
How Developers Drive Software Evolution
-to appear at IWPSE 2005-

Tudor Ĝırba Adrian Kuhn Mauricio Seeberger Stéphane Ducasse

Software Composition Group
University of Berne, Switzerland

{girba, akuhn, mseeberg, ducasse}@iam.unibe.ch

Abstract

As systems evolve their structure change in ways not ex-
pected upfront. As time goes by, the knowledge of the de-
velopers becomes more and more critical for the process of
understanding the system. That is, when we want to under-
stand a certain issue of the system we ask the knowledge-
able developers. Yet, in large systems, not every developer
is knowledgeable in all the details of the system. Thus, we
would want to know which developer is knowledgeable in
the issue at hand. In this paper we make use of the map-
ping between the changes and the author identifiers (e.g.,
user names) provided by versioning repositories. We first
define a measurement for the notion of code ownership. We
use this measurement to define theOwnership Mapvisu-
alization to understand when and how different developers
interacted in which way and in which part of the system1.
We report the results we obtained on several large systems.

Keywords: software evolution, software visualization,
reverse engineering, development process

1 Introduction

Software systems need to change in ways that challenge
the original design. Even if the original documentation ex-
ists, it might not reflect the code anymore. In such situa-
tions, it is crucial to get access to developer-knowledge to
understand the system. As systems grow larger, not all de-
velopers know about the entire system. Thus, to make the
best use of developer knowledge, we need to know which
developer is knowledgeable in which part of the system.

From another perspective, Conway’s law [4] states that
“Organizations which design systems are constrained to

1The visualizations in this paper make heavy use of colors. Please ob-
tain a color-printed or electronic version for better understanding.

produce designs which are copies of the communication
structures of these organizations.” That is, the shape of the
organization reflects on the shape of the system. Thus, to
understand the system, one has also to understand the inter-
action between the developers and the system [5].

In this paper we aim to understand how the developers
drove the evolution of the system. In particular we provide
answers to the following questions:

• How many authors developed the system?

• Which author developed which part of the system?

• What were the behaviors of the developers?

In our approach we assume that the original developer of
a line of code is most knowledgeable in that line of code.
We use this assumption to determine the owner of a piece
of code (e.g.,a file) as being the developer that owns the
largest part of that piece of code. We make use of the own-
ership to provide a visualization that helps to understand
how developers interacted with the system. The visualiza-
tion represents files as lines and colors these lines according
to the ownership in time.

Contrary to similar approaches [14], we give a semantic
order to the file axis (i.e., we do not rely on the names of
the files) by clustering the files based on their history of
changes. The idea is that files committed in the same period
are related [8].

We implemented our approach in Chronia, a tool built on
top of the Moose reengineering environment [6]. As CVS is
a de facto versioning system, our implementation relies on
the CVS model. Furthermore, our aim was to provide a so-
lution that gives fast results. Therefore our approach relies
only on information from the CVS log without checking out
the whole repository.

To show the usefulness of our solution we applied it on
several large case studies. We report here some of the find-
ings and discuss different facets of the approach.

1

The contributions of the paper are:

• The definition of file ownership.

• A semantic clustering of files based on their commit
history.

• A characterization of developer behaviors.

• TheOwnership Mapvisualization.

The paper develops as follows. In Section 2 we define
how we measure the code ownership. We use this measure-
ment to introduce our visualization of developers in Sec-
tion 3. Section 4 shows the results we obtained on several
large case studies, and Section 5 discusses the approach in-
cluding details of the implementation. Section 6 presents
the related work. We conclude and present the future work
in Section 7.

2 Data Extraction from CVS log

This section introduces a measurement to characterize
code ownership. The straightforward approach is to check-
out all file versions ever committed to the CVS repository
and computing the ownership from diff information be-
tween each subsequent revisionsfn−1 andfn. But from an
implementation point of view this is not feasible, because
we need a solution that scales and provides fast results.
Thus we show how an accurate estimation of code owner-
ship can be recovered from CVS log information solely.

revision 1.38
date: 2005/04/20 13:11:24; author: girba; state: Exp; lines: +36 -11
added implementation section

revision 1.37
date: 2005/04/20 11:45:22; author: akuhn; state: Exp; lines: +4 -5
fixed errors in ownership formula

revision 1.36
date: 2005/04/20 07:49:58; author: mseeberg; state: Exp; lines: +16 -16
Fixed math to get pdflatex through without errors.

