wernick. Metrics and laws of software evolution - the
nineties view. InMetrics ’97, IEEE, pages 20 – 32, 1997.

[16] M. M. Lehman and L. Belady.Program Evolution — Pro-
cesses of Software Change. London Academic Press, 1985.

[17] M. M. Lehman, D. E. Perry, and J. F. Ramil. Implications of
evolution metrics on software maintenance. InProceedings
of the International Conference on Software Maintenance
(ICSM 1998), pages 208–217, 1998.

[18] B. Meyer.Object-oriented Software Construction. Prentice-
Hall, 1988.

[19] D. Raţiu, S. Ducasse, T. Gı̂rba, and R. Marinescu. Using his-
tory information to improve design flaws detection. InPro-
ceedings of CSMR 2004 (European Conference on Software
Maintenance and Reengineering), pages 223–232, 2004.

[20] J. T. Stasko, J. Domingue, M. H. Brown, and B. A. Price,
editors.Software Visualization — Programming as a Multi-
media Experience. The MIT Press, 1998.

[21] C. M. B. Taylor and M. Munro. Revision towers. In
Proceedings of the 1st International Workshop on Visualiz-
ing Software for Understanding and Analysis, pages 43–50.
IEEE Computer Society, 2002.

[22] F. Van Rysselberghe and S. Demeyer. Studying software
evolution information by visualizing the change history. In
Proceedings of The 20th IEEE International Conference on
Software Maintenance (ICSM 2004), 2004. to appear.

[23] J. Wu, R. Holt, and A. Hassan. Exploring software evolu-
tion using spectrographs. InProceedings of 11th Working
Conference on Reverse Engineering (WCRE 2004), pages
80–89. IEEE Computer Society Press, Nov. 2004.

[24] X. Wu, A. Murray, M.-A. Storey, and R. Lintern. A reverse
engineering approach to support software maintenance: Ver-
sion control knowledge extraction. InProceedings of 11th
Working Conference on Reverse Engineering (WCRE 2004),
pages 90–99. IEEE Computer Society Press, Nov. 2004.

10

