ICSE 2008 Tutorial on
Pragmatic Design Quality Assessment

Tudor Girba

Inst. of Applied Mathematics
U. of Bern, Switzerland
girba@iam.unibe.ch

ABSTRACT

Quality control is paramount in every engineering discipline.
Software engineering, however, is not considered a classi-
cal engineering activity for several reasons, such as intrinsic
complexity and lack of rigor. In general, if a software sys-
tem is delivering the expected functionality, only in few cases
people see the need to analyze the internals.

In this tutorial we offer a pragmatic approach to analyzing
the quality of software systems. On the one hand, we offer
the theoretical background to detect quality problems by us-
ing and combining metrics, by analyzing the past through
evolution analysis, and by providing visual evidence of the
state of affairs in the system. On the other hand, as analyz-
ing real systems requires adequate tool support, we offer an
overview of the problems that occur in using such tools and
provide a hands-on session with state-of-the-art tools used
on a real case study.

1. PRESENTERS

Tudor Girba obtained his Ph.D. (summa cum laude) in Novem-
ber 2005 and is currently a postdoctoral researcher at the Soft-
ware Composition Group, University of Berne, Switzerland.
His interests lie in the area of software evolution, reverse en-
gineering, reengineering, information visualization, quality
assurance and meta-modeling. During his Ph.D. he devel-
oped the Hismo meta-model for evolution analysis. He is
one of the key developers of the Moose reengineering en-
vironment and participated in the development of several
other reverse engineering tools. He offers consulting services
in the area of reengineering and quality assurance.

Contact:

Dr. Tudor Girba

Software Composition Group, Institut fiir Informatik
Universitat Bern

Neubrueckstr. 10, 3012 Berne, Switzerland

web: http://www.iam.unibe.ch/~girba/
e-mail: girba@iam.unibe.ch

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE 2008 May 21-25 2008, Leipzig, Germany.

Copyright 2008 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Michele Lanza

Faculty of Informatics
U. of Lugano, Switzerland
michele.lanza@unisi.ch

Radu Marinescu

Faculty of Computer Science
TU Timisoara, Romania
radum@cs.upt.ro

Michele Lanza is assistant professor at the faculty of infor-
matics of the University of Lugano, where he leads a research
group focusing on the areas of software evolution, visual-
ization, and reverse engineering. He authored more than
40 technical papers and is author of the recently published
book “Object-Oriented Metrics in Practice”. He has mainly
experience in building information visualization tools and
approaches to deal with reverse engineering and evolution:
His Ph.D. thesis (summa cum laude) received the Ernst Denert
Software Engineering Award in 2003 for the thesis. He previ-
ously taught tutorials on “Software Evolution: Analysis &
Visualization” together with Prof. Harald Gall at ICSE 2006
and OOPSLA 2007, with 25 and 15 participants, respectively.

Contact:

Prof. Michele Lanza

Faculty of Informatics

University of Lugano

Via G. Bulffi 13, 6904 Lugano, Switzerland
tel. +41 58 666 4659 | fax +41 58 666 4536
web: http://www.inf.unisi.ch/lanza
e-mail: michele.lanza@unisi.ch

Radu Marinescu is an associate professor at the Politehnica
University of Timigoara, where he leads the LOOSE research
group focusing on the areas of object-oriented software evo-
lution, quality assurance and reengineering. In 2002 he re-
ceived his Ph.D. (magna cum laude) from the Politehnica Uni-
versity of Timisoara. He is author of the “Object-Oriented
Metrics in Practice” book (Springer, 2006), and the recipient
of an IBM Eclipse Innovation Award (2006). He has published
over 25 papers related to metrics, quality assurance and soft-
ware evolution and has served in the last years in more than
10 program committees of international conferences. He has
been constantly working as a consultant and trainer for sev-
eral well-known IT companies, such as Siemens, IBM, and
Alcatel-Lucent.

