How Developers Drive Software Evolution

-to appear at IWPSE 2005-

Tudor Grba Adrian Kuhn Mauricio Seeberger &phane Ducasse

Software Composition Group
University of Berne, Switzerland
{girba, akuhn, mseeberg, ducagggam.unibe.ch

Abstract produce designs which are copies of the communication
structures of these organizations.” That is, the shape of the
As systems evolve their structure change in ways not ex-organization reflects on the shape of the system. Thus, to
pected upfront. As time goes by, the knowledge of the de-understand the system, one has also to understand the inter-
velopers becomes more and more critical for the process ofaction between the developers and the system [5].
understanding the system. That is, when we want to under- In this paper we aim to understand how the developers
stand a certain issue of the system we ask the knowledgedrove the evolution of the system. In particular we provide
able developers. Yet, in large systems, not every developeanswers to the following questions:
is knowledgeable in all the details of the system. Thus, we
would want to know which developer is knowledgeable in
the issue at hand. In this paper we make use of the map-
ping between the changes and the author identifiers (e.g.,
user names) provided by versioning repositories. We first e What were the behaviors of the developers?
define a measurement for the notion of code ownership. We
use this measurement to define emership Mapvisu- In our approach we assume that the original developer of
alization to understand when and how different developers @ line of code is most knowledgeable in that line of code.
interacted in which way and in which part of the system We use this assumption to determine the owner of a piece

We report the results we obtained on several large systems©f code €.9.,a file) as being the developer that owns the
largest part of that piece of code. We make use of the own-

ership to provide a visualization that helps to understand
Keywords software evo|uti0n’ software Visua”zation, how deVEIOperS interacted with the System. The visualiza-
reverse engineering, development process tion represents files as lines and colors these lines according
to the ownership in time.
Contrary to similar approaches [14], we give a semantic
order to the file axisi(e., we do not rely on the names of
) the files) by clustering the files based on their history of
Software systems need to change in ways that challengenanges. The idea is that files committed in the same period
the original design. Even if the original documentation ex- 4.6 related [8].
ists, it might not reflect the code anymore. In such situa- e implemented our approach in Chronia, a tool built on
tions, it is crucial to get access to developer-knowledge to top of the Moose reengineering environment [6]. As CVS is
understand the system. As systems grow larger, not all de-; e facto versioning system, our implementation relies on
velopers know about the entire system. Thus, to make theyhe cvs model. Furthermore, our aim was to provide a so-
best use of developer knowledge, we need to know whichyion that gives fast results. Therefore our approach relies
developer is knowledgeable in which part of the system. 4}y on information from the CV'S log without checking out
From another perspective, Conway’s law [4] states that {he' whole repository.
“Organizations which design systems are constrained t0 T4 show the usefulness of our solution we applied it on

1The visualizations in this paper make heavy use of colors. Please ob-.Severa-I |ar_ge case .StUdieS- We report here some of the find-
tain a color-printed or electronic version for better understanding. ings and discuss different facets of the approach.

e How many authors developed the system?

e Which author developed which part of the system?

1 Introduction

The contributions of the paper are: than it ever contained. Thus we defing as in Figure 1:
o .) we first calculate the sizes starting with an initial size of 0,
e The definition of file ownership. and then in a second pass adjust the values with the lowest

e A semantic clustering of files based on their commit value encountered in the first pass.

history.
size
¢ A characterization of developer behaviors. s, =0
/ e !
e TheOwnership Mapvisualization. s =0= . S
0 ytime s = [min{s, }|
The paper develops as follows. In Section 2 we define S,= ——fT-—--~--+ Sy =Sy, +ag, — 1

how we measure the code ownership. We use this measure-

ment to introduce our visualization of developers in Sec- Figure 1. The computation of the initial size.

tion 3. Section 4 shows the results we obtained on several

large case studies, and Section 5 discusses the approach in- This is a pessimistic estimate, since lines that never
cluding details of the implementation. Section 6 presents changed are not covered by the deltas in the CVS log. But
the related work. We conclude and present the future worksince our main focus is telling the story of the developers,

in Section 7. not measuring lines that were never touched by a developer
is an acceptable assumption. Furthermore in a long-living
2 Data Extraction from CVS log system the content of files is entirely replaced or rewritten

at least once if not several times. Thus the estimate matches

. L ._ the correct size of most files.
This section introduces a measurement to characterize

code ownership. The straightforward approach is to check-
out all file versions ever committed to the CVS repository

and computing the ownership from diff information be- devel i t code. if h he |
tween each subsequent revisighs ; andf,. But from an A deve OPEer owns a fin€ of code, 1f he was the last one
! o that committed a change to that line. In the same way, we

implementation point of view this is not feasible, because define file ownership as the percentage of lines he owns in
we need a solution that scales and provides fast results,

o a file. And the overall owner of a file is the developer that
Thus we show how an accurate estimation of code owner-