This is a snippet from the CVS log. It lists for each ver-
sionfn of a file - termed revision in CVS - the timetfn

of
its commit, the name of its authorαfn

, some state informa-
tion and finally the the number of added and removed lines
as deltasafn andrfn . Based on these numbers we recover
both the file sizesfn

and the code ownershipownα
fn

.

2.1 Measuring File Size

Let sfn
be the size of revisionfn, measured in number

of lines. The number of lines is not given firsthand in the
CVS log, but can be computed from the deltasafn andrfn

of added and removed lines. Even though the CVS log does
not give the initial sizesf0 , we can give an estimate based
on the fact that one can not remove more lines from a file

than it ever contained. Thus we definesfn as in Figure 1:
we first calculate the sizes starting with an initial size of 0,
and then in a second pass adjust the values with the lowest
value encountered in the first pass.

time

size

s'f0 = 0 =

sf0
 =

s′f0
:= 0

s′fn
:= s′fn−1

+ afn−1 − rfn

sf0 := |min{s′x}|
sfn

:= sfn−1 + afn
− rfn

Figure 1. The computation of the initial size.

This is a pessimistic estimate, since lines that never
changed are not covered by the deltas in the CVS log. But
since our main focus is telling the story of the developers,
not measuring lines that were never touched by a developer
is an acceptable assumption. Furthermore in a long-living
system the content of files is entirely replaced or rewritten
at least once if not several times. Thus the estimate matches
the correct size of most files.

2.2 Measuring Code Ownership

A developer owns a line of code, if he was the last one
that committed a change to that line. In the same way, we
define file ownership as the percentage of lines he owns in
a file. And the overall owner of a file is the developer that
owns the largest part of it.

Let ownα
fn

be the percentage of lines in revisionfn

owned by authorα. Given the file sizesfn
, and both the

authorαfn that committed the change andafn the number
of lines he added, we defined ownership as:

ownα
f0

:=
{

1, α = αf0

0, else

ownα
fn

:= ownα
fn−1

sfn
− afn

sfn

+
{ afn

sfn
, α = αfn

0, else

With this formula we assume that the removed linesrfn

are evenly distributed over any ownership of the anteces-
sor fn−1. A better estimate thanownα

fn
can be retrieved

by checking out the content of each revision and using a
diff algorithm to find out to whom the removed lines actu-
ally belonged. But this would, as initially explained, require
vast amounts of network traffic and time consuming calcu-
lations, and thus the advantages of only processing informa-
tion from CVS log would be lost.

3 The Ownership Map View

Based on the definition of the code ownership, we intro-
duce a visual notation as in Figure 2. The notation is similar

2

to the Evolution Matrix [12]: each line represents a history
of a file, and each circle on a line represents a change to that
file.

The color of the circle denotes the author that made the
change. The size of the circle reflects the proportion of the
file that got changedi.e., the larger the change, the larger
the circle. And the color of the line denotes the author who
owns most of the file.

Note that Bertin [2] assessed that one of the good prac-
tices in information visualization is to offer to the viewer
visualizations that can be grasped at one glance. Further-
more, the colors used in our visualizations also follow vi-
sual guidelines suggested by Bertin, Tufte [13], and Ware
[16], e.g.,we take into account that the human brain is ca-
pable of processing less than a dozen distinct colors.

In a large system, we can have hundreds of developers,
but the human eye is not capable of distinguishing that many
colors. Therefore we only display the authors who commit-
ted most of all changes in color; the remaining authors are
represented in gray. Furthermore, we also represent with
gray files that came into CVS repository with the initial im-
port, because these files are usually sources from another
project with unknown authors and are thus not necessarily
created by the author that performed the import. In short,
a gray line represents either an unknown owner, or a not
important one.