Contact:

Prof. Radu Marinescu

LOOSE Research Group

Politehnica University Timisoara

Bvd. V.Parvan 2, 300223 Timisoara, Romania
web: http://www.cs.upt.ro/~radum/
e-mail: radum@cs.upt.ro

http://www.iam.unibe.ch/~girba/
http://www.inf.unisi.ch/lanza
http://www.cs.upt.ro/~radum/

2. DURATION
1 full day

3. GOAL AND OBJECTIVES

The overall goal of this tutorial is to teach participants the
good, the bad, and the ugly about the assessment of design
quality, with a special emphasis on object-oriented design.
In our research, we have explored a variety of metrics and
visualization techniques to characterize, evaluate and even
improve the design of large object-oriented systems and their
evolution, in a language-independent manner. Specifically,
the tutorial aims to answer the following questions:

e How can we use metrics to characterize, evaluate and
improve the design of object-oriented systems?

e What are the usual pitfalls of the use of metrics, and
how can we circumvent them?

e How can we, developers and designers, customize qual-
ity assessment techniques to make them applicable in
their particular context?

e Once we have detected a flawed artifact in a system,
how can we efficiently “cure” the system from that dis-
ease?

e Which are the key features to look for in a toolkit for
quality assessment? And which are the useless ones?

We propose to tackle these questions by providing partici-
pants with:

e A detailed overview of state-of-the art techniques on
software metrics, software evolution and software vi-
sualization

o A detailed survey of existing approaches and method-
ologies for quality assurance, reverse engineering and
reengineering

e Practical knowledge and skills on how to use state-of-
the-art tools to characterize, evaluate, and improve the
design of object-oriented systems

4. SCOPE

Intended audience. This tutorial is open to all software practi-
tioners, managers, students, and researchers who want
to learn more about design quality assessment, soft-
ware metrics, software evolution, software visualiza-
tion and software reengineering.

Level. The level of the tutorial comprises both basic and ad-
vanced topics.

Required Prerequisites. The participants should have a basic
background in software engineering and object-oriented
programming, and be aware of simple software refac-
torings and metrics. However, the tutorial is designed
in such a way that no specific previous knowledge is
required.

S. TEACHING METHOD

The tutorial will be structured in two main parts:

1. Theoretical Foundations. This first part, given in the
morning, consists of a set of lectures on a variety of cor-
related topics to provide the theoretical foundations to
the tutorial attendees. The topics include metrics, evo-
lution, software analysis, quality models, and visual-
ization principles (see Section 7 for a detailed list.)

2. Practical Skills. This second part, given in the after-
noon, introduces the tutorial attendees to state-of-the-
art tools and will also give the attendees the possibility
to experiment with them in a hands-on fashion. The
goal of the hands-on session is for the participants to
analyze the quality of an actual large object-oriented
system and provide a short report of their findings to
the other tutorial attendees.

The tutorial is closed by a discussion session where we sum-
marize the tutorial by taking into account the findings of the
attendees.

5.1 Technical Equipment

As far a technical equipment is concerned, we will need the
following:

e A beamer to be connected to a laptop computer for the
presentations and tool demos.

e (Wireless) Internet connection

e Participants should bring their own laptop to experi-
ment with the tools.

Further, handouts of the presentation slides will be distributed
(presumably in advance by the conference organization).

6. SUMMARY OF CONTENTS

Controlling quality is paramount in every engineering dis-
cipline. Software engineering, however, is not considered
a classical engineering activity for several reasons, such as
intrinsic complexity and lack of rigor, thus negatively im-
pacting the consideration for internal quality. In general, if a
software system is delivering the expected functionality, only
few people -if any- care about the internals of the system.
Software metrics are widely used, specifically to measure and
preserve software quality. However, defining, understand-
ing and using them often looks like an overly complex activ-
ity, recommended only to “trained professionals”.

In this tutorial, we demystify software metrics and show how
they can be used to assess the size, quality and complexity
of object-oriented software systems. Furthermore, we take
into account the evolutionary aspect of software systems and
we present both structural and evolutionary measurements
in conjunction with visualization techniques.

