
Andy Zaidman, Abdelwahab Hamou-Lhadj, Orla Greevy (editors)

1st International Workshop on

Program
Comprehension

through Dynamic
Analysis

co-located with the 12th Working Conference on
Reverse Engineering (WCRE’05)

Pittsburgh, Pennsylvania, USA
10 November 2005

Technical report 2005-12
Universiteit Antwerpen

Department of Mathematics & Computer Science
Middelheimlaan 1, 2020 Antwerpen, Belgium

PC
O

D
A

’0
5

Program Chairs

Orla Greevy
Software Composition Group
Institut fur Informatik und angewandte Mathematik
University of Bern
Switzerland
greevy@iam.unibe.ch

Abdelwahab Hamou-Lhadj
School of Information Technology and Engineering
University of Ottawa
Canada
ahamou@site.uottawa.ca

Andy Zaidman
Lab On Re Engineering
Department of Mathematics and Computer Science
University of Antwerp
Belgium
Andy.Zaidman@ua.ac.be

Program Committee

Serge Demeyer
University of Antwerp, Belgium
Stephane Ducasse
University of Savoie, France
Markus Gälli
University of Berne, Switzerland
Orla Greevy
University of Berne, Switzerland
Abdelwahab Hamou-Lhadj
University of Ottawa, Canada
Laura Ponisio
University of Berne, Switzerland
Timothy Lethbridge
University of Ottawa, Canada
Andy Zaidman
University of Antwerp, Belgium

Contents

Industrial experience and practical application of dynamic analysis
approaches

Using Build Process Intervention To Accommodate Dynamic Instrumentation of
Complex Systems... 1
Robert L. Akers

Applying Dynamic Analysis in a Legacy Context: An Industrial Experience Report.............................. 6
Andy Zaidman, Bram Adams, Kris De Schutter

Crystallizing Application Configurations to Aid Program Comprehension.. 11
Ken Zhang, Richard C. Holt

Dynamic analysis challenges and metrics for dynamic analysis

DDgraph: a Tool to Visualize Dynamic Dependences... 22
Francoise Balmas, Harald Wertz, Rim Chaabane

Dynamic Estimation of Data-Level Parallelism in Nested Loop Structures: A Preliminary Report........ 28
Lewis B. Baumstark, Jr., Linda M. Wills

Selective Tracing for Dynamic Analyses ... 33
Matthias Meyer, Lothar Wendehals

Dynamic Fan-in and Fan-out Metrics for Program Comprehension.. 38
Wang Yuying, Li Qingshan, Chen Ping, Ren Chunde

High level dynamic analysis views

The Concept of Trace Summarization... 43
Abdelwahab Hamou-Lhadj

Applying Semantic Analysis to Feature Execution Traces .. 48
Adrian Kuhn, Orla Greevy and Tudor Gırba

Enhancing Static Architectural Design Recovery by Lightweight Dynamic Analysis 54
Andrew Malton, Atousa Pahelvan

An Approach to Program Comprehension through Reverse Engineering of Complementary Software
Views .. 58
Aline Vasconcelos, Rafael Cepêda, Cláudia Werner

Using Build Process Intervention To Accommodate

Dynamic Instrumentation

of Complex Systems

 Robert L. Akers

Semantic Designs, Inc.

12636 Research Blvd, C214

Austin, TX 78759

lakers@semanticdesigns.com

Abstract

Complex software is often constructed with the help

of complex and sometimes generative build processes,

automated with the help of various scripting and incre-

mental development tools. Many dynamic analysis

techniques require instrumentation of source code to

extract runtime information. Automated transformation

systems can be used to insert this instrumentation, but

this is typically a separate process that is applied to

source files prior to system builds. In cases where the

build processes actually construct source files, or de-

termine which source files out of a source base, or in

cases where the instrumentation process is aided by

configuration information that may not be known until

mid-build, the question of what code should be instru-

mented and how may be difficult or impossible to re-

solve prior to the build. Moreover, build processes may

be rather opaque to quality assurance responsible for

instrumentation. Instrumenting source code in mid-

build, for example immediately before module compila-

tion, offers a way to deal with these complexities.

This paper discusses the use of automated transfor-

mation for dynamic instrumentation. Then it presents a

simple technique for intervening in complex build proc-

esses that does not require knowledge of the build proc-

ess itself, but is nevertheless sensitive to build dynam-

ics, so that source code instrumentation can be per-

formed at surgically precise places and times. The

technique enables various methods of dynamic analysis

to be implemented automatically on demand.

 Keywords

Test coverage, instrumentation, dynamic analysis,

transformation, scripting, build process

1 Instrumentation for Dynamic Analysis

Instrumentation of source code is a key approach to

gathering dyamic analysis information that captures the

behavior of a software system during its execution.

From the ad hoc insertion of debugging print statements

to the rigorous insertion of special-purpose data-

gathering instrumentation throughout a software sys-

tem, the addition of source code that gathers informa-

tion incidental to the functionality of a software system

is a useful technique for improving software quality.

Instrumentation can provide a wide variety of informa-

tion, including fine-grained performance and timing

data, records of frequency and sequencing of execution

of code segments, data traces, security property monito-

ing, error tracking, and runtime validation against soft-

ware metrics and functional specifications..

For many areas of program comprehension, dynamic

analysis complements static techniques in a lower

bound/upper bound manner. For example, one pillar of

information in legacy architecture extraction is the col-

lection of calls/called-by relationships. Static analysis

can help determine what functions could possibly call

which other functions, establishing an upper bound.

