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ABSTRACT

Quality control is paramount in every engineering discipline.
Software engineering, however, is not considered a classi-
cal engineering activity for several reasons, such as intrinsic
complexity and lack of rigor. In general, if a software sys-
tem is delivering the expected functionality, only in few cases
people see the need to analyze the internals.

In this tutorial we offer a pragmatic approach to analyzing
the quality of software systems. On the one hand, we offer
the theoretical background to detect quality problems by us-
ing and combining metrics, by analyzing the past through
evolution analysis, and by providing visual evidence of the
state of affairs in the system. On the other hand, as analyz-
ing real systems requires adequate tool support, we offer an
overview of the problems that occur in using such tools and
provide a hands-on session with state-of-the-art tools used
on a real case study.

1. PRESENTERS
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gineering, reengineering, information visualization, quality
assurance and meta-modeling. During his Ph.D. he devel-
oped the Hismo meta-model for evolution analysis. He is
one of the key developers of the Moose reengineering en-
vironment and participated in the development of several
other reverse engineering tools. He offers consulting services
in the area of reengineering and quality assurance.
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2. DURATION
1 full day

3. GOAL AND OBJECTIVES

The overall goal of this tutorial is to teach participants the
good, the bad, and the ugly about the assessment of design
quality, with a special emphasis on object-oriented design.
In our research, we have explored a variety of metrics and
visualization techniques to characterize, evaluate and even
improve the design of large object-oriented systems and their
evolution, in a language-independent manner. Specifically,
the tutorial aims to answer the following questions:

e How can we use metrics to characterize, evaluate and
improve the design of object-oriented systems?

e What are the usual pitfalls of the use of metrics, and
how can we circumvent them?

e How can we, developers and designers, customize qual-
ity assessment techniques to make them applicable in
their particular context?

e Once we have detected a flawed artifact in a system,
how can we efficiently “cure” the system from that dis-
ease?

e Which are the key features to look for in a toolkit for
quality assessment? And which are the useless ones?

We propose to tackle these questions by providing partici-
pants with:

e A detailed overview of state-of-the art techniques on
software metrics, software evolution and software vi-
sualization

o A detailed survey of existing approaches and method-
ologies for quality assurance, reverse engineering and
reengineering

e Practical knowledge and skills on how to use state-of-
the-art tools to characterize, evaluate, and improve the
design of object-oriented systems

4. SCOPE

Intended audience. This tutorial is open to all software practi-
tioners, managers, students, and researchers who want
to learn more about design quality assessment, soft-
ware metrics, software evolution, software visualiza-
tion and software reengineering.

Level. The level of the tutorial comprises both basic and ad-
vanced topics.

Required Prerequisites. The participants should have a basic
background in software engineering and object-oriented
programming, and be aware of simple software refac-
torings and metrics. However, the tutorial is designed
in such a way that no specific previous knowledge is
required.

S. TEACHING METHOD

The tutorial will be structured in two main parts:

1. Theoretical Foundations. This first part, given in the
morning, consists of a set of lectures on a variety of cor-
related topics to provide the theoretical foundations to
the tutorial attendees. The topics include metrics, evo-
lution, software analysis, quality models, and visual-
ization principles (see Section 7 for a detailed list.)

2. Practical Skills. This second part, given in the after-
noon, introduces the tutorial attendees to state-of-the-
art tools and will also give the attendees the possibility
to experiment with them in a hands-on fashion. The
goal of the hands-on session is for the participants to
analyze the quality of an actual large object-oriented
system and provide a short report of their findings to
the other tutorial attendees.

The tutorial is closed by a discussion session where we sum-
marize the tutorial by taking into account the findings of the
attendees.

5.1 Technical Equipment

As far a technical equipment is concerned, we will need the
following:

e A beamer to be connected to a laptop computer for the
presentations and tool demos.

e (Wireless) Internet connection

e Participants should bring their own laptop to experi-
ment with the tools.