In a practical setting, quality assurance requires adequate
tools. That is why we go beyond theory and analyze the
problems that arise in using such tools. The tutorial atten-
dees will have the chance to exercise the lessons learned dur-
ing the theoretical part of the tutorial, by using stat-of-the-art
metrics and visualization tools in hands-on sessions.

The following sections provide an overview (including our
own contributions) of the topics covered in the tutorial: met-
rics, evolution analysis, visualization and their usage in qual-
ity assessment .

6.1 Software Metrics

Metrics are a way to control quality [12]. In software engi-
neering it is important and useful to measure systems, be-
cause otherwise we risk losing control because of their com-
plexity. Losing control in such a case could make us ignore
the fact that certain parts of the system grow abnormally or
have a bad quality (e.g. code that is cryptic, uncommented,
badly structured, or dead).

Software metrics are used to detect design problems as they
quantify simple properties of design structures. Various soft-
ware metrics have been defined to address the most impor-
tant characteristics of good object-oriented design like com-
plexity, cohesion, coupling and inheritance [5,8,29,40]. Lorenz
and Kidd have worked on devising empirical threshold val-
ues which signify abnormal characteristics of design enti-
ties [41]. These thresholds were established based on the au-
thors” experience with C++ and Smalltalk projects.

As there is currently an inflation of metrics, there is a seri-
ous need to have a rigorous approach for defining and us-
ing them. Briand et al. defined a unified framework for
coupling measurement in object-oriented systems based on
source model entities [6]. Based on these metrics they ver-
ified the coupling measurements at the file level using sta-
tistical methods and logical coupling information based on
“ripple effects” [7]. Briand et al. described how coupling can
be defined and measured based on dynamic analysis of sys-
tems [2]. This recent study shows that some dynamic cou-
pling measures are significant indicators of change prone-
ness and that they complement existing coupling measures
that are based on static analysis.

In practice, appropriate tool support for metrics calculation
is a must for performing quality assessments. Such tools are
presented in [1,55]. Unfortunately, many such tools do not
go beyond the computation of a large number of metrics ac-
companied by the display of metrics in form of charts and
by monitoring if some (oftentimes arbitrary) threshold val-
ues are not exceeded by the software system under scrutiny.

We emphasize that a metric alone cannot serve the afore-
mentioned goal of controlling design quality. Metrics taken
in isolation cannot help to answer all the questions about a
system. The bottom-up approach, i.e. going from abnormal
numbers to the recognition of design flaws is impracticable
because the symptoms captured by single metrics, even if
perfectly interpreted, may occur in several flaws: the inter-
pretation of individual metrics is too fine grained to indicate a
particular design problem. This tutorial reveals how metrics
can be combined in order to serve the identification and lo-
cation of design problems and thus contribute to controlling
design quality.

To support the detection and location of design problems in
a system, we introduced a technique — called detection strat-
egy [36,43] - for formulating metrics-based rules that capture
deviations from good design principles and heuristics like
those defined by Riel [51] or Martin [44]. Using detection
strategies an engineer can directly localize classes or methods

IPlease note that we use “we" as a generic term to refer to
either one of the authors to simplify the text

affected by a particular design flaw (e.g. God Class), rather
than having to infer the real design problem from a large
set of abnormal metric values. We have defined such detec-
tion strategies for capturing more than ten important flaws
of object-oriented design and we have implemented them in
both iPlasma and Moose reengineering environments [49].

6.2 Software Evolution

The importance of modeling and analyzing software evolution
was pioneered in the early 1970’s with the work of Lehman
and Belady who established that as systems evolve, they be-
come more complex, and consequently more resources are
needed to preserve and simplify their structure [37]. Yet, it
was only in recent years that extensive research has been car-
ried out on exploiting the wealth of information residing in
versioning repositories for purposes like reverse engineer-
ing or cost estimation. Problems like software aging [50]
and code decay [15] gained increasing recognition both in
academia and in industry.