Dynamic analysis via instrumentation of call sites can

show empirically what functions actually do call which

others during a particular execution, establishing a

proof-by-example lower bound for the calls/called-by

relationship. Another example is control flow. Static

analysis can help determine local control flow paths

under constraints gleaned from the immediate environ-

ment, refining the range of possibilities suggested by

the control mechanisms of the source language, for in-

stance by taking into account the possible values of

governing conditionals. Dynamic analysis, enabled by

pervasive instrumentation of atomic execution path

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

1

bool fibcached[1000];

int fibvalue[1000];

int fib(int i)

{ int t;

 switch (i)

 { case 0:

 case 1: return 1;

 default:

 if fibcached(i)

 return fibvalue(i);

 else { t=fib(i-1);

 return t+fib(i-2);

 };

 };

};

bool fibcached[1000];

int fibvalue[1000];

int fib(int i)

{ int t;

 visited[1]=true;

 switch (i)

 { case 0: visited[2]=true;

 case 1: visited[3]=true;

 return 1;

 default:

 visited[4]=true;

 if fibcached(i)

 { visited[5]=true;

 return fibvalue(i);}

 else { visited[6]=true;

 t=fib(i-1);

 return t+fib(i-2);

 };

 };

};
Original “C” program Marked program

Figure 1 -- A simple routine before and after test coverage instrumentation

segments, can produce a linear trace of the control path

followed by a given execution. In each case, static

analysis defines a range of possible behaviors, while the

dynamic analysis enabled by instrumentation illustrates

cases within the range that actually occur.

2 Instrumentation Via Automatic

Transformation

Automated source code transformation systems are

particularly useful for performing many types of in-

strumentation, particularly where some regular but per-

vasive means of data-gathering is appropriate. Exam-

ples include:

� the addition of probes in every atomic control path

within a program for the purpose of gathering data

illustrating:

� test coverage

� frequency of execution

� order of execution

� the insertion of probes at function or method call

points to report caller/called events.[6]

� the automatic insertion of statements to print the

values of data objects used in the immediate context,

effectively providing a data trace of the program's

execution.

� the automatical tagging of data objects with security

levels, and use of rules based in control flow seman-

tics to add instrumentation that propagates security

level information through a system and traps unau-

thorized flows at output ports.

The widespread insertion of instrumentation like this

in a large system would be both mind-numbing and

prohibitively expensive if done manually. However,

this kind of task is quite easy for an automated source

code transformation system. An example of such a sys-

tem is the Design Maintenance System (DMS
1
) [2].

DMS has at its heart a software analysis and transfor-

mation infrastructure that operates on abstract syntax

tree (AST) representations of programs. It also has

ming language with a context-free grammar and well-

developed front ends for most common languages.

Automatically generated parsers transform source to

AST, and automatically generated pretty printers con-

vert AST back to source. Sets of rewrite rules, stated in

terms of the source languages being manipulated, can

be applied by a DMS-based tool to perform the massive

regular changes involved in instrumenting a system.

For example, a relatively small collection of rewrite

rules can implement test coverage instrumentation. The

rules are keyed by the syntax of branching construc-

1 1 DMS is a registered trademark of Semantic Designs Inc.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

2

tions in the source code. E.g., in the statement se-

quence of both branches of an if statement, a rule in-

serts a statement setting a unique element of a test cov-

erage vector to true. (See Figure 1.) Likewise for the

beginning of the statement sequence of a function, the

statement sequence within a looping construct, and so

forth. Figure 2 illustrates some of the transformation

rules that implement the instrumentation. Ultimately

the size of the test coverage vector equals the number of

non-branching blocks in the software system (or the

portion of the system that was instrumented). The vec-

tor is initialized to false values. After running execu-

tion tests, any true value in the vector signifies that the

associated code segment was executed. A display tool

ties this information back to the source code itself, help-

ing the engineer visualize what portions of his system

were executed by his sequence of tests.

A slight variant on this scheme allows the counting

of executions of each program segment for purposes of

performance analysis, and yet another variant could re-

cord traces during execution, either by recording the

value of a ticker in the vector or by sending the unique

value associated with the instrumented location to a

stream. In each case, application of a relatively small

number of rewrite rules, which themselves are easily

formulated, can result in the pervasive instrumentation

of software systems of arbitrary size. The kind of

analysis desired dictates what kinds of instrumentation

rules are formulated.

Automation allows instrument insertion to be sepa-

rated from the main line of software development,

which has several advantages. Software design and

construction is not cluttered with instrumentation con-

cerns. Furthermore, since instrumentation can be done

more or less instantaneously, maintaining synchronicity

with ongoing system development while the instrumen-

tation is being coded is no longer a problem. As the

system changes, it can be re-instrumented as appropri-

ate for testing cycles. Morever, since the instrumenta-

tion can be trivially re-generated, it need not be main-

tained or distributed with software releases, thus impos-

ing no maintenance or end user performance overhead.

In some respects, automatic transformation in this

style resembles aspect weaving. The syntactic form of

the left hand sides of the rewrite rules and the semantic

conditions that can be attached to the rules perform cut

point identification appropriate for a given aspect. The

right hand sides specify the code to be. In fact, a DMS-

based tool has been used to build an aspect weaver [5].