Further, handouts of the presentation slides will be distributed
(presumably in advance by the conference organization).

6. SUMMARY OF CONTENTS

Controlling quality is paramount in every engineering dis-
cipline. Software engineering, however, is not considered
a classical engineering activity for several reasons, such as
intrinsic complexity and lack of rigor, thus negatively im-
pacting the consideration for internal quality. In general, if a
software system is delivering the expected functionality, only
few people -if any- care about the internals of the system.
Software metrics are widely used, specifically to measure and
preserve software quality. However, defining, understand-
ing and using them often looks like an overly complex activ-
ity, recommended only to “trained professionals”.

In this tutorial, we demystify software metrics and show how
they can be used to assess the size, quality and complexity
of object-oriented software systems. Furthermore, we take
into account the evolutionary aspect of software systems and
we present both structural and evolutionary measurements
in conjunction with visualization techniques.

In a practical setting, quality assurance requires adequate
tools. That is why we go beyond theory and analyze the
problems that arise in using such tools. The tutorial atten-
dees will have the chance to exercise the lessons learned dur-
ing the theoretical part of the tutorial, by using stat-of-the-art
metrics and visualization tools in hands-on sessions.



The following sections provide an overview (including our
own contributions) of the topics covered in the tutorial: met-
rics, evolution analysis, visualization and their usage in qual-
ity assessment .

6.1 Software Metrics

Metrics are a way to control quality [12]. In software engi-
neering it is important and useful to measure systems, be-
cause otherwise we risk losing control because of their com-
plexity. Losing control in such a case could make us ignore
the fact that certain parts of the system grow abnormally or
have a bad quality (e.g. code that is cryptic, uncommented,
badly structured, or dead).

Software metrics are used to detect design problems as they
quantify simple properties of design structures. Various soft-
ware metrics have been defined to address the most impor-
tant characteristics of good object-oriented design like com-
plexity, cohesion, coupling and inheritance [5,8,29,40]. Lorenz
and Kidd have worked on devising empirical threshold val-
ues which signify abnormal characteristics of design enti-
ties [41]. These thresholds were established based on the au-
thors” experience with C++ and Smalltalk projects.

As there is currently an inflation of metrics, there is a seri-
ous need to have a rigorous approach for defining and us-
ing them. Briand et al. defined a unified framework for
coupling measurement in object-oriented systems based on
source model entities [6]. Based on these metrics they ver-
ified the coupling measurements at the file level using sta-
tistical methods and logical coupling information based on
“ripple effects” [7]. Briand et al. described how coupling can
be defined and measured based on dynamic analysis of sys-
tems [2]. This recent study shows that some dynamic cou-
pling measures are significant indicators of change prone-
ness and that they complement existing coupling measures
that are based on static analysis.

In practice, appropriate tool support for metrics calculation
is a must for performing quality assessments. Such tools are
presented in [1,55]. Unfortunately, many such tools do not
go beyond the computation of a large number of metrics ac-
companied by the display of metrics in form of charts and
by monitoring if some (oftentimes arbitrary) threshold val-
ues are not exceeded by the software system under scrutiny.

We emphasize that a metric alone cannot serve the afore-
mentioned goal of controlling design quality. Metrics taken
in isolation cannot help to answer all the questions about a
system. The bottom-up approach, i.e. going from abnormal
numbers to the recognition of design flaws is impracticable
because the symptoms captured by single metrics, even if
perfectly interpreted, may occur in several flaws: the inter-
pretation of individual metrics is too fine grained to indicate a
particular design problem. This tutorial reveals how metrics
can be combined in order to serve the identification and lo-
cation of design problems and thus contribute to controlling
design quality.