There are several approaches that analyze the influence of
changes in an evolving software system. Lehmann et al. ex-
plored the implication of evolution on quality and software
maintenance in general by analyzing the differences between
consecutive versions using simple measurements [38,39].
Gold and Mohan defined a framework to understand the
conceptual changes in an evolving system [28]. Based on
measuring the detected concepts, they could differentiate be-
tween different maintenance activities. Mockus and Votta
classified the changes [46] into corrective, adaptive, inspec-
tion, perfective, and other types changes, by analyzing the
descriptions in the change logs. Mockus and Weiss used his-
tory measurements for developing a method for predicting
the risk of software changes [47]. Some examples of such
measurements are: the number of modules touched, the num-
ber of developers involved, or the number of changes. Ex-
tracting architectural properties from large open source sys-
tems such as the Mozilla system has been addressed by God-
frey et al. [27]. Their work relied on PBS [18] which is a re-
verse engineering workbench containing the Relational Al-
gebra tool Grok. PBS does not consider the visualization of
metrics to characterize abstracted entities and relationships,
or to filter out the information of minor interest leading to
more condensed and comprehensible views.

Gall et al. pioneered the research on detecting logical cou-
pling between parts of the system that change in the same
time [20]. Zimmermann et al. focused on a mechanism to
warn developers that: “Programmers who changed function
x also changed ...” [60]. Further, Ying et al. applied data
mining techniques to the change history of the code base to
identify change patterns to recommend potentially relevant
source code for a particular modification task [59].

All these individual techniques provide facets for assessing
the quality of software systems. However, we established
that to understand software evolution as a whole, we need a
means to combine and compare these different analyses [21].
Thus, we created the Hismo meta-model to support the ex-
pression of these analyses and we used it to develop various
evolution analyses on top of the Moose reengineering envi-
ronment [22]. One example of such an analysis is Yesterday’s
Weather, an algorithm to check whether the entities that were
changed recently will be among those changed in the near
future [24]. We have also used concept analysis to identify
patterns of co-change [23].

6.3 Software Visualization

The goal of information visualization is to visualize any kind
of data [54]. Applications of information visualization are so
frequent and common, that most people do not notice them:
examples include metereology (weather maps), geography
(street maps), transportation (train tables and metro maps),
etc.

In the more specific field of software engineering, UML is
probably the most used visual notation [19], but many more
visualization techniques have been proposed dealing with
various aspects of software analysis.

One of the most spread metaphor used is to map the struc-
ture of the code on a graph and represent it accordingly. Thus,
tools like such as Rigi [48] and SHriMP [52] were built.

We have also been involved in building such tools, most no-
tably CodeCrawler [32] and Mondrian [45]. A technique that
we coined is the polymetric view [35]. The polymetric view
enriches the graph visualization with metrics mapped on the
size and color of the nodes and edges. Class Blueprint is one
example of a polymetric view that shows the internals of a
class in terms of methods, attributes and their inter-relations
[13]. Other examples consist in applying polymetric views to
display the evolution of classes [34], or to display dynamic
information [14].

Visualization has proven to be a key technique for software
evolution analysis, mainly due to the huge amounts of infor-
mation that need to be processed and understood. One of the
first application of visualization in evolution analysis is em-
bodied in Seesoft, a tool for visualizing line oriented software
statistics such as the age or stability of a line of code [17].
Jazayeri ef al. analyzed the stability of the architecture [30,31]
by using colors to depict the changes over a period of re-
leases. Similarly Wu et al. describe an Evolution Spectro-
graph [57] that visualizes a historical sequence of software
releases. Rysselberghe and Demeyer used a simple visual-
ization based on information in version control systems to
provide an overview of the evolution of systems [53].