. . . owns the largest part of it.
ship can be recovered from CVS log information solely. Let owng be the percentage of lines in revisigh

e owned by author.. Given the file sizes;, , and both the
revision 1. .

date: 2005/04/20 13:1124; author: girba; state: Exp; lines: +36 -11 authoroy, that committed the change angl, the number
added implementation section . " . . "

P of lines he added, we defined ownership as:

revision 1.

date: 2005/04/20 11:45:22; author: akuhn; state: Exp; lines: +4 -5

2.2 Measuring Code Ownership

e erors in awmertip i owne =] La=ag
revision 1.36 fo " 0 else
date: 2005/04/20 07:49:58; author: mseeberg; state: Exp; lines: +16 -16)
Fixed math to get pdflatex through without errors.
---------------------------- Afn —
S —a - o=«
own§ :=own§, Gl { S6n ’ l fn
. H H S eLse
This is a snippet from the CVS log. It lists for each ver- fn ’

sion f,, of a file - termed revision in CVS - the timg, of With this formula we assume that the removed limgs

its commit, the name of its authar;, , some state informa- ~ are evenly distributed over any ownership of the anteces-
tion and finally the the number of added and removed linessor f,—1. A better estimate thanwn$ can be retrieved

as deltasis, andry, . Based on these numbers we recover by checking out the content of each revision and using a

both the file sizes;, and the code ownershipon§ . diff algorithm to find out to whom the removed lines actu-
ally belonged. But this would, as initially explained, require
2.1 Measuring File Size vast amounts of network traffic and time consuming calcu-

lations, and thus the advantages of only processing informa-

Lets;, be the size of revisiorf,, measured in number tion from CVS log would be lost.

of lines. The number of lines is not given firsthand in the

CVS log, but can be computed from the deltgs andr, 3 The Ownership Map View

of added and removed lines. Even though the CVS log does

not give the initial sizess,, we can give an estimate based Based on the definition of the code ownership, we intro-
on the fact that one can not remove more lines from a file duce a visual notation as in Figure 2. The notation is similar

to the Evolution Matrix [12]: each line represents a history 3.1 Ordering the Axes
of a file, and each circle on a line represents a change to that

file.) Ordering the Time Axis. Subsequent file revisions com-
The color of the circle denotes the author that made the itteq by the same author are grouped together to form a
change. The size of the circle reflects the proportion of the . nsaction of changés.,a commit. We use a single link-

file that got changede., the larger the change, the larger 546 clustering with a threshold of 180 seconds to obtain
the circle. And the color of the line denotes the author who these groups. This solution is similar to the sliding time

owns most of the file. window approach of Zimmermaet al. when they analyzed

~ Note that Bertin [2] assessed that one of the good prac-¢q_changes in the system [20]. The difference is that we do
tices in information visualization is to offer to the viewer . -5re whether the revisions in a commit have the same

visualizations that can be grasped at one glance. Furthermg message or not, thus any quick subsequent revisions by
more, the colors used in our visualizations also follow vi- the same author are grouped into one commit.

sual guidelines suggested by Bertin, Tufte [13], and Ware
[16], e.g.,we take into account that the human brain is ca-
pable of processing less than a dozen distinct colors. Ordering the Files Axis. A system may contain thou-

In a large system, we can have hundreds of developerssands of files; furthermore, an author might change multiple
but the human eye is not capable of distinguishing that manyfiles that are not near each other if we would represent the
colors. Therefore we only display the authors who commit- files in an alphabetical order. Likewise, it is important to
ted most of all changes in color; the remaining authors arekeep an overview of the big parts of the system. Thus, we
represented in gray. Furthermore, we also represent withneed an order that groups files with co-occurring changes
gray files that came into CVS repository with the initial im- near each other, while still preserving the overall structure
port, because these files are usually sources from anotheof the system. To meet this requirement we split the sys-
project with unknown authors and are thus not necessarilytem into high-level modules(g.,the top level folders), and
created by the author that performed the import. In short, order inside each module the files by the similarity of their
a gray line represents either an unknown owner, or a nothistory. To order the files in a meaningful way, we define

important one. a distance metric between the commit signature of files and
order the files based on a hierarchical clustering.
file present from commit by the green author file removed by Let Hf be the commit signature of a file, a set with all

timestampsy, of each of its revisiong,,. Based on this the

the first import followed by the ownership the blue author
/ distance between two commit signatufés and H, can be