To support the detection and location of design problems in
a system, we introduced a technique — called detection strat-
egy [36,43] - for formulating metrics-based rules that capture
deviations from good design principles and heuristics like
those defined by Riel [51] or Martin [44]. Using detection
strategies an engineer can directly localize classes or methods
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affected by a particular design flaw (e.g. God Class), rather
than having to infer the real design problem from a large
set of abnormal metric values. We have defined such detec-
tion strategies for capturing more than ten important flaws
of object-oriented design and we have implemented them in
both iPlasma and Moose reengineering environments [49].

6.2 Software Evolution

The importance of modeling and analyzing software evolution
was pioneered in the early 1970’s with the work of Lehman
and Belady who established that as systems evolve, they be-
come more complex, and consequently more resources are
needed to preserve and simplify their structure [37]. Yet, it
was only in recent years that extensive research has been car-
ried out on exploiting the wealth of information residing in
versioning repositories for purposes like reverse engineer-
ing or cost estimation. Problems like software aging [50]
and code decay [15] gained increasing recognition both in
academia and in industry.

There are several approaches that analyze the influence of
changes in an evolving software system. Lehmann et al. ex-
plored the implication of evolution on quality and software
maintenance in general by analyzing the differences between
consecutive versions using simple measurements [38,39].
Gold and Mohan defined a framework to understand the
conceptual changes in an evolving system [28]. Based on
measuring the detected concepts, they could differentiate be-
tween different maintenance activities. Mockus and Votta
classified the changes [46] into corrective, adaptive, inspec-
tion, perfective, and other types changes, by analyzing the
descriptions in the change logs. Mockus and Weiss used his-
tory measurements for developing a method for predicting
the risk of software changes [47]. Some examples of such
measurements are: the number of modules touched, the num-
ber of developers involved, or the number of changes. Ex-
tracting architectural properties from large open source sys-
tems such as the Mozilla system has been addressed by God-
frey et al. [27]. Their work relied on PBS [18] which is a re-
verse engineering workbench containing the Relational Al-
gebra tool Grok. PBS does not consider the visualization of
metrics to characterize abstracted entities and relationships,
or to filter out the information of minor interest leading to
more condensed and comprehensible views.

Gall et al. pioneered the research on detecting logical cou-
pling between parts of the system that change in the same
time [20]. Zimmermann et al. focused on a mechanism to
warn developers that: “Programmers who changed function
x also changed ...” [60]. Further, Ying et al. applied data
mining techniques to the change history of the code base to
identify change patterns to recommend potentially relevant
source code for a particular modification task [59].

All these individual techniques provide facets for assessing
the quality of software systems. However, we established
that to understand software evolution as a whole, we need a
means to combine and compare these different analyses [21].
Thus, we created the Hismo meta-model to support the ex-
pression of these analyses and we used it to develop various
evolution analyses on top of the Moose reengineering envi-
ronment [22]. One example of such an analysis is Yesterday’s
Weather, an algorithm to check whether the entities that were
changed recently will be among those changed in the near
future [24]. We have also used concept analysis to identify
patterns of co-change [23].



6.3 Software Visualization

The goal of information visualization is to visualize any kind
of data [54]. Applications of information visualization are so
frequent and common, that most people do not notice them:
examples include metereology (weather maps), geography
(street maps), transportation (train tables and metro maps),
etc.

In the more specific field of software engineering, UML is
probably the most used visual notation [19], but many more
visualization techniques have been proposed dealing with
various aspects of software analysis.

One of the most spread metaphor used is to map the struc-
ture of the code on a graph and represent it accordingly. Thus,
tools like such as Rigi [48] and SHriMP [52] were built.

We have also been involved in building such tools, most no-
tably CodeCrawler [32] and Mondrian [45]. A technique that
we coined is the polymetric view [35]. The polymetric view
enriches the graph visualization with metrics mapped on the
size and color of the nodes and edges. Class Blueprint is one
example of a polymetric view that shows the internals of a
class in terms of methods, attributes and their inter-relations
[13]. Other examples consist in applying polymetric views to
display the evolution of classes [34], or to display dynamic
information [14].