We believe that classes are best understood in their context
like their inheritance hierarchies, however only few efforts
have been invested into understanding the evolution of hi-
erarchies. Collberg et al. used graph-based visualizations
to display which parts of class hierarchies were changed [9].
They provide a color scale to distinguish between newer and
older changes. We have developed a polymetric view that
shows the evolution of classes at system level emphasizing
new and old as well as changed and or stable classes [26].
Changes are performed by developers. Different approaches
have been developed to analyze author information avail-
able from the versioning system. Ball and Eick [4] have rep-
resented lines of code as lines and mapped colours to repre-
sent the authors. Xiaomin Wu et al. visualized the change
log information to provide an overview of the active places
in the system as well as of the authors activity [58]. Eick et
al. proposed several visualizations to show how developers
modify the system using colors and third dimension [16]. We
have developed visualizations to show how which develop-
ers own which parts of the code [25] and which developers
copy from each other [3].

Visualization has become a key technique for analyzing large
and complex data sets. We have gained extensive knowledge
of this domain, by building a number of visualization tools
[10,11,32,45,56], and have come to the conclusion that they
are also a key factor in understanding software quality.

6.4 Summary

The three tutorial speakers have performed research in qual-
ity assurance, software reverse engineering, evolution, vi-
sualization, and reengineering since 10 years. The tutorial
strongly builds on our PhD theses [21,33,42], and on the pa-
pers we have published. Furthermore, the tutorial builds on
our recently published book Object-Oriented Metrics in Prac-
tice [36].

Our claim is that quality needs to be regarded from various
perspectives and in this tutorial we show how metrics, vi-
sualization and evolution analyses can be combined to help
quality assessment. Furthermore, based on our extensive ex-
perience in building reverse engineering tools we distill the
lessons learnt related to using and building reengineering
tools, and we provide a hands-on session for attendees to
practice these lessons.

7. STRUCTURE OF CONTENTS

The tutorial is structured in two main part, organized as fol-
lows:

1. Theoretical Foundations

(a) Introduction

e What is software quality?
e An overview of the field and introduction of
key concepts
(b) Software Metrics
Myths and truths about metrics.
Software quality models (the ISO 9126 model).
Detection Strategies.

Design Disharmonies: Identity Disharmonies,
Classification Disharmonies, Collaboration Dis-
harmonies.

(c) Software Visualization

e What is software visualization?
e Overview of the field

e Visualization and metrics: Polymetric Views,
Class Blueprints.

e Recent trends in visualization.
(d) Software Evolution

What is software evolution?
What can we learn from the past?
Overview of the field

A quick introduction to the field of software
refactorings.

e Eradicating disharmonies through refactorings.

2. Practical Skills

(a) Tools for Metrics, Visualization

e What to look for in a metrics tool: naviga-
tion, code inspection, causality of the num-
bers, correlation of numbers.

o Brief survey of the available tools

e Tool support: the Moose reengineering envi-
ronment, the iPlasma environment

(b) Hands-on: step-by-step using Moose and iPlasma
on a sample case study.

(c) Hands-on: producing a report of problems found
in a case study.

(d) Wrap-up
o Discussion of lessons learned regarding met-
rics, visualization and evolution.
e Discussion of possible refactorings.
¢ Discussion on the tool support: what is good,
what else would be best to have.

Acknowledgments: Girba gratefully acknowledge the financial sup-
port of the Hasler Foundation for the project “Enabling the evolu-
tion of J2EE applications through reverse engineering and quality
assurance” (Project no. 2234, Oct. 2007 - Sept. 2010).

8. REFERENCES
[1] J. Alghamdi, R. Rufai, and S. Khan. OOMeter: A

Software Quality Assurance Tool. In ICSM, 2005.

[2] E. Arisholm, L. C. Briand, and A. Feyen. Dynamic
Coupling Measurement for Object-Oriented Software.
Transactions on Software Engineering, 30(8):491-506, 2004.

[3] M. Balint, T. Girba, and R. Marinescu. How developers
copy. In Proceedings of International Conference on
Program Comprehension (ICPC 2006), pages 56-65, 2006.