Engineers comfortable with string-hacking tools are

sometimes tempted to apply them in situations where

they lack adequate power. Instrumenting source code

via string recognition and manipulation, for example,

comes at very great risk, since string languages have no

default domain Cpp;

rule mark_function_entry(result:type, name:identifier,

 decls:declaration_list, stmts:statement_sequence) =

 “\result \name { \decls \stmts };”

 rewrites to “\result \name { \decls
 { visited[\record_place1\(\stmts\)]=true;

 \stmts } };”

rule mark_if_then_else(condition:expression; tstmt:statement;estmt:statement) =

 “if (\condition)\tstmt else \estmt;”

 rewrites to “if (\condition)
 {visited[\record_place1\(\tstmt\)]=true; \tstmt}

 else {visited[\record_place2\(\estmt\)]=true; \estmt};”

rule mark_switch_case(condition:expression;stmts:statement_sequence) =

 “case \e: \stmts”
 rewrites to

 “case \e: {visited[\record_place1\(\stmts\)]=true; \stmts }”

Auxiliary procedure to record location of statements, manufacture “place number”

Figure 2 -- DMS transformation rules for test coverage instrumentation

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

3

means for dealing with semantic issues that may come

into play. Consider a simple case where a tool is to in-

sert some piece of instrumentation code after any as-

signment to a certain field 'myfield' of a record of a cer-

tain type. Searching for a program text string matching

".myfield = " may identify an assignment to the wrong

type record, may not recognize a match because of fail-

ure to account for all whitespace possibilities including

newlines, and may not recognize whether the identified

text is within a comment or not. Intervening manually

in the process to resolve these questions may work for

small systems but is not viable for large ones. To con-

duct the operation safely and consistently, semantically

aware machinery is required.

3 The Build Process Roadblock

Software quality topics nearly always focus on mat-

ters relating to system design and source code, but too

rarely deal with build processes. Builds are typically

wired together by blends of scripts that navigate be-

tween file system manipulations, compiles, links, and

all manner of utility calls. The scripting languages do

not have the structural regularity of conventional coding

languages. Build script processes can be opaque to

quality assurance engineers who may be unfamiliar

with their operation..

There are usually good reasons for build mechanisms

being the way they are, but there are times that build

processes can get in the way of software quality meas-

ures. Instrumentation for dynamic analysis is a case in

point, especially when the source code instrumentation

process is automated.

To do accurate identification of insertion points and

syntactically accurate insertion of instrumentation re-

quires context and semantic sensitivity, i.e., parsing.

But parsing can be confounded by build processes for a

variety of reasons. Build processes often set the context

for the parsing of a particular file, e.g., by setting envi-

ronment variables that establish paths to executables,

includes, and libraries. Outside the build process, it

may not be possible to acquire the environment infor-

mation necessary to even parse the file in question,

much less the semantic content necessary to do accurate

instrumentation. Absent environmental context, parse

logic like preprocessing conditionals may be unavail-

able, and macro definitions may be unknowable.

Builds can also actually create the source files to be

parsed, so that the files that need to be instrumented do

not actually come into existence until the build is in

progress, making static instrumentation impossible.

Moreover, a common characteristic of build processes

is that they select only pieces from a large code base for

composition into a particular product. Pre-

instrumentation of the whole source base may not be

appropriate for dealing with products that are assembled

from sparsely selected pieces of the base.

Furthermore, modifying home-grown build scripts to

do instrumentation at selected times may not be ade-

quate. Build processes sometimes utilize vendor-

provided build tools, so that beyond some threshold, in-

house mechanisms hand off control and make process

modification much more difficult.

4 A Build Process Intervention Technique

These issues all suggest an instrumentation strategy

that intervenes in the build process, captures the rele-

vant files, and instruments them just in time for compi-

lation. In general, one cannot count on this opportunity

arising, however, until the moment at which the com-

piler is invoked. However, one knows that for each file

of concern, at some point in the build a valid compila-

tion environment is constructed and a compiler is in-

voked. One can always identify precisely when and

how a compiler is invoked and be confident that all the

information necessary to do correct parsing and instru-

mentation is at hand.

We have been successful in taking advantage of this

opportunity by using a rather unusual intervention tech-

nique. We rename the compiler, replacing it with a

command line capture tool that records the relevant en-

vironment variable settings and the command line itself.

Next it invokes a command script. The script uses the

captured information to set up an automated instrumen-

tation tool, invokes the tool, and then invokes the relo-

cated compiler on the instrumented files, directing that

it store the resulting object files where the originals

would have been stored. On completion of the script,

control returns to the capture tool, which catches errors

and returns control to the build process for its continua-

tion.

We encompass the entire build process with a script

that does the compiler relocation, the placement of the

command capture tool in the compiler's original posi-

tion, the invocation of the original build process, the

removal of the capture tool, and the replacement of the

compiler in its original home. This entire modified

process becomes an atomic action with respect to the

host machine, since in its duration the compiler is not

available for other purposes. With development and

testing typically occurring on single-user desktop ma-

chines, this poses no particular problem.

The utility-replacement technique works so neatly

that we have applied it also to the vendor-supplied build

tool itself, setting aside the build executable to first

modify the files that drive the build. Since the system

instrumentation includes runtime support, these support

files are inserted into the build setup, with modifica-

tions specific to the build in progress, so the support

files can be compiled as part of the system. One nice

aspect of all this is that the technique can be applied

without affecting the mainstream development and

build process at all, lying dormant unless the developer

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

4

invokes the wrapper scripts, and staying out of the way

of normal system builds. One might imagine other ap-

plications of the relocation technique, and we have also

considered using it on the linker to introduce other ob-

ject files.

Mechanizing the relocation of is important, as it

minimizes the amount of time the relocated applications

are disabled to other uses. Mechanizing also helps en-

sure care and consistency in the process, important

when one is perturbing the development environment

itself.

We have successfully applied this technique to com-

plex build processes that assemble code modules from

custom code and a large space of USB device driver

utilities to build telecommunication device drivers. The

source code involved in the build is modified by the

build process to do product branding. Components are

assembled, compiled, and internally linked, and then

devices are assembled from these components. The

modules are coded in C [1] and include both custom

code and Microsoft DDK modules [4], are compiled

with a variety of C compilers, and are built with an

elaborate custom process that employs the Microsoft

build utility [3] as its bottom layer.