File A

File B

commit by the green author
followed by the ownership

small commit by the blue author.
the file is still ownedby the green author

file removed by
the blue author

file present from
the first import

file created by the
green author

Time

Figure 2. Example of ownership visualization
of two files.

In the example from Figure 2 each line represents the
lifetime of a file; each circle represents a change.File A
appears gray in the first part as it originates from the ini-
tial import. Later the green author significantly changed the
file so that he became the owner of the file. In the end,
the blue author deleted the file.File B was created by the
green author. Afterwards, the blue author changed the file,
but still the green author owned the larged part, so the line
remains green. At some point, the red author committed a
large change and took over the ownership. The file was not
deleted.

3.1 Ordering the Axes

Ordering the Time Axis. Subsequent file revisions com-
mitted by the same author are grouped together to form a
transaction of changesi.e.,a commit. We use a single link-
age clustering with a threshold of 180 seconds to obtain
these groups. This solution is similar to the sliding time
window approach of Zimmermanet al. when they analyzed
co-changes in the system [20]. The difference is that we do
not care whether the revisions in a commit have the same
log message or not, thus any quick subsequent revisions by
the same author are grouped into one commit.

Ordering the Files Axis. A system may contain thou-
sands of files; furthermore, an author might change multiple
files that are not near each other if we would represent the
files in an alphabetical order. Likewise, it is important to
keep an overview of the big parts of the system. Thus, we
need an order that groups files with co-occurring changes
near each other, while still preserving the overall structure
of the system. To meet this requirement we split the sys-
tem into high-level modules (e.g.,the top level folders), and
order inside each module the files by the similarity of their
history. To order the files in a meaningful way, we define
a distance metric between the commit signature of files and
order the files based on a hierarchical clustering.

Let Hf be the commit signature of a file, a set with all
timestampstfn

of each of its revisionsfn. Based on this the
distance between two commit signaturesHa andHb can be
defined as the modified Hausdorff distance2 δ(Ha,Hb):

D(Hn,Hm) :=
∑

n∈Hn

min2{|m − n| : m ∈ Hm}

δ(Ha,Hb) := max{D(Ha,Hb), D(Hb,Ha)}

With this metric at hand we can order the files accord-
ing to the result of a hierarchical clustering algorithm [10].
From these algorithms a dendrogram can be built: this is a
hierarchical tree with clusters as its nodes and the files as its
leaves. Traversing this tree and collecting its leaves yields
an ordering that places files with similar histories near each
other and files with dissimilar histories far apart of each
other.

The files axes of theOwnership Mapviews shown in
this paper are ordered withaverage linkageclustering and
larger-clusters-firsttree traversal. But if one is interested in
specific patterns, our tool Chronia allows customization of
these parameters.

2The Hausdorff metric is named after the german mathematician Felix
Hausdorff (1868-1942) and is used to measure the distance between two
sets with elements from a metric space.

3

Takeover
by the Green author

Teamwork
between the Green and Red authors

Familiarization
of the Blue author

Edit
by the Green author

Bug-fix
by the Yellow author

Expansion
of the Blue author

Monologue
of the Green author

Figure 3. Example of the Ownership Map view. The view reveals different patterns: Monologue,
Familiarization, Edit, Takeover, Teamwork, Bug-fix.

3.2 Behavioral Patterns

The Overview Map reveals semantical information about
the work of the developer. Certain patterns occur that we de-
scribed now. Figure 3 shows a part of theOwnership Map
of the Outsight case study in Section 4.1. In this view we
can identify several different behavioral patterns of the de-
velopers:

• Monologue. Monologue denotes a period where all
changes and most files belong to the same author. Visi-
ble on aOwnership Mapas a unicolored rectangle with
change circles in the same color.

• Dialogue. Opposed to Monologue, Dialogue denotes
a period with changes done by multiple authors and
mixed code ownership. Visible on aOwnership Map
as rectangles filled with circles and lines in different
colors.

• Teamwork. Teamwork is a special case of Dialogue,
where two or more developers commit a quick succes-
sion of changes to multiple files. Visible on aOwner-
ship Mapas circles of alternating colors looking like a
bunch of bubbles. In our example, we see in the bottom
right part of the figure a collaboration between Red and
Green.