Visualization has proven to be a key technique for software
evolution analysis, mainly due to the huge amounts of infor-
mation that need to be processed and understood. One of the
first application of visualization in evolution analysis is em-
bodied in Seesoft, a tool for visualizing line oriented software
statistics such as the age or stability of a line of code [17].
Jazayeri ef al. analyzed the stability of the architecture [30,31]
by using colors to depict the changes over a period of re-
leases. Similarly Wu et al. describe an Evolution Spectro-
graph [57] that visualizes a historical sequence of software
releases. Rysselberghe and Demeyer used a simple visual-
ization based on information in version control systems to
provide an overview of the evolution of systems [53].

We believe that classes are best understood in their context
like their inheritance hierarchies, however only few efforts
have been invested into understanding the evolution of hi-
erarchies. Collberg et al. used graph-based visualizations
to display which parts of class hierarchies were changed [9].
They provide a color scale to distinguish between newer and
older changes. We have developed a polymetric view that
shows the evolution of classes at system level emphasizing
new and old as well as changed and or stable classes [26].
Changes are performed by developers. Different approaches
have been developed to analyze author information avail-
able from the versioning system. Ball and Eick [4] have rep-
resented lines of code as lines and mapped colours to repre-
sent the authors. Xiaomin Wu et al. visualized the change
log information to provide an overview of the active places
in the system as well as of the authors activity [58]. Eick et
al. proposed several visualizations to show how developers
modify the system using colors and third dimension [16]. We
have developed visualizations to show how which develop-
ers own which parts of the code [25] and which developers
copy from each other [3].

Visualization has become a key technique for analyzing large
and complex data sets. We have gained extensive knowledge
of this domain, by building a number of visualization tools
[10,11,32,45,56], and have come to the conclusion that they
are also a key factor in understanding software quality.

6.4 Summary

The three tutorial speakers have performed research in qual-
ity assurance, software reverse engineering, evolution, vi-
sualization, and reengineering since 10 years. The tutorial
strongly builds on our PhD theses [21,33,42], and on the pa-
pers we have published. Furthermore, the tutorial builds on
our recently published book Object-Oriented Metrics in Prac-
tice [36].

Our claim is that quality needs to be regarded from various
perspectives and in this tutorial we show how metrics, vi-
sualization and evolution analyses can be combined to help
quality assessment. Furthermore, based on our extensive ex-
perience in building reverse engineering tools we distill the
lessons learnt related to using and building reengineering
tools, and we provide a hands-on session for attendees to
practice these lessons.

7. STRUCTURE OF CONTENTS

The tutorial is structured in two main part, organized as fol-
lows:

1. Theoretical Foundations

(a) Introduction

e What is software quality?
e An overview of the field and introduction of
key concepts
(b) Software Metrics
Myths and truths about metrics.
Software quality models (the ISO 9126 model).
Detection Strategies.

Design Disharmonies: Identity Disharmonies,
Classification Disharmonies, Collaboration Dis-
harmonies.

(c) Software Visualization

e What is software visualization?
e Overview of the field

e Visualization and metrics: Polymetric Views,
Class Blueprints.

e Recent trends in visualization.
(d) Software Evolution

What is software evolution?
What can we learn from the past?
Overview of the field

A quick introduction to the field of software
refactorings.

e Eradicating disharmonies through refactorings.

2. Practical Skills

(a) Tools for Metrics, Visualization

e What to look for in a metrics tool: naviga-
tion, code inspection, causality of the num-
bers, correlation of numbers.

o Brief survey of the available tools

e Tool support: the Moose reengineering envi-
ronment, the iPlasma environment



(b) Hands-on: step-by-step using Moose and iPlasma
on a sample case study.

(c) Hands-on: producing a report of problems found
in a case study.

(d) Wrap-up
o Discussion of lessons learned regarding met-
rics, visualization and evolution.
e Discussion of possible refactorings.
¢ Discussion on the tool support: what is good,
what else would be best to have.
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