Though our implementation of command capture has

process and command line access hooks that are Win-

dows dependent, and the applications in which we in-

tervene (e.g., build and link) are Windows-based, there

is no reason why the concepts discussed here would not

port readily to other environments. Any conventional

platform would support access to command line argu-

ments and offer process control primitives through an

API. Any application that is represented by a binary

image on an accessible storage device could be relo-

cated and replaced with a command capture tool. We

choose scripts to implement our interventions and wrap

the entire process, but any other coding mechanisms

would suffice. The intervention mechanisms are nei-

ther large nor complex and could be coded any way that

is convenient for any reasonable platform.

5 Conclusion

Automatic software transformation is a powerful and

flexible strategy for instrumenting software to reveal

dynamic behavior. A mature transformation infrastruc-

ture that parses source code consistently with the lan-

guage implementation and that performs instrumenta-

tion via manipulation of abstract syntax trees rather

than strings is highly desirable. Using this technology

can be complicated by complex build processes for the

target software. One fruitful way of addressing this

complication is to insert instrumentation during a build,

immediately prior to source file compilation. A tech-

nique for doing this reliably is to relocate the compiler,

replacing it with a program that captures the compiler

invocation and its environment, then invokes a process

that performs the instrumentation and re-invokes the

relocated compiler on the instrumented code. This trick

can be applied for other purposes as well.

This is obviously not deep computer science. We

share the strategy with you because, though it is simple,

it is not the kind of thing most developers would think

of. In a context where it is acceptable to temporarily

locate utility software used in software build processes,

this redirection strategy provides the benefits of a

wrapper strategy while allowing the "wrapping" to oc-

cur, in some sense, from the inside, where more context

is available. Moreover, it is an illustration of two dy-

namic instrumentation techniques, one that dynamically

modifies a build process, and another that employs

source code instrumentation to extract run-time system

behavior.

References

[1] American National Standard for Programming Languages –

C, ANSI/ISO 9899-1990..

[2] I.D. Baxter, C. Pidgeon, and M. Mehlich. “DMS: Program

Transformation for Practical Scalable Software Evolution.”

International Conference on Software Engineering, pp. 625-

634. IEEE Computer Society, 2004.

[3] “BUILD.EXE command”, http://msdn.microsoft.com.

[4] “DDKGuide.exe, The Essential Guide to the Windows DDK”,

http://msdn.microsoft.com.

[5] Gray, J., Roychoudhury, S., "A Technique for Constructing

Aspect Weavers Using a Program Transformation Engine",

Proceedings of the 3rd International Conference on Aspect-

Oriented Software Development, pp 36-45, 2004

[6] T. Systa, K. Koskimies, “Extracting State Diagrams from

Legacy Systems”, Technical Report, Department of Computer

Science, University of Tampere, Tampere, Finland.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

5

Applying Dynamic Analysis in a Legacy Context: An Industrial Experience
Report

Andy Zaidman1, Bram Adams2, and Kris De Schutter2

1LORE, Department of Mathematics and Computer Science, University of Antwerp, Belgium,
Andy.Zaidman@ua.ac.be

2SEL, Department of Information Technology (INTEC), University of Ghent, Belgium
{Bram.Adams, Kris.DeSchutter}@ugent.be

Abstract

This paper describes our experiences with applying dy-
namic analysis solutions with the help of Aspect Orientation
(AO) on an industrial legacy application written in C. The
purpose of this position paper is two-fold: (1) we want to
show that the use of Aspect Orientation to perform dynamic
analysis is particularly suited for legacy environments and
(2) we want to share our experiences concerning some typ-
ical pitfalls when applying any reverse engineering tech-
nique on a legacy codebase.

1. Introduction

Legacy software is all-around: software that is still very
much useful to an organization – quite often evenindis-
pensable– but a burden nevertheless. A burden because
the adaptation, integration with newer technologies or sim-
ply maintenance to keep the software synchronized with the
needs of the business, carries a cost that is too great. This
burden can even be exaggerated when the original develop-
ers, experienced maintainers or up-to-date documentation
are not available [10, 5, 8, 6].

Apart from a status-quo scenario, in which the business
has to adapt to the software, a number of scenarios are fre-
quently seen:

1. Rewrite the application from scratch, from the legacy
environment, to the desired one, using a new set of
requirements [4].

2. Reverse engineer the application and rewrite the appli-

cation from scratch, from the legacy environment, to
the desired one [4].

3. Refactor the application. One can refactor the old ap-
plication, without migrating it, so that change requests
can be efficiently implemented; or refactor it to mi-
grate it to a different platform.

4. Often, in an attempt to limit the costs, the old appli-
cation is ”wrapped” and becomes a component in, or
a service for, a new software system. In this scenario,
the software still delivers its useful functionality, with
the flexibility of a new environment [4]. This works
fine and the fact that the old software is still present is
slowly forgotten. This leads to a phenomenon which
can be called theblack-box syndrome: the old applica-
tion, now component or service in the new system, is
trusted for what it does, but nobody knows – or wants
to know – what goes on internally (white box).

5. A last possibility is a mix of the previous options, in
which the old application is seriously changed before
being set-up as a component or service in the new en-
vironment.

Certainly for scenarios 2, 3, 4 and 5, the software engi-
neer would ideally want to have:

• a good understanding of the application in order to start
his/her reengineering operation (or in order to write ad-
ditional tests before commencing reengineering)[9]

• a well-covering (set of) regression test(s) to check
whether the adaptations that are made, are behavior-
preserving[6]

However, in practice, legacy applications seldom have up to
date documentation available [8], nor do they have a well-
covering set of tests.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

6

The actual goals of this experiment are to (1) regain
lost knowledge, (2) determine test coverage and (3) iden-
tify problematic structures in the source code. For this, we
build upon a number of recently developed dynamic analy-
sis techniques that were developed for object-oriented soft-
ware [12, 11]. The emphasize for this paper however, is
more on the pitfalls we encountered along the way when
applying the different techniques on a legacy system.