File A °® defined as the modified Hausdorff distade® H,,, H}):
File B ° . D(H,,Hy,,) = Z min*{im —n|:m € H,,}
/ \\ neH,
file created by the small commit by the blue author.
green author the file is still ownedby the green author 5(Ha7 Hb) — max{D(Ha, Hb)7 D(Hb, Ha)}
Time —P

With this metric at hand we can order the files accord-
Figure 2. Example of ownership visualization ing to the result of a hierarchical clustering algorithm [10].
of two files. From these algorithms a dendrogram can be built: this is a

hierarchical tree with clusters as its nodes and the files as its
leaves. Traversing this tree and collecting its leaves yields
an ordering that places files with similar histories near each

In the example from Figure 2 each line represents the other and files with dissimilar histories far apart of each

lifetime of a file; each circle represents a changéle A
appears gray in the first part as it originates from the ini- other.

tial import. Later the green author significantly changed the _The files axes of thé)yvnershlp Mapwews shpwn n

file so that he became the owner of the file. In the end, this paper are qrdered witiwerage Im_kage:llus.termg and.
the blue author deleted the filile B was created by the Iarge_r-_clusters-flrstree traversal. _But if one is mter_este_:d in
green author. Afterwards, the blue author changed the ﬁle,specmc patterns, our tool Chronia allows customization of
but still the green author owned the larged part, so the Iinethese parameters.

remains green. At some point, the red a.Uthor Co_mmltted 4 2The Hausdorff metric is named after the german mathematician Felix
large change and took over the ownership. The file was notya,sdorff (1868-1942) and is used to measure the distance between two
deleted. sets with elements from a metric space.

Familiarization
of the Blue author

Monologue
of the Green author

Takeover
by the Green author

Bug-fix
by the Yellow author

- =
L WO 2 i

- -

Expansion
of the Blue author

by the Green author

Edit Teamwork
between the Green and Red authors

Figure 3. Example of the Ownership Map view. The view reveals different patterns: Monologue,

Familiarization, Edit, Takeover, Teamwork, Bug-fix.

3.2 Behavioral Patterns

The Overview Map reveals semantical information about
the work of the developer. Certain patterns occur that we de-
scribed now. Figure 3 shows a part of tBgvnership Map
of the Outsight case study in Section 4.1. In this view we
can identify several different behavioral patterns of the de-
velopers:

e Monologue. Monologue denotes a period where all
changes and most files belong to the same author. Visi-
ble on aOwnership Mams a unicolored rectangle with
change circles in the same color.

¢ Dialogue. Opposed to Monologue, Dialogue denotes
a period with changes done by multiple authors and
mixed code ownership. Visible on@wnership Map
as rectangles filled with circles and lines in different
colors.

e Teamwork. Teamwork is a special case of Dialogue,
where two or more developers commit a quick succes-
sion of changes to multiple files. Visible orCGawner-
ship Mapas circles of alternating colors looking like a
bunch of bubbles. In our example, we see in the bottom
right part of the figure a collaboration between Red and
Green.

e Silence. Denotes an uneventful period with nearly
no changes at all. Visible on @wnership Mapas a
rectangle with constant line colors and no or just few
change circles.

e Takeover. Takeover denotes a behavior where an au-
thor takes over a large amount of code in a short

amount of time. He seizes ownership of a subsystem
in a few commits. Visible on ®wnership Mapas a
vertical stripe of unicolored circles together with an
ensuing change of the lines to that color. A Takeover
is commonly followed by subsequent changes done by
the same author. If a Takeover marks a transition from
activity to Silence we classify it as dfpilogue

Familiarization. Opposed to Takeover, Familiarization
characterizes an accommodation over a longer period
of time. The developer applies selective and small
changes to foreign code, resulting in a slow but steady
acquisition of the subsystem. In our example, Blue
started to work on code originally owned by Green,
until he finally took over ownership.

Expansion.Not only changes are important, but also
the expansion of the system by adding new files. In
our example, after Blue familiarized himself with the

code, he began to extend the system with new files.

Cleaning. Cleaning is the opposite of expansion as it
denotes an author that removes a part of the system.
We do not see this behavior in the example.

Bugfix.Bug fixing represents a small, localized change
that does not affect the ownership of the file. Visible
on aOwnership Magas a sole circle in a color differing
from its surrounding.