• Silence. Denotes an uneventful period with nearly
no changes at all. Visible on aOwnership Mapas a
rectangle with constant line colors and no or just few
change circles.

• Takeover.Takeover denotes a behavior where an au-
thor takes over a large amount of code in a short

amount of time. He seizes ownership of a subsystem
in a few commits. Visible on aOwnership Mapas a
vertical stripe of unicolored circles together with an
ensuing change of the lines to that color. A Takeover
is commonly followed by subsequent changes done by
the same author. If a Takeover marks a transition from
activity to Silence we classify it as anEpilogue.

• Familiarization.Opposed to Takeover, Familiarization
characterizes an accommodation over a longer period
of time. The developer applies selective and small
changes to foreign code, resulting in a slow but steady
acquisition of the subsystem. In our example, Blue
started to work on code originally owned by Green,
until he finally took over ownership.

• Expansion.Not only changes are important, but also
the expansion of the system by adding new files. In
our example, after Blue familiarized himself with the
code, he began to extend the system with new files.

• Cleaning. Cleaning is the opposite of expansion as it
denotes an author that removes a part of the system.
We do not see this behavior in the example.

• Bugfix.Bug fixing represents a small, localized change
that does not affect the ownership of the file. Visible
on aOwnership Mapas a sole circle in a color differing
from its surrounding.

• Edit. Not every change necessarily fulfills a functional
role. For example, cleaning the comments, changing
the names of identifiers to conform to a naming con-
vention, or reshaping the code are sanity actions that
are necessary but do not add functionality. We call

4

such an actionEdit, as it is similar to the work of a
book editor. An Edit is visible on aOwnership Mapas
a vertical stripe of unicolored circles, but in difference
to a Takeover neither the ownership is affected nor is
it ensued by further changes by the same author. If
an Edit marks a transition from activity to Silence we
classify it as anEpilogue.

4 Validation

We applied our approach on several large case studies.
Due to the space limitations we only report detailed on one
case study: Outsight. Then we give an overall impression
on four well-known open-source projects.

Outsight. This is a commercial web application written
in Java and JSP. The CVS repository goes back three years
and spans across two development iterations separated by
half a year of maintenance only. The system is written by
four developers and has about 500 Java classes and 500 JSP
pages.

Open-source Case Studies.We choose Ant, Tomcat,
JEdit, and JBoss to illustrate different fingerprints systems
can have on anOwnership Map. Ant has about 4500 files,
Tomcat about 1250 files, JEdit about 500 files, and JBoss
about 2000 files. The CVS repository of each project goes
back several years.

4.1 Outsight

The first step to acquire an overview of a system is to
build a histogram of the team to get an impression about the
fluctuations of the team members over time:

Figure 5. Number of commits per team mem-
ber in periods of three months.

Table 5 shows that a team of four developers is work-
ing on the system. There is also a fifth author contributing

changes in the last two periods only. The composition of
the team varies over time.

Figure 4 shows theOwnership Mapof our case study.
The upper half are Java files, the bottom half are JSP pages.
The files of both modules are ordered according to the sim-
ilarity of their commit signature. For the sake of readability
we useS1 as a shorthand for the Java files part of the sys-
tem, andS2 as a shorthand for the JSP files part. Time is
cut into eight periodsP1 to P8, each covering three months.
The paragraphs below discuss each period in detail, and
show how to read theOwnership Mapin order to answer
our initial questions.

The shorthands in paranthesis denote the labelsR1 to
R15 as given on Figure 4.

Period 1. In this period four developers are working on
the system. Their collaboration maps the separation ofS1
andS2: while Green is working by himself onS2 (R5), the
others are collaborating onS1. This is a good example of
Monologue versus Dialogue. A closer look onS1 reveals
two hotspots of Teamwork between Red and Cyan (R1,R3),
as well as large mutations of the file structure. In the top
part multiple Cleanings happen (R2), often accompanied
by Expansions in the lower part.