This paper is organized as follows: Section2 starts
with a description of the case study. Section3 introduces
our AOP implementation, while Section4 briefly discusses
the dynamic analysis solutions we used. Section5 men-
tions some typical legacy environment pitfalls we stumbled
across. Section6 concludes and points to future work.

2 Case study

The industrial partner that we cooperated within the con-
text of this research experiment isKoninklijke Apothekersv-
ereniging Van Antwerpen(KAVA) 1. Kava is a non-profit
organization that groups over a thousand Flemish pharma-
cists. While originally safeguarding the interests of the
pharmaceutical profession, it has evolved into a full fledged
service-oriented provider. Among the services they offer is
a tarification service – determining the price of medication
based on the patient’s medical insurance. As such they act
as a financial and administrative go-between between the
pharmacists and the national healthcare insurance institu-
tions.

Kava was among the first in its industry to realize the
need for an automated tarification process, and have taken
it on themselves to deliver this service to their members.
Some 10 years ago, they developed a suite of applications
written in non-ANSI C for this purpose. Due to successive
healthcare regulation and technology changes they are very
much aware of the necessity to adapt and reengineer this
service.

Kava has just finished the process of porting their ap-
plications to fully ANSI-C compliant versions, running on
Linux. Over the course of this migration effort, it was noted
that documentation of these applications was outdated. This
provided us with the perfect opportunity to undertake our
experiments.

As a scenario for our dynamic analysis, the developers
told us that they often use the so-calledTDFSapplication
as a final check to see whether adaptations in the system
have any unforeseen consequences. As such, it should be
considered as a functional application, but also as a form of
regression test.

1http://www.kava.be/

The TDFS-application finally produces a digital and de-
tailed invoice of all prescriptions for the healthcare insur-
ance institutions. This is the end-stage of a monthly control-
and tariffing process and acts also as a control-procedure as
the results are matched against the aggregate data that is
collected earlier in the process.

3. AOP for legacy environments

We recently developed a framework for introducing AOP
in legacy languages like Cobol [7] and C [2, 1]. The latter is
calledaspicere2. This paper appliesaspicere on an indus-
trial case study, provided by one of our partners in the AR-
RIBA (Architectural Resources for the Restructuring and
Integration of Business Applications) research-project3.

Our industrial partner has a large codebase, mainly writ-
ten in C, that’s why we usedaspicere for our experiments.

4. Dynamic analysis solutions

In total we applied 3 dynamic analysis solutions. This
section will briefly introduce each of them.

Webmining This solution identifies the most important
classes in a system with the help of a heuristic that uses
dynamic coupling measures. The idea is based on the fact
that tightly coupled classes, can heavily influence the con-
trol flow. To add a transitive measure to the binary relation
of coupling, webmining principles are used. For a more
detailed description of this technique, we refer you to a pre-
vious work [11].

Frequency analysis This idea is based on the concept of
Frequency Spectrum Analysis, first introduced by Thomas
Ball [3]. It is centered around the idea that the relative ex-
ecution frequency of methods or procedures can tell some-
thing about which methods or procedures are working to-
gether to reach a common goal. For more details we refer
to [12].

Test coverage When refactoring or reengineering a sys-
tem, certain functionality often has to be preserved. Having
a well-covering set of tests can be very helpful for determin-
ing whether the adaptations to the code are indeed behavior
preserving. By establishing the test coverage of modules
and procedures, we are able to have a clear view of which
parts of the system are tested.

2”aspicere” is a Latin verb and means ”to look at”. Its past participle is
”aspectus”, so the link with AOP is pretty clear.

3Sponsored by the IWT, Flanders. Also see: http://www.iwt.be

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

7

http://www.kava.be/

gcc -c -o file.o file.c

Figure 1. Original makefile.
gcc -E -o tempfile.c file.c
cp tempfile.c file.c
aspicere -i file.c -o file.c \

-aspects aspects.lst
gcc -c -o file.o file.c

Figure 2. Adapted makefile.
.ec.o:

$(ESQL) -c $*.ec
rm -f $*.c

Figure 3. Original makefile with esql prepro-
cessing.

5. Pitfalls of dynamic analysis in a legacy envi-
ronment

Applying aspects onto a base program, is intended to
happen transparently for the end user. However, while using
our experimental legacy AOP tools during our experiments
at our industrial partner, we encountered several problems.
This section describes some of these.

5.1 Adapting the build process

The Kava application usesmake to automate the build
process. Historically, all 269 makefiles were hand-written
by several developers, not always using the same coding-
conventions. During a recent migration operation from
UnixWareto Linux, a significant number of makefiles has
been automatically generated with the help ofautomake4.
Despite this, the structure of the makefiles remains hetero-
geneous, a typical situation in (legacy) systems.

We built a small tool, which parses the makefiles and
makes the necessary adaptations. (A typical example is
shown in Figures1 and 2.) However, due to the hetero-
geneous structure, we weren’t able to completely automate
the process, so a number of makefile-constructions had to
be manually adapted. The situation becomes more difficult
when e.g. Informix esql preprocessing needs to be done.
This is depicted in Figures3 and4.

Using our scripts to alter the makefiles takes a few sec-
onds to run. Detecting where exactly our tool failed and
making the necessary manual adaptations took us several
hours.

4Automake is a tool that automatically generates makefiles starting
from configuration files. Each generated makefile complies to the GNU
Makefile standards and coding style. Seehttp://sources.redhat.
com/automake/ .

.ec.o:
$(ESQL) -e $*.ec
chmod 777 *
cp ‘ectoc.sh $*.ec‘ $*.ec
esql -nup $*.ec $(C_INCLUDE)
chmod 777 *
cp ‘ectoicp.sh $*.ec‘ $*.ec
aspicere -verbose -i $*.ec -o \

‘ectoc.sh $*.ec‘ -aspects aspects.lst
gcc -c ‘ectoc.sh $*.ec‘
rm -f $*.c

Figure 4. Adapted makefile with esql prepro-
cessing.