Edit. Not every change necessarily fulfills a functional
role. For example, cleaning the comments, changing
the names of identifiers to conform to a naming con-
vention, or reshaping the code are sanity actions that
are necessary but do not add functionality. We call

such an actiorkedit, as it is similar to the work of a changes in the last two periods only. The composition of
book editor. An Edit is visible on ®wnership Magas the team varies over time.

a vertical stripe of unicolored circles, but in difference Figure 4 shows th©wnership Mapof our case study.

to a Takeover neither the ownership is affected nor is The upper half are Java files, the bottom half are JSP pages.
it ensued by further changes by the same author. If The files of both modules are ordered according to the sim-
an Edit marks a transition from activity to Silence we ilarity of their commit signature. For the sake of readability

classify it as arEpilogue we useS1 as a shorthand for the Java files part of the sys-
tem, andS2 as a shorthand for the JSP files part. Time is
4 Validation cut into eight period®1 to P8, each covering three months.

The paragraphs below discuss each period in detail, and

We applied our approach on several large case studiesShow how to read th@©wnership Mapn order to answer
Due to the space limitations we only report detailed on one OUr initial questions.
case study: Outsight. Then we give an overall impression ~ The shorthands in paranthesis denote the laRéldo
on four well-known open-source projects. R15 as given on Figure 4.

Outsight. This is a commercial web application written Period 1. In this period four developers are working on
in Java and JSP. The CVS repository goes back three yearthe system. Their collaboration maps the separatiodlof
and spans across two development iterations separated bgndS2: while Green is working by himself 082 (R5), the
half a year of maintenance only. The system is written by others are collaborating d81. This is a good example of
four developers and has about 500 Java classes and 500 JS¥#onologue versus Dialogue. A closer look 84 reveals
pages. two hotspots of Teamwork between Red and CyRh R3),

Open-source Case StudiesWe choose Ant, Tomcat, as well as large mutations of the file structure. In the top
JEdit, and JBoss to illustrate different fingerprints systems part multiple Cleanings happeiR2), often accompanied
can have on a®wnership Map Ant has about 4500 files, by Expansions in the lower part.

Tomcat about 1250 files, JEdit about 500 files, and JBoss Period 2. Green leaves the team and Blue takes over
about 2000 files. The CVS repository of each project goesresponsibility ofS2. He starts doing this in a slow Famil-

back several years. iarization R6), which lasts till end ofP3. In the meantime
Red and Cyan continue their Teamwork 8a& (R4) and
4.1 Outsight Red starts adding some files, which foreshadow the future

Expansion irP3.
The first step to acquire an overview of a system is to Period 3. This period is dominated by a huge growth
build a histogram of the team to get an impression about theof the system, the number of files doubles as large Expan-

fluctuations of the team members over time: sions happen in botB1 andS2. Table 5 identifies Red as
3000 the main contributor. The Expansion 81 evolves in sud-
m | den stepsR9), and as their file base grows the Teamwork
£ 2500 between Red and Cyan becomes less tight. In contradic-
E 2000 1 tion the Expansion 062 evolves in small stepRB8), as
%5 1500 - - Blue continues familiarizing himself witls2 and slowly
2 1000 4 but steady takes over ownership of most files in this sub-
E sooﬂ system R6). Also an Edit of Red ir52 can be identified
0 (R7).
P1 | P2 | PS | P4 | P5 | P6 | PT | P8 Period 4. Activity moves down fromS1 to S2, leav-
ol o 0 0 0 0 0 8 | 16 ing S1 in a Silence only broken by selective changes. Ta-
o 1%1126? 1?;5 531 4;1 605 130 ; 4231 431 ble 5 shows that Red left the team, which consists now of
g 223 | 251 1 265 | 188 | 11 2 a1 | e Cyan and Green only. Cyan acts as an allrounder providing
m| 710 | 278 | 969 3 5 0 1062 | 207 Changes to botB1 andS2, and Blue is further Working on

S2. The work of Blue culminates in an Epilogue marking
the end of this periodR8). He has now completely taken
over ownership ofS2, while the ownership of subsystem
S1 is shared between Red and Cyan.
Period 5 and 6. Starting with this period the system
goes into maintenance. Only small changes occur, mainly
Table 5 shows that a team of four developers is work- by author Blue.
ing on the system. There is also a fifth author contributing Period 7. After two periods of maintenance the team re-

Figure 5. Number of commits per team mem-
ber in periods of three months.