Period 2. Green leaves the team and Blue takes over
responsibility ofS2. He starts doing this in a slow Famil-
iarization (R6), which lasts till end ofP3. In the meantime
Red and Cyan continue their Teamwork onS1 (R4) and
Red starts adding some files, which foreshadow the future
Expansion inP3.

Period 3. This period is dominated by a huge growth
of the system, the number of files doubles as large Expan-
sions happen in bothS1 andS2. Table 5 identifies Red as
the main contributor. The Expansion ofS1 evolves in sud-
den steps (R9), and as their file base grows the Teamwork
between Red and Cyan becomes less tight. In contradic-
tion the Expansion ofS2 evolves in small steps (R8), as
Blue continues familiarizing himself withS2 and slowly
but steady takes over ownership of most files in this sub-
system (R6). Also an Edit of Red inS2 can be identified
(R7).

Period 4. Activity moves down fromS1 to S2, leav-
ing S1 in a Silence only broken by selective changes. Ta-
ble 5 shows that Red left the team, which consists now of
Cyan and Green only. Cyan acts as an allrounder providing
changes to bothS1 andS2, and Blue is further working on
S2. The work of Blue culminates in an Epilogue marking
the end of this period (R8). He has now completely taken
over ownership ofS2, while the ownership of subsystem
S1 is shared between Red and Cyan.

Period 5 and 6. Starting with this period the system
goes into maintenance. Only small changes occur, mainly
by author Blue.

Period 7. After two periods of maintenance the team re-

5

P1
P2

P3
P4

P5
-6

P7
P8

S2: JSP FilesS1: Java Files

R1
: T

ea
m

w
or

k
R2

: C
le

an
in

g

R3
-4

: T
ea

m
w

or
k

R9
: E

xp
an

si
on

R5
: M

on
ol

og
ue

R6
: F

am
ili

ar
iz

at
io

n

R7
: E

di
t

R8
: E

xp
an

si
on

R1
0:

 B
ug

-fi
x

R1
1:

 E
di

t

R1
2:

 E
xp

an
si

on
, T

ea
m

w
or

k

R1
3:

 T
ak

eo
ve

r

R1
4:

 T
ak

eo
ve

r,
Ep

ilo
g

R15: Edit

Figure 4. The Ownership Map of the Outsight case study.

6

sumes work on the system. In Table 5 we see how the com-
position of the team changed, Blue leaves and Green comes
back. Green introduces himself inS2 with an Edit (R11),
later followed by a quick sequence of Takeovers (R13) and
thus claiming back the ownership over his former code. Si-
multaneous he starts expandingS2 in Teamwork with Red
(R12).

First we find inS1 selective changes by Red and Cyan
scattered over the subsystem, followed by a period of Si-
lence, and culminating in a Takeover by Red in the endi.e.,
an Epilogue (R14). The Takeover inS1 stretches down into
S2, but there being a mere Edit. Furthermore we can iden-
tify two selective Bug-fixes (R10) by author Yellow, being
also a new team member.

Period 8. Main contributors are Red and Green: Red
works in bothS1 andS2, while green remains true toS2.
As Red finished in the previous period his work inS1 with
an Epilogue, his activity now moves down toS2. There we
find e.g.,an Edit (R15) as well as the continuation of the
Teamwork between Red and Green (R12) in the Expansion
started inP7. Yet again, as in the previous period, we find
small Bug-fixes applied by Yellow.

To summarize these finding we give a description of
each author’s behavior, and in what part of the system he
is knowledgeable.

Red author. Red is working mostly onS1, and acquires
in the end some knowledge ofS2. He commits some edits
and may thus be a team member being responsible for en-
suring code quality standards. As he owns a good part of
S1 during the whole history and even closed that subsys-
tem end ofP7 with an Epilogue, he is the developer most
knowledgeable withS1.

Cyan author. Cyan is the only developer that was in
the team during all periods, thus he is the developer most
familiar with the history of the system. He worked mostly
on S1 and he owned large parts of this subsystem till end
of P7. Thus his knowledge ofS2 depends on the kind of
changes Red introduced in his Epilogue. A quick look into
the CVS log messages reveals that Red’s Epilogue was in
fact a larger than usual Edit and not a real Takeover: Cyan
is as knowledgeable inS1 as Red.