5.2 Compilation

A typical compile cycle of the application consisting of
407 C modules takes around 15 minutes5. We changed the
cycle to:

1. Preprocess
2. Weave withaspicere
3. Compile
4. Link

This new cycle took around 17hoursto complete. The rea-
son for this substantial increase in time can be attributed to
several factors, one of which may be the time needed by
the inference engine for matching up advice and join points
(still unoptimized).

5.3 Legacy issues

Even though Kava recently migrated from UnixWare to
Linux, some remnants of the non-ANSI implementation are
still visible in the system. In non-ANSI C, method dec-
larations with empty argument list are allowed. Actual
declaration of their arguments is postponed to the corre-
sponding method definitions. As is the case with ellipsis-
carrying methods, discovery of the proper argument types
must happen from their calling context. Because this type-
inferencing is rather complex, it is not fully integrated yet
in aspicere. Instead of ignoring the whole base program,
we chose to ”skip” (as yet) unsupported join points, intro-
ducing some errors in our measurements. To be more pre-
cise, we advised 367 files, of which 125 contained skipped
join points (one third). Of the 57015 discovered join points,
there were only 2362 filtered out, or a minor 4 percent. This
is likely due to the fact that in a particular file lots of invoca-
tions of the same method have been skipped during weav-
ing, because it was called multiple times with the same or

5Timed on a Pentium IV, 2.8GHz running Slackware 10.0

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

8

http://sources.redhat.com/automake/
http://sources.redhat.com/automake/

similar variables. This was confirmed by several random
screenings of the code.

Another fact to note is that we constantly opened, flushed
and closed the tracefile, certainly a non-optimal solution
from a performance point of view. Normally,aspicere’s
weaver transforms aspects into plain compilation modules
and advice into ordinary methods of those modules. So, we
could get hold of a static file pointer and use this through-
out the whole program. However, this would have meant
that we had to revise the whole make-hierarchy to link these
uniques modules in. Instead, we added a “legacy” mode to
our weaver in which advice is transformed to methods of
the modules part of the advised base program. This way,
the make-architecture remains untouched, but we lose the
power of static variables and methods.

5.4 Scaleability issues

Running the program Not only the compilation was in-
fluenced by our aspect weaving process. Also the running
of the application itself. The scenario we used (see Sec-
tion 2), normally runs in about 1.5 hours. When adding our
tracing advice, it took 7 hours due to the frequent file IO.

Tracefile volume The size of the logfile also proved prob-
lematic. The total size is around 90GB, however, the linux
2.4 kernel Kava is using was not compiled with large file
support. We also hesitated from doing this afterwards be-
cause of the numerous libraries used throughout the various
applications and fear for nasty pointer arithmetic waiting to
grab us. As a consequence, only files up to 2GB could be
produced. So, we had to make sure that we split up the
logfiles in smaller files. Furthermore, we compressed these
smaller logfiles, to conserve some diskspace.

Effort analysis Table 1 gives an overview of the time-
effort of performing each of the analyses. As you can see,
even a trouble-free run (i.e. no manual adaptation of make-
files necessary) would at least take 29 hours.

6. Conclusion and future work

This paper describes our experiences with applying dy-
namic analysis in an industrial legacy C context. We used
two dynamic analysis techniques that we had previously
developed and validated for Object Oriented software and
added a simple test coverage calculation. Furthermore, this
paper describes how we usedaspicere, our “AspectC” im-
plementation for collecting the traces we needed for per-
forming the dynamic analyses.

Task Time Previously
Makefile adaptations 10 s –
Compilation 17h 38min 15min
Running 7h 1h 30min
Code coverage 5h –
Frequency analysis 5h –
Webmining 10h –

Total 44h 38min 10s 1h 45min

Table 1. Overview of the time-effort of the
analyses.

This paper focusses on some common problems we
came across when trying to collect an event trace from a
legacy C application usingaspicere. Some of these prob-
lems can be catalogued as being technical, e.g. adapt-
ing heterogeneously structured makefiles or overcoming the
maximum file size limit of the operating systems.

Some other problems are perhaps more fundamental:

• Performing an effort analysis shows that collecting the
trace of the system takes more than 24 hours.

• Subsequently, any dynamic analysis solution, has to
cope with analyzing an event trace of around 90 GB.
Scaleability of the dynamic analysis solution is thus of
the utmost importance.

As such, we can conclude that for what should be con-
sidered a medium-scale application, we are already having
scaleability issues with our tools. As such, improving the
efficiency of our tools is one of our immediate concerns.

7. Acknowledgements

We would like to thank Kava for their cooperation and
very generous support.

Kris De Schutter and Andy Zaidman received support
within the Belgium research project ARRIBA (Architectural
Resources for theRestructuring andIntegration ofBusiness
Applications), sponsored by the IWT, Flanders. Bram
Adams is supported by a BOF grant from Ghent University.

References

[1] B. Adams, K. De Schutter, and A. Zaidman. AOP for legacy
environments, a case study. InProceedings of the 2nd Euro-
pean Interactive Workshop on Aspects in Software, 2005.

[2] B. Adams and T. Tourẃe. Aspect Orientation for C: Express
yourself. In3rd Software-Engineering Properties of Lan-
guages and Aspect Technologies Workshop (SPLAT), AOSD,
2005.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

9

[3] T. Ball. The concept of dynamic analysis. InESEC / SIG-
SOFT FSE, pages 216–234, 1999.

[4] K. Bennett. Legacy systems: Coping with success.IEEE
Software, 12(1):19–23, 1995.