[4] T.Ball and S. Eick. Software visualization in the large.
IEEE Computer, 29(4):33-43, 1996.

[5] J. Bieman and B. Kang. Cohesion and reuse in an

object-oriented system. In Proceedings ACM Symposium

on Software Reusability, Apr. 1995.

L. C. Briand, J. W. Daly, and J. K. Wiist. A Unified

Framework for Coupling Measurement in

Object-Oriented Systems. IEEE Transactions on Software

Engineering, 25(1):91-121, 1999.

L. C. Briand, J. W. Daly, and J. K. Wiist. Using coupling

measurement for impact analysis in object-oriented

systems. In Proceedings of the 21st International

Conference on Software Engineering (ICSE 1999), pages

475-482,1999.

[8] S. R. Chidamber and C. F. Kemerer. A metrics suite for

object oriented design. IEEE Transactions on Software

Engineering, 20(6):476—493, June 1994.

C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and

K. Wampler. A system for graph-based visualization of

the evolution of software. In Proceedings of the 2003

ACM Symposium on Software Visualization, pages 77-86,

New York NY, 2003. ACM Press.

[10] M. D’Ambros and M. Lanza. Reverse engineering with
logical coupling. In Proceedings of WCRE 2006 (13th
Working Conference on Reverse Engineering), pages 189 —
198, 2006.

[11] M. D’Ambros and M. Lanza. Software bugs and
evolution: A visual approach to uncover their
relationship. In Proceedings of CSMR 2006 (10th IEEE
European Conference on Software Maintenance and
Reengineering), pages 227 — 236. IEEE Computer Society
Press, 2006.

[12] T. deMarco. Controlling Software Projects: Management,
Measurement, and Estimates. Springer-Verlag, 1986.

[13] S.Ducasse and M. Lanza. The class blueprint: Visually
supporting the understanding of classes. Transactions
on Software Engineering (TSE), 31(1):75-90, Jan. 2005.

[6

—_

[7

—_—

—
X0

[14] S. Ducasse, M. Lanza, and R. Bertuli. High-level
polymetric views of condensed run-time information.
In Proceedings of 8th European Conference on Software
Maintenance and Reengineering (CSMR'04), pages
309-318, Los Alamitos CA, 2004. IEEE Computer
Society Press.

[15] S. Eick, T. Graves, A. Karr, J. Marron, and A. Mockus.
Does code decay? assessing the evidence from change
management data. IEEE Transactions on Software
Engineering, 27(1):1-12, 2001.

[16] S. Eick, T. Graves, A. Karr, A. Mockus, and P. Schuster.
Visualizing software changes. IEEE Transactions on
Software Engineering, 28(4):396-412, 2002.

[17] S. G. Eick, J. L. Steffen, and S. Eric E., Jr. SeeSoft—a tool
for visualizing line oriented software statistics. IEEE
Transactions on Software Engineering, 18(11):957-968,
Nov. 1992.

[18] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis,
H. Miiller, J. Mylopoulos, S. Perelgut, M. Stanley, and
K. Wong. The software bookshelf. IBM Systems Journal,
36(4):564-593, November 1997.

[19] M. Fowler. UML Distilled. Addison Wesley, 2003.

[20] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical
coupling based on product release history. In
Proceedings International Conference on Software
Maintenance (ICSM '98), pages 190-198, Los Alamitos
CA, 1998. IEEE Computer Society Press.

[21] T. Girba. Modeling History to Understand Software
Evolution. PhD thesis, University of Berne, Berne, Nov.
2005.

[22] T. Girba and S. Ducasse. Modeling history to analyze
software evolution. Journal of Software Maintenance:
Research and Practice (JSME), 18:207-236, 2006.

[23] T. Girba, S. Ducasse, A. Kuhn, R. Marinescu, and
D. Ratiu. Using concept analysis to detect co-change
patterns. In Proceedings of International Workshop on
Principles of Software Evolution (IWPSE 2007), 2007. To
appear.