Green author. Green only worked inS2, and he has
only little impact onS1. He foundedS2 with a Monologue,
lost his ownership to Blue duringP2 to P6, but in P7 he
claimed back again the overall ownership of this subsystem.
He is definitely the developer most knowledgeable withS2,
being the main expert of this subsystem.

Blue author. Blue left the team afterP4, thus he is not
familiar with any changes applied since then. Furthermore,
although he became through Familiarization an expert of
S2, his knowledge might be of little value since Green
claimed that subsystem back with multiple Takeovers and
many ensuing changes.

Yellow author. Yellow is obviously a pure Bug-fix
provider.

4.2 Ant, Tomcat, JEdit and JBoss

Figure 4 shows theOwnership Mapof four open-source
projects: Ant, Tomcat, JEdit, and JBoss. The views are plot-
ted with the same parameters as the map in the previous case
study, the only difference is that vertical lines slice the time
axis into periods of twelve instead of three months. Ant
has about 4’500 files with 60’000 revisions, Tomcat about
1’250 files and 13’000 revisions, JEdit about 500 files and
11’000 revisions, and JBoss about 2’000 files with 23’000
revisions.

Each view shows a different but common pattern. The
paragraphs below discuss each pattern briefly.

Ant. The view is dominated by a huge Expansion. After
some time of development, the very same files fall victim
to a huge Cleaning. This pattern is found in many open-
source projects: Developers start a new side-project and
when grown up it moves to an own repository, or the side-
project ceases and is removed from the repository. In this
case the spin-off is the ceased Myrmidon project, a develop-
ment effort as potential implementation of Ant2, a successor
to Ant.

Tomcat. The colors in this view are, apart from some
large blocks of Silence, well mixed. TheOwnership Map
shows much Dialogue and hotspots with Teamwork. Thus
this project has well collaborating developers.

JEdit. This view is dominated by one sole developer,
making him the driving force behind the project. This pat-
tern is also often found in open-source projects: being the
work of a single author contributing about 80% of the code.

JBoss.The colors in this view indicate that the team un-
derwent to large fluctuations. We see twice a sudden change
in the color of both commits and code ownership: once
mid 2001 and once mid 2003. Both changes are accompa-
ined by Cleanings and Expansions. Thus the composition
of the team changed twice significantly, and the new teams
restructured the system.

5 Discussion

On the exploratory nature of the implementation. We
implemented our approach in Chronia, a tool built on top of
the Moose reengineering environment [6]. Figure 7 empha-
sizes the interactive nature of our tool.

On the left of Figure 7 we see Chronia visualizing the
overall history of the project, which provides a good first
overview. But since there is too much data we cannot give
the reasoning only from this view, thus Chronia allows in-
teractive zooming with the mouse wheel. For example, in
the window on the lower right we see Chronia zoomed into

7

Ant

JBossJEdit

Tomcat

Figure 6. The Ownership Map of Ant, Tomcat, JEdit, and JBoss.

the bottom right part of the original view. But just showing
the Ownership Mapis not enough, we also need to know
who is the author with a particular color, or what module
is the one we are looking at. Thus when moving around
the mouse over theOwnership Mapthe current position on
both time and file axis are highlighted in the lists on the
right. These lists show all file names and the timestamps of
all commits. As Chronia is build on top of Moose, it makes
use of the Moose contextual menus to open detailed views
on particular files, modules or authors. For example, in the
top right window we see a view with metrics and measure-
ments of a file revision.

On the scalability of the visualization.Although Chro-
nia provides zooming interaction, one may loose the focus
on the interesting project periods. A solution would be to
further abstract the time and group commits to versions that
cover longer time periods, the same applies to the file axis
grouping related files into modules.

On the decision to rely on CVS log only.Our approach
relies only on the information from the CVS log without
checking out the whole repository. There are two main rea-
sons for that decision:

First, we aim to provide a solution that gives fast re-
sults;e.g.,building theOwnership Mapof JBoss takes 7,8
minutes on a regular 3 GHz Pentium 4 machine, including
the time spent fetching the CVS log information from the

Apache.orgserver.