[5] M. Brodie and M. Stonebreaker.Migrating Legacy Systems:
Gateways, Interfaces & The Incremental Approach. Morgan
Kaufmann, 1995.

[6] S. Demeyer, S. Ducasse, and O. Nierstrasz.Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2003.

[7] R. Lämmel and K. D. Schutter. What does Aspect-Oriented
Programming mean to Cobol? InAOSD ’05, pages 99–110,
New York, NY, USA, 2005. ACM Press.

[8] D. L. Moise and K. Wong. An industrial experience in re-
verse engineering. InWCRE, pages 275–284, Washington,
DC, USA, 2003. IEEE Computer Society.

[9] H. M. Sneed. Program comprehension for the purpose of
testing. InIWPC, pages 162–171. IEEE Computer Society,
2004.

[10] H. M. Sneed. An incremental approach to system replace-
ment and integration. InCSMR, pages 196–206. IEEE Com-
puter Society, 2005.

[11] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Ap-
plying webmining techniques to execution traces to support
the program comprehension process. InCSMR, pages 134–
142. IEEE Computer Society, 2005.

[12] A. Zaidman and S. Demeyer. Managing trace data volume
through a heuristical clustering process based on event exe-
cution frequency. InCSMR, pages 329–338. IEEE Computer
Society, 2004.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

10

Crystallizing Application Configurations to Aid Program

Comprehension

Ken Zhang

kzhang@swag.uwaterloo.ca

Richard C. Holt

holt@uwaterloo.ca

Software Architecture Group (SWAG)

School of Computer Science

University of Waterloo

Waterloo, Ontario., Canada, N2L 3G1

Abstract

Software applications have both static and

dynamic dependencies. Static dependencies are

those derived from the source code and dynamic

dependencies are established at runtime and

maybe based on information external to the source

code, such as configuration. Flexible applications

commonly rely on configuration to adapt to

diverse environments. An application’s

configuration encodes runtime dependencies

between the various parts of the application.

Reverse engineering tools have traditionally been

based solely on static dependencies extracted from

the source code. Neglecting dynamic dependencies

encoded in an application’s configuration can

result in incorrect or incomplete program

comprehension. Unfortunately, many applications

store their configuration in an ad hoc,

unstructured format from which it is not feasible to

extract runtime dependencies by traditional

reverse engineering. Our work takes advantage of

well structured, published configuration formats,

such as that of J2EE applications. By

understanding the format we are able to extend

reverse engineering to analyse this previously

neglected information. We introduce a technique

called crystallization, which extracts

configuration facts that encode dynamic

dependencies. We use these recovered facts to

predict and validate dynamic dependencies.

Crystallizing configurations has the potential to

increase developer productivity by providing

better program comprehension.

1 Introduction

To help developers understand applications, the

reverse engineering community commonly uses

analysis techniques [6, 10, 11, 12, 13] to extract

dependencies from the application’s source code

and then uses these dependencies to help

developers understand the relationships between

its components. Unfortunately, dependencies

derived from an application’s source code may be

insufficient to reveal key relationships between its

components. This is due to external information

such as its configuration adding or modifying

relationships between the components. The

information encoded in an application’s

configuration can be essential to the

comprehension of a program. But, in many cases,

the ad hoc, unstructured format of this

configuration information makes it difficult to

understand. This is especially difficult in that each

application could store its configuration in its own

proprietary manner. Integrated Development

Environments (IDEs) typically do not understand

an application’s configuration information and are

thus unable to help developers ensure that the

configuration is configuration. Fortunately,

application frameworks such as J2EE have a well

structured, published format to store configuration

information. This makes developing program

comprehension tools, including IDEs that leverage

configuration information possible.

Our technique, which we call crystallization,

enhances static dependencies from source code,

with dynamic dependencies [10, 11, 12. 13]

encoded in the configuration. This more complete

extracted information allows us to deduce and

validate dynamic dependencies. While our

discussion and implementation is based on J2EE,

our technique can be applied to other frameworks

which use structured formats to configure runtime

application behaviour.

We will use an example to illustrate one of the

ways that the configuration of a J2EE application

determines dynamic dependencies. In Object

Oriented (OO) software, a reference to an object

instance is used to invoke methods of the object.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

11

J2EE generalizes this approach in that the name of

a component is used to invoke predefined methods

in particular components.

As illustrated by Figure 1, in traditional OO

programming, Java class Foo references object

BarImpl which implements the Bar interface. The

new construct creates the object instance. The

reference to the new object instance is stored in

ref, which is used to invoke a method, for

example, doPost().

+process()

Foo

+doPost()

Bar

+doPost()

BarImpl

<<use>>

Bar ref = new BarImpl();

ref.doPost();

Figure 1: Static Dependency in Traditional OO

J2EE stores configuration information in

deployment descriptors (DDs), which are XML

files. Deployment descriptors contain definitions

of J2EE components including their names,

implementing Java classes and other runtime

attributes. Each component is defined in a

component type tag containing a name and an

implementing class element. As illustrated in the

pseudo snippet below, a component named BAR

with implementation class BarImpl is declared.
 …

 <component>

 <name>BAR</name>

 <class>BarImpl</class>

 </component>

 …

In J2EE, it is recommended to reference

components by name instead of by object

reference to acquire the services they provide. A

use of the name of a component indicates a

dynamic dependency on that component, and

hence on the implementing class of the

component. For example, at runtime, this

statement
 HttpServletResponse.sendRedirect(“BAR”),

which references component BAR by name,

triggers J2EE to create an instance of the BarImpl,

the implementing class of component BAR and to

invoke BarImpl’s predefined method, doPost(). If

the configuration is changed so that the

implementing class of BAR becomes BarImpl2, an

instance of BarImpl2 would be created and its

doPost() would be invoked. This is an example of

the flexibility J2EE provides to switch

implementations without recompilation. In this

example, there is neither an object reference nor a

function call involved and thus static analysis

techniques would be unable to capture the

dependency from component BAR to the

implementing class BarImpl.