[24] T. Girba, S. Ducasse, and M. Lanza. Yesterday’s
Weather: Guiding early reverse engineering efforts by
summarizing the evolution of changes. In Proceedings of
20th IEEE International Conference on Software
Maintenance (ICSM’'04), pages 40—49, Los Alamitos CA,
Sept. 2004. IEEE Computer Society.

[25] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse. How
developers drive software evolution. In Proceedings of
International Workshop on Principles of Software Evolution
(IWPSE 2005), pages 113-122. IEEE Computer Society
Press, 2005.

[26] T. Girba, M. Lanza, and S. Ducasse. Characterizing the
evolution of class hierarchies. In Proceedings of 9th
European Conference on Software Maintenance and
Reengineering (CSMR'05), pages 2-11, Los Alamitos CA,
2005. IEEE Computer Society.

[27] M. Godfrey and E. H. S. Lee. Secrets from the Monster:
Extracting Mozilla’s Software Architecture. In
Proceedings of Second Symposium on Constructing
Software Engineering Tools (CoSET’00), June 2000.

[28] N. Gold and A. Mohan. A framework for
understanding conceptual changes in evolving source
code. In Proceedings of International Conference on
Software Maintenance 2003 (ICSM 2003), pages 432439,

Sept. 2003.

[29] B. Henderson-Sellers. Object-Oriented Metrics: Measures
of Complexity. Prentice-Hall, 1996.

[30] M. Jazayeri. On architectural stability and evolution. In
Reliable Software Technologies-Ada-Europe 2002, pages
13-23, Berlin, 2002. Springer Verlag.

[31] M. Jazayeri, H. Gall, and C. Riva. Visualizing Software
Release Histories: The Use of Color and Third
Dimension. In Proceedings of ICSM "99 (International
Conference on Software Maintenance), pages 99-108. IEEE
Computer Society Press, 1999.

[32] M. Lanza. Codecrawler — lessons learned in building a
software visualization tool. In Proceedings of CSMR
2003, pages 409-418. IEEE Press, 2003.

[33] M. Lanza. Object-Oriented Reverse Engineering —
Coarse-grained, Fine-grained, and Evolutionary Software
Visualization. PhD thesis, University of Berne, May
2003.

[34] M. Lanza and S. Ducasse. Understanding software
evolution using a combination of software
visualization and software metrics. In Proceedings of
Langages et Modeles a Objets (LMO’02), pages 135-149,
Paris, 2002. Lavoisier.

[35] M. Lanza and S. Ducasse. Polymetric views—a
lightweight visual approach to reverse engineering.
Transactions on Software Engineering (TSE),
29(9):782-795, Sept. 2003.

[36] M. Lanza and R. Marinescu. Object-Oriented Metrics in
Practice. Springer-Verlag, 2006.

[37] M. Lehman and L. Belady. Program Evolution: Processes
of Software Change. London Academic Press, London,
1985.

[38] M. Lehman, D. Perry, and J. Ramil. Implications of
evolution metrics on software maintenance. In
Proceedings IEEE International Conference on Software
Maintenance (ICSM’'98), pages 208-217, Los Alamitos
CA, 1998. IEEE Computer Society Press.

[39] M. Lehman, D. Perry,]. Ramil, W. Turski, and
P. Wernick. Metrics and laws of software evolution—the
nineties view. In Proceedings IEEE International Software
Metrics Symposium (METRICS’97), pages 20-32, Los
Alamitos CA, 1997. IEEE Computer Society Press.

[40] W. Li and S. Henry. Maintenance metrics for the object
oriented paradigm. Proceedings of the First International
Software Metrics Symposium., pages 52-60, May 1993.

[41] M. Lorenz and J. Kidd. Object-Oriented Software Metrics:
A Practical Guide. Prentice-Hall, 1994.

[42] R. Marinescu. Measurement and Quality in
Object-Oriented Design. PhD thesis, Department of
Computer Science, Politehnica University of Timisoara,
2002.