-

R15: Edit

8d ld 9-Gd vd €d cd Id
ylomwea] ‘uoisuedx3 gLy up3 .4y
1 1 1 3 m . > Py o @ @ o o 88 &@mﬁ&ﬂv@ﬂcf{u\
- p -®
S0 0o P ooe o "uoisuedxg :gy
= uoljeziieljiwed : 9y anbBojouoly 1G4
1 F o
.
2% o
s OM —
Janoaxe] g1y up3 L1y
S e Y Eee 08 ®
@® A4

Iec
]

yioMmwea] p-gH

\ 4

Bojidg “1anoaye] vy xy-bng :01Y4 uoisuedx3 :64

F

) t

Bujuea|n gy omwes] i1y

S2: JSP Files

S1: Java Files
Figure 4. The Ownership Map of the Outsight case study.

sumes work on the system. In Table 5 we see how the com-

Yellow author. Yellow is obviously a pure Bug-fix

position of the team changed, Blue leaves and Green comegrovider.

back. Green introduces himself 82 with an Edit R11),
later followed by a quick sequence of Takeovdr48) and
thus claiming back the ownership over his former code. Si-
multaneous he starts expandi&g in Teamwork with Red
(R12).

First we find inS1 selective changes by Red and Cyan

scattered over the subsystem, followed by a period of Si-

lence, and culminating in a Takeover by Red in the iead
an EpilogueR14). The Takeover i1 stretches down into

S2, but there being a mere Edit. Furthermore we can iden-

tify two selective Bug-fixesR10) by author Yellow, being
also a new team member.

Period 8. Main contributors are Red and Green: Red
works in bothS1 andS2, while green remains true 182.
As Red finished in the previous period his work3t with
an Epilogue, his activity now moves down$@. There we
find e.g.,an Edit R15) as well as the continuation of the
Teamwork between Red and Gre&1Q) in the Expansion
started inP7. Yet again, as in the previous period, we find
small Bug-fixes applied by Yellow.

To summarize these finding we give a description of

4.2 Ant, Tomcat, JEdit and JBoss

Figure 4 shows th®wnership Mayof four open-source
projects: Ant, Tomcat, JEdit, and JBoss. The views are plot-
ted with the same parameters as the map in the previous case
study, the only difference is that vertical lines slice the time
axis into periods of twelve instead of three months. Ant
has about 4’500 files with 60’000 revisions, Tomcat about
1'250 files and 13’000 revisions, JEdit about 500 files and
11’000 revisions, and JBoss about 2'000 files with 23’000
revisions.

Each view shows a different but common pattern. The
paragraphs below discuss each pattern briefly.

Ant. The view is dominated by a huge Expansion. After
some time of development, the very same files fall victim
to a huge Cleaning. This pattern is found in many open-
source projects: Developers start a new side-project and
when grown up it moves to an own repository, or the side-
project ceases and is removed from the repository. In this
case the spin-off is the ceased Myrmidon project, a develop-

each author’s behavior, and in what part of the system hement effort as potential implementation of Ant2, a successor

is knowledgeable.
Red author. Red is working mostly oi$1, and acquires
in the end some knowledge 82. He commits some edits

to Ant.
Tomcat. The colors in this view are, apart from some
large blocks of Silence, well mixed. Th@wnership Map

and may thus be a team member being responsible for enShows much Dialogue and hotspots with Teamwork. Thus
suring code quality standards. As he owns a good part ofthis project has well collaborating developers.

S1 during the whole history and even closed that subsys-

tem end ofP7 with an Epilogue, he is the developer most
knowledgeable witls1.

Cyan author. Cyan is the only developer that was in

the team during all periods, thus he is the developer most

familiar with the history of the system. He worked mostly
on S1 and he owned large parts of this subsystem till end
of P7. Thus his knowledge 062 depends on the kind of
changes Red introduced in his Epilogue. A quick look into

JEdit. This view is dominated by one sole developer,
making him the driving force behind the project. This pat-
tern is also often found in open-source projects: being the
work of a single author contributing about 80% of the code.

JBoss.The colors in this view indicate that the team un-
derwent to large fluctuations. We see twice a sudden change
in the color of both commits and code ownership: once
mid 2001 and once mid 2003. Both changes are accompa-
ined by Cleanings and Expansions. Thus the composition

the CVS log messages reveals that Red's Epilogue was irPf the team changed twice significantly, and the new teams
fact a larger than usual Edit and not a real Takeover: Cyan'estructured the system.

is as knowledgeable i81 as Red.

Green author. Green only worked ir52, and he has
only little impact onS1. He foundeds2 with a Monologue,
lost his ownership to Blue durinB2 to P6, but in P7 he

claimed back again the overall ownership of this subsystem.