These dynamic configuration dependencies are

neither captured nor indicated by tools such as

compilers and IDEs when mis-configured. This

increases the likelihood that new members of a

development team who are not familiar with the

code base will make mistakes. The newcomer, in

the process of refactoring the source code, may

change the name of a class without knowing the

dependencies on the name of the class. This would

break dynamic dependencies without introducing

any compilation errors. The common approach is

to manually inspect the code base which is time

consuming and tedious.

In order to tackle the difficulties brought with

dynamic dependencies that are native to J2EE, our

crystallization processes first extracts component

definitions from deployment descriptors and

component name references from the source code,

and then matches these component name

references and component definitions to predict

dynamic dependencies. The Crystallization

process notifies developers to correct any

erroneous dependencies such as references to

components that do not exist.

The rest of this paper is organized as follows:

Section 2 introduces J2EE components and

services. We explain the crystallization process in

section 3 and its implementation in section 4. We

demonstrate crystallization with an example in

section 5 followed by possible enhancements in

the future in section 6. Section 7 concludes the

paper.

2 J2EE Configuration

Our experiment work is based on the J2EE

framework. We will explain J2EE configuration

and how it introduces dynamic dependencies

between components. This is not meant as a J2EE

tutorial but as an introduction to components that

are difficult to understand or maintain due to

dynamic configuration dependencies.

J2EE provides an architecture framework for

enterprises to build multi-tier distributed

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

12

applications. As shown in Figure 2, J2EE provides

JavaServer Page (JSP) [7, 9] and Servlet

technology to implement web tier components. It

also provides Enterprise JavaBean (EJB) [8, 9]

technology to implement business tier

components. J2EE supports component

communication and interaction using Java

Messaging Service (JMS) technology, which

supports application modularity, scalability and

flexibility.

JSP/ Servlet

EJB

Web Container

EJB Container

WDD

EDD

J
M
S

WDD – Web Deployment Descriptor

EDD – EJB Deployment Descriptor

Figure 2: J2EE Components and Services

2.1 Web Tier Components and Configuration

JavaServer Pages (JSPs) and Servlets are

technologies used to implement web tier

components of J2EE applications. These

components run in a Web Container as shown in

Figure 2 and greatly simplify user interface

development. JSPs are comprised of HTML

intermingled with scriptlets of Java code which

dynamically construct HTML pages. Servlets are

written in pure Java. While they can be used for

the same purpose as a JSP, their intended purpose

is to provide business workflow control. This

allows JSP developers to take HTML pages that

are designed by graphic designers and add

business logic such as retrieving data dynamically

without dramatically altering the page and

worrying about the page layout. User input

collected from HTML forms, either created

statically or dynamically by JSPs, is normally

submitted to Servlets. These Servlets collate the

input and invoke business logic components such

as EJBs to process the input.

 <servlet-mapping>

 <servlet-name>BARServlet</servlet-name>
 <url-pattern>BAR.DO</url-pattern>

 </servlet-mapping>

 <servlet>

 <servlet-class>example.web.Bar</servlet-class>
 </servlet>

 <servlet-name>BARServlet</servlet-name>

 Figure 3: Snippet from Web Deployment

Descriptor

Each JSPs or Servlets is assigned a name in the

web deployment descriptor. As illustrated in

Figure 3, servlets are defined in a servlet tag,

<servlet>, which contains a servlet name element,

<servlet-name>, and a servlet class element,

<servlet-class>. The servlet name is an internal

name, e.g. BARServlet, which is used to define the

external name that the servlet will be referenced

by. The servlet class defines the implementing

class. A servlet definition is followed by a servlet

mapping tag, <servlet-mapping>, containing a

mapping from the internal name to the external

name, e.g. from BARServlet to BAR.DO. A

component’s name, optionally prefixed with the

name of the server hosting the J2EE application

forms a Unified Resource Locator (URL), which is

used to reference the component.

As elaborated, a reference, possibly in URL

format, to a web component name defined in the

web deployment descriptor indicates a dynamic

dependency on the implementing class of the

component. This dependency is not visible to

static analysis techniques which do not analyze

this configuration.

2.2 Business Tier Components and

Configuration

An EJB is a business tier component and runs in

an EJB Container as depicted in Figure 2. EJBs

can be deployed on multiple servers and the J2EE

framework provides load balancing and fail-over

protection to improve service performance and

availability. In addition to these services, J2EE

also provides transaction management facilities to

applications.

At runtime, EJB service requesters ask the J2EE

framework for an EJB instance by name. Figure 4

shows a snippet from an EJB deployment

descriptor that defines an EJB named BAREJB as

specified in the <ejb-name> tag. The BAREJB

provides services defined in the remote interface,

example.ejb.BarImpl as specified in the <remote>

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

13

tag. The services BAREJB provides are

implemented in example.ejb.BarImpl as specified

in the <ejb-class> tag.

 <enterprise-beans>

 <session>

 <display-name>BAREJB</display-name>

 <ejb-name>BAREJB</ejb-name>

 <ejb-class>exampl.ejb.BarImpl</ejb-class>

 <session-type>Stateful</session-type>

<remote>example.ejb.BarRemote</remote>

Figure 4: Snippet from EJB Deployment

Descriptor

Each EJB service requester has an object reference

to the EJB remote interface,

example.ejb.BarRemote, while the implementation

logically “implements” the remote interface. By

logically implementing the class, we mean the

implementing Java class does not have to inherit

the remote interface using the Java keyword

“implements” although it does contain

implementation of the methods defined in

example.ejb.BarRemote.

J2EE discourages EJB implementing classes from

implementing EJBs