Second, it is much easier to get access to closed source
case studies from industry, when only metainformation is
required and not the source code itself. We consider this an
advantage of our approach.

On the shortcomings of CVS as a versioning system.
As CVS lacks support for true file renaming or moving,
this information not recoverable without time consuming
calculations. In order to move a file, it must be removed
and added under another name, thus our approach identifies
the author doing the renaming as the new owner of the file,
where in truth he did only rename it. Therefore renaming
directories impacts the computation of code ownership in a
way not desired.

On the perspective of interpreting the Ownership
Map. In our visualization we sought answers to questions
regarding the developers and their behaviors. We analyzed
the files from an author perspective point of view, and not
from a file perspective of view. Thus theOwnership Map
tells the story of the developers and not of the filese.g.,
concerning small commits: subsequent commits by differ-
ent author to one file do not show up as a hotspot, while a
commit by one author across multiple files does. The later
being the pattern we termedEdit.

8

Chronia - the overall picture

Chronia - a zoomed part and a contextual menu

Moose - details on the selected File

Figure 7. Chronia is an interactive tool.

6 Related Work

Analyzing the way developers interact with the system
has only attracted few research. A visualization similar to
Ownership Mapis used to visualize how authors change a
wiki page [15].

Xiaomin Wu et al. visualize [18] the change log infor-
mation to provide an overview of the active places in the
system as well as of the authors activity. They display mea-
surements like the number of times an author changed a file,
or the date of the last commitment.

Measurements and visualization have long been used to
analyze how software systems evolve.

Ball and Eick [1] developed multiple visualizations for
showing changes that appear in the source code. For ex-
ample, they show what is the percentage of bug fixes and
feature addition in files, or which lines were changed re-
cently.

Eick et al. proposed multiple visualizations to show
changes using colors and third dimension [7].

Chuah and Eick proposed a three visualizations for com-
paring and correlating different evolution information like
the number of lines added, the errors recorded between ver-
sions, number of people working etc. [3].

Rysselberghe and Demeyer use a scatter plot visualiza-

tion of the changes to provide an overview of the evolution
of systems and to detect patterns of change[14].

Jingwei Wuet al. use the spectrograph metaphor to vi-
sualize how changes occur in software systems [17]. They
used colors to denote the age of changes on different parts
of the systems.

Jazayeri analyzes the stability of the architecture [11] by
using colors to depict the changes. From the visualization
he concluded that old parts tend to stabilize over time.

Lanza and Ducasse visualize the evolution of classes in
the Evolution Matrix [12]. Each class version is represented
using a rectangle. The size of the rectangle is given by dif-
ferent measurements applied on the class version. From
the visualization different evolution patterns can be detected
such as continuous growth, growing and shrinking phases
etc.

Another relevant reverse engineering domain is the anal-
ysis of the co-change history.

Gall et al. aimed to detect logical coupling between
parts of the system [8] by identifying the parts of the sys-
tem which change together. They used this information to
define a coupling measurement based on the fact that the
more times two modules were changed at the same time,
the more they were coupled.

Zimmermanet al. aimed to provide mechanism to warn

9

developers about the correlation of changes between func-
tions. The authors placed their analysis at the level of en-
tities in the meta-model (e.g., methods) [20]. The same
authors defined a measurement of coupling based on co-
changes [19].

Hassanet al. analyzed the types of data that are good
predictors of change propagation, and came to the conclu-
sion that historical co-change is a better mechanism than
structural dependencies like call-graph [9].

7 Conclusions

In this paper we aim to understand how the developers
drove the evolution of the system. In particular we asked
the following questions:

• How many authors developed the system?

• Which author developed which part of the system?

• What were the behaviors of the developers?

To answer them, we defined theOwnership Mapvisual-
ization based on the notion of code ownership. In addition
we semantically group files that have a similarcommit sig-
natureleading to a visualization that is not based on alpha-
betical ordering of the files but on semantical relationships
between the file histories. TheOwnership Maphelps in an-
swering which authors is knowledgeable in which part of
the system and also reveal behavioral patterns. To show
the usefulness we implemented the approach and applied it
on several case studies. We reported some of the findings
and we discussed the benefits and the limitations as we per-
ceived them during the experiments.