He is definitely the developer most knowledgeable &
being the main expert of this subsystem.
Blue author. Blue left the team aftelP4, thus he is not

familiar with any changes applied since then. Furthermore,

5 Discussion

On the exploratory nature of the implementation. We
implemented our approach in Chronia, a tool built on top of
the Moose reengineering environment [6]. Figure 7 empha-
sizes the interactive nature of our tool.

On the left of Figure 7 we see Chronia visualizing the
overall history of the project, which provides a good first

although he became through Familiarization an expert of overview. But since there is too much data we cannot give

S2, his knowledge might be of little value since Green

the reasoning only from this view, thus Chronia allows in-

claimed that subsystem back with multiple Takeovers andteractive zooming with the mouse wheel. For example, in

many ensuing changes.

the window on the lower right we see Chronia zoomed into

Figure 6. The Ownership Map of Ant, Tomcat, JEdit, and JBoss.

the bottom right part of the original view. But just showing Apache.orgserver.

the Ownership Mags not enough, we also need to know o i

who is the author with a particular color, or what module ~ S€cond, itis much easier to get access to closed source
is the one we are looking at. Thus when moving around ¢2S€ studies from industry, when_only metalnfo_rmatlo_n is
the mouse over th®wnership Maghe current position on required and not the source code itself. We consider this an
both time and file axis are highlighted in the lists on the @dvantage of our approach.

right. These lists show all file names and the timestamps of

all commits. As Chronia is build on top of Moose, it makes As CVS lacks support for true file renaming or moving,

gf‘e gfrttzela':/lr?'(l):se f:gée)l(gfgger;ﬁir;o gg?'; d;r';allleed _\r:'?r\:‘fthis information not recoverable without time consuming
particular files, u u : xample, 1 calculations. In order to move a file, it must be removed

top r;ghtfm?ldow we see a view with metrics and measure- and added under another name, thus our approach identifies
men SE a Iel r§}|/_|5|or;. he visualizati thouah Ch the author doing the renaming as the new owner of the file,
On the scalability of the visualization. Although Chro- nere in truth he did only rename it. Therefore renaming

nia provides zooming interaction, one may 00se the focus yire cyories impacts the computation of code ownership in a
on the interesting project periods. A solution would be to way not desired

further abstract the time and group commits to versions that
cover longer time periods, the same applies to the file axis On the perspective of interpreting the Ownership
grouping related files into modules. Map. In our visualization we sought answers to questions

On the decision to rely on CVS log only.Our approach regarding the developers and their behaviors. We analyzed
relies only on the information from the CVS log without the files from an author perspective point of view, and not
checking out the whole repository. There are two main rea- from a file perspective of view. Thus tt@wnership Map
sons for that decision: tells the story of the developers and not of the fikeg.,

First, we aim to provide a solution that gives fast re- concerning small commits: subsequent commits by differ-
sults; e.g.,building theOwnership Mapof JBoss takes 7,8 ent author to one file do not show up as a hotspot, while a
minutes on a regular 3 GHz Pentium 4 machine, including commit by one author across multiple files does. The later
the time spent fetching the CVS log information from the being the pattern we terméstit.

On the shortcomings of CVS as a versioning system.