[43] R.Marinescu. Detection strategies: Metrics-based rules
for detecting design flaws. In 20th IEEE International
Conference on Software Maintenance (ICSM'04), pages
350-359, Los Alamitos CA, 2004. IEEE Computer
Society Press.

[44] R. C. Martin. Agile Software Development. Principles,
Patterns, and Practices. Prentice-Hall, 2002.

[45] M. Meyer, T. Girba, and M. Lungu. Mondrian: An agile
visualization framework. In ACM Symposium on
Software Visualization (SoftVis 2006), pages 135-144,

New York, NY, USA, 2006. ACM Press.

[46] A.Mockus and L. Votta. Identifying reasons for
software change using historic databases. In Proceedings
of the International Conference on Software Maintenance
(ICSM 2000), pages 120-130. IEEE Computer Society
Press, 2000.

[47] A.Mockus and D. Weiss. Predicting risk of software
changes. Bell Labs Technical Journal, 5(2), Apr. 2000.

[48] H. A. Miiller. Rigi — A Model for Software System
Construction, Integration, and Evaluation based on Module
Interface Specifications. PhD thesis, Rice University, 1986.

[49] O. Nierstrasz, S. Ducasse, and T. Girba. The story of
Moose: an agile reengineering environment. In
Proceedings of the European Software Engineering
Conference (ESEC/FSE 2005), pages 1-10, New York NY,
2005. ACM Press. Invited paper.

[50] D. L. Parnas. Software aging. In Proceedings 16th
International Conference on Software Engineering (ICSE
'94), pages 279-287, Los Alamitos CA, 1994. IEEE
Computer Society.

[51] A. Riel. Object-Oriented Design Heuristics. Addison
Wesley, Boston MA, 1996.

[52] M.-A. D. Storey and H. A. Miiller. Manipulating and
documenting software structures using SHriMP Views.
In Proceedings of ICSM “95 (International Conference on
Software Maintenance), pages 275-284. IEEE Computer
Society Press, 1995.

[53] E. Van Rysselberghe and S. Demeyer. Studying software
evolution information by visualizing the change
history. In Proceedings 20th IEEE International Conference
on Software Maintenance (ICSM '04), pages 328-337, Los
Alamitos CA, Sept. 2004. IEEE Computer Society Press.

[54] C. Ware. Information Visualization. Morgan Kaufmann,
2000.

[55] S. Website. Sdmetrics, 2005.

[56] R. Wettel and M. Lanza. Program comprehension
through software habitability. In Proceedings of ICPC
2007 (15th International Conference on Program
Comprehension), pages 231-240. IEEE CS Press, 2007.

[57] J. Wu, R. Holt, and A. Hassan. Exploring software
evolution using spectrographs. In Proceedings of 11th
Working Conference on Reverse Engineering (WCRE 2004),
pages 80-89, Los Alamitos CA, Nov. 2004. IEEE
Computer Society Press.

[58] X. Wu, A. Murray, M.-A. Storey, and R. Lintern. A
reverse engineering approach to support software
maintenance: Version control knowledge extraction. In
Proceedings of 11th Working Conference on Reverse
Engineering (WCRE 2004), pages 90-99, Los Alamitos
CA, Nov. 2004. IEEE Computer Society Press.

[59] A.T.Ying, G. C. Murphy, R. Ng, and M. C.
Chu-Carroll. Predicting Source Code Changes by
Mining Change History. IEEE Transactions on Software
Engineering, 30(9):574-586, 2004.

[60] T. Zimmermann, P. Weiigerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. In
26th International Conference on Software Engineering
(ICSE 2004), pages 563-572, Los Alamitos CA, 2004.
IEEE Computer Society Press.

	Presenters
	Duration
	Goal and Objectives
	Scope
	Teaching Method
	Technical Equipment

	Summary of Contents
	Software Metrics
	Software Evolution
	Software Visualization
	Summary

	Structure of Contents
	References