In the future, we would like to investigate the application
of the approach at other levels of abstractions besides files
and to take into consideration types of changes beyond just
the change of a line of code.

Acknowledgments. We gratefully acknowledge the fi-
nancial support of the Swiss National Science Foundation
for the project “RECAST: Evolution of Object-Oriented
Applications” (SNF Project No. 620-066077, Sept. 2002
- Aug. 2006). We also thank AIESEC in Switzerland for
allowing us to analyze the Outsight case study.

References

[1] T. Ball and S. Eick. Software visualization in the large.IEEE
Computer, pages 33–43, 1996.

[2] J. Bertin.Graphische Semiologie. Walter de Gruyter, 1974.
[3] M. C. Chuah and S. G. Eick. Information rich glyphs for

software management data.IEEE Computer Graphics and
Applications, pages 24–29, July 1998.

[4] M. E. Conway. How do committees invent ?Datamation,
14(4):28–31, Apr. 1968.

[5] S. Demeyer, S. Ducasse, and O. Nierstrasz.Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002.

[6] S. Ducasse, T. Ĝırba, M. Lanza, and S. Demeyer. Moose:
a Collaborative and Extensible Reengineering Environment.
In Tools for Software Maintenance and Reengineering,
RCOST / Software Technology Series, pages 55 – 71.
Franco Angeli, 2005.

[7] S. G. Eick, T. L. Graves, A. F. Karr, A. Mockus, and
P. Schuster. Visualizing software changes.Software En-
gineering, 28(4):396–412, 2002.

[8] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical
coupling based on product release history. InProceedings
of the International Conference on Software Maintenance
1998 (ICSM ’98), pages 190–198, 1998.

[9] A. Hassan and R. Holt. Predicting change propagation
in software systems. InProceedings of 20th IEEE Inter-
national Conference on Software Maintenance (ICSM’04),
pages 284–293. IEEE Computer Society Press, Sept. 2004.

[10] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering:
A review. ACM Computing Surveys, 31(3):264–323, Sept.
1999.

[11] M. Jazayeri. On architectural stability and evolution. In
Reliable Software Technlogies-Ada-Europe 2002, pages 13–
23. Springer Verlag, 2002.

[12] M. Lanza and S. Ducasse. Understanding software evolution
using a combination of software visualization and software
metrics. InProceedings of LMO 2002 (Langages et Modèles
à Objets, pages 135–149, 2002.

[13] E. R. Tufte.Envisioning Information. Graphics Press, 1990.
[14] F. Van Rysselberghe and S. Demeyer. Studying software

evolution information by visualizing the change history. In
Proceedings of The 20th IEEE International Conference on
Software Maintenance (ICSM 2004), 2004. to appear.

[15] F. Viégas, M. Wattenberg, and K. Dave. Studying cooper-
ation and conflict between authors with history flow visu-
alizations. InIn Proceedings of the Conference on Human
Factors in Computing Systems (CHI 2004), pages 575–582,
Apr. 2004.

[16] C. Ware. Information Visualization. Morgan Kaufmann,
2000.

[17] J. Wu, R. Holt, and A. Hassan. Exploring software evolu-
tion using spectrographs. InProceedings of 11th Working
Conference on Reverse Engineering (WCRE 2004), pages
80–89. IEEE Computer Society Press, Nov. 2004.

[18] X. Wu, A. Murray, M.-A. Storey, and R. Lintern. A reverse
engineering approach to support software maintenance: Ver-
sion control knowledge extraction. InProceedings of 11th
Working Conference on Reverse Engineering (WCRE 2004),
pages 90–99. IEEE Computer Society Press, Nov. 2004.

[19] T. Zimmermann, S. Diehl, and A. Zeller. How history justi-
fies system architecture (or not). In6th International Work-
shop on Principles of Software Evolution (IWPSE 2003),
pages 73–83, 2003.

[20] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. In26th
International Conference on Software Engineering (ICSE
2004), pages 563–572, 2004.

10