Moose - details on the selected File

i pecto 10 x]
Chronia - the overall picture MooseFleRevison: newousghtpuble hinlfo imfaq_enhini 14 |hctons] =
Property. Value Description
% an Ownership Map W - o No property
S addedLinesize 3 addedLinesize
n density 02 density
‘ GEOETD linesize 7 linesize
newoutsight/public_html/icover o
: ' WUk pUDIEhEmICaay eme o Neme
o newoutsight/public_html/candic owner #hpmeier owner
= newoutsight/public_html/eventl removedLinesize 1 removedLinesize
— P newoutsight/ timestamp 8:56:3 timestamp
_ newoutsia an Ownership Map UniqueName ‘ney Iht/public_htn Unique Name =101}
- S newout;
== — _ newogfloht
‘‘‘‘‘‘ iohi
negButsigh Entty Descrpton | Entty Evalgll -
d outsight subad
e vwoutsight 2 MooseFileRevision, andic
= — — —— frcwou fsight compz
~ newoutsighi includs
newoutsight; ‘subad
newoutsight includs
= e g 'subad
— newoutsight;
PP newoutsight > newoutsight/public_html/includ
| E newoutsight/ newoutsight/public_htm/include
newoutsighi newoutsight/public_html/subad
newoutsight/ @ newoutsight/public_html/subad
newoutsight newoutsight/public_html/subad
newoutsight/public_html/subad
ELETD newoutsight/public_html/subad
‘ July 30, 2004] @ @30 ||newoutsight/public_html/compz
et d July 30, 2004 newoutsight/public_html/subad
s gl o July 30, 2004] newoutsight/public_html/include
R . July 30, 2004] newoutsight/public_html/subad
| July 30, 2004] @ | newoutsight/public_htmljinfolfir
July 30, newoutsight/public_htm/info/fir
' - Ju 04| newoutsight/public_html/info/fi
30.2004] newoutsight/public_html/info/fir |
July 30, 2004] 3 Author [} Column Enires
v 30,2004 | R oY, hpri 14, 2003 16:13:48.000)
July 30, 2004 Module April 14, 2003 16:29:30.000
July 30, 2004] o April 15, 2003 8:33:36.000
o 2 July 30’ 5004 Inspect Column April 15, 2003 9: 03:45.000
July 30, 2004 TnspectRow & - April 15, 2003 9:07:17.000
Suly 30, 5004] April 15, 2003 15:38:44.000
July 30, 2004] April 15, 2003 15:48:31.000
e July 30, 2004] April 15, 2003 16:01:07.000
T uly 30, 2004} April 15, 2003 17:24:26.000
— July 30, 2004 [April 15, 2003 19:28:49.000
o July 30, 2004 April 15, 2003 19:33:53.000
July 30, 2004 April 15, 2003 19:55:17.000
July 30, 2004 April 19, 2003 15:34:32.000
May 1, 2003 13:52:39.000
June 30, 2003 8:55:57.000
June 30, 2003 9:03:38.000
nil
January 3, 2004 14:13:41.000
nil
June 9, 2004 8:35:11.000
June 9, 2004 8:50:25.000
June 9, 2004 9:30:50.000
> June 9, 2004 10:16:09.000

Chronia - a zoomed part and a contextual menu

Figure 7. Chronia is an interactive tool.

6 Related Work tion of the changes to provide an overview of the evolution
of systems and to detect patterns of change[14].

Analyzing the way developers interact with the system Jingwei Wuet al. use the spectrograph metaphor to vi-
has only attracted few research. A visualization similar to sualize how changes occur in software systems [17]. They
Ownership Mags used to visualize how authors change a used colors to denote the age of changes on different parts
wiki page [15]. of the systems.

Xiaomin Wu et al. visualize [18] the change log infor- Jazayeri analyzes the stability of the architecture [11] by
mation to provide an overview of the active places in the using colors to depict the changes. From the visualization
system as well as of the authors activity. They display mea-he concluded that old parts tend to stabilize over time.
surements like the number of times an author changed a file, Lanza and Ducasse visualize the evolution of classes in

or the date of the last commitment. the Evolution Matrix [12]. Each class version is represented
Measurements and visualization have long been used taising a rectangle. The size of the rectangle is given by dif-
analyze how software systems evolve. ferent measurements applied on the class version. From

Ball and Eick [1] developed multiple visualizations for the visualization different evolution patterns can be detected
showing changes that appear in the source code. For exsuch as continuous growth, growing and shrinking phases
ample, they show what is the percentage of bug fixes andetc.
feature addition in files, or which lines were changed re- Another relevant reverse engineering domain is the anal-

cently. ysis of the co-change history.
Eick et al. proposed multiple visualizations to show Gall et al. aimed to detect logical coupling between
changes using colors and third dimension [7]. parts of the system [8] by identifying the parts of the sys-

Chuah and Eick proposed a three visualizations for com-tem which change together. They used this information to
paring and correlating different evolution information like define a coupling measurement based on the fact that the
the number of lines added, the errors recorded between vermore times two modules were changed at the same time,
sions, number of people working etc. [3]. the more they were coupled.

Rysselberghe and Demeyer use a scatter plot visualiza- Zimmermanet al. aimed to provide mechanism to warn

developers about the correlation of changes between func- [4] M. E. Conway. How do committees invent Ratamation
tions. The authors placed their analysis at the level of en- 14(4):28-31, Apr. 1968. _ _ _

tities in the meta-modele(g., methods) [20]. The same [5] S.Demeyer, S. Ducasse, and O. Nierstra¥zect-Oriented
authors defined a measurement of coupling based on co- . Reengineering Patterndforgan Kaufmann, 2002.
changes [19] [6] S. Ducasse, T. Tba, M. Lanza, and S. Demeyer. Moose:

| vzed th fd h d a Collaborative and Extensible Reengineering Environment.
Hassaret al. analyzed the types of data that are goo In Tools for Software Maintenance and Reengineering

predictors of change propagation, and came to the conclu- RCOST / Software Technology Series, pages 55 — 71.
sion that historical co-change is a better mechanism than Franco Angeli, 2005.
structural dependencies like call-graph [9]. [71 S. G. Eick, T. L. Graves, A. F. Karr, A. Mockus, and

P. Schuster. Visualizing software changeSoftware En-
gineering 28(4):396-412, 2002.

7 Conclusions [8] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical
coupling based on product release history.Phaceedings
In this paper we aim to understand how the developers of the International Conference on Software Maintenance
drove the evolution of the system. In particular we asked 1998 (ICSM '98) pages 190-198, 1998.)
the following questions: [9] A. Hassan and R. Holt. Predicting change propagation
in software systems. I|Rroceedings of 20th IEEE Inter-
e How many authors developed the system? national Conference on Software Maintenance (ICSM'04)

pages 284-293. IEEE Computer Society Press, Sept. 2004.
e Which author developed which part of the system? [10] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering:
A review. ACM Computing Survey81(3):264-323, Sept.

e What were the behaviors of the developers? 1999.
[11] M. Jazayeri. On architectural stability and evolution. In
To answer them, we defined tavnership Mapvisual- Reliable Software Technlogies-Ada-Europe 2Q@jes 13—
ization based on the notion of code ownership. In addition 23. Springer Verlag, 2002.
we semantically group files that have a simitammit sig- [12] M.Lanzaand S. Ducasse. Understanding software evolution
natureleading to a visualization that is not based on alpha- using a combination of software visualization and software

betical ordering of the files but on semantical relationships metrics. InProceedings of LMO 2002 (Langages et Nt
a Objets pages 135-149, 2002.

betwgen th? file hIStO”e.S' Tr@wnership Mapwelp;s In an-] E. R. Tufte.Envisioning InformationGraphics Press, 1990.
swering which authors is knowledgeable in which part of [14] £ van Rysselberghe and S. Demeyer. Studying software
the system and also reveal behavioral patterns. To show eyolution information by visualizing the change history. In
the usefulness we implemented the approach and applied it Proceedings of The 20th IEEE International Conference on
on several case studies. We reported some of the findings Software Maintenance (ICSM 200£004. to appear.
and we discussed the benefits and the limitations as we per{15] F. Viégas, M. Wattenberg, and K. Dave. Studying cooper-
ceived them during the experiments. at_ion _and conflict betvve_en authors with history flow visu-
In the future, we would like to investigate the application alizations. Inin Proceedings of the Conference on Human
of the approach at other levels of abstractions besides files Factors in Computing Systems (CHI 200gages 575-582,

. . . . Apr. 2004.
and to take into consideration types of changes beyond just[16] C. Ware. Information Visualization Morgan Kaufmann,

the change of a line of code. 2000.
[17] J. Wu, R. Holt, and A. Hassan. Exploring software evolu-
Acknowledgments. We gratefully acknowledge the fi- tion using spectrographs. Rroceedings of 11th Working

Conference on Reverse Engineering (WCRE 20pdyes

nancial support of the Swiss National Science Foundation ;
80-89. IEEE Computer Society Press, Nov. 2004.

for the Proje;Ct “RECAST: Evolution of Object-Oriented [18] X. Wu, A. Murray, M.-A. Storey, and R. Lintern. A reverse
Applications” (SNF Project No. 620'06.6077'_ Sept. 2002 engineering approach to support software maintenance: Ver-
- Aug. 2006). We also thank AIESEC in Switzerland for sion control knowledge extraction. Proceedings of 11th
allowing us to analyze the Outsight case study. Working Conference on Reverse Engineering (WCRE 2004)

pages 90-99. IEEE Computer Society Press, Nov. 2004.
[19] T. Zimmermann, S. Diehl, and A. Zeller. How history justi-

References fies system architecture (or not). éth International Work-
shop on Principles of Software Evolution (IWPSE 2003)
[1] T.Balland S. Eick. Software visualization in the lartfeEE pages 73-83, 2003.
Computey pages 33-43, 1996. [20] T. Zimmermann, P. Weil3gerber, S. Diehl, and A. Zeller.
[2] J. Bertin.Graphische SemiologidValter de Gruyter, 1974. Mining version histories to guide software changes26th
[3] M. C. Chuah and S. G. Eick. Information rich glyphs for International Conference on Software Engineering (ICSE
software management datdEEE Computer Graphics and 2004) pages 563-572, 2004.

Applications pages 24-29, July 1998.

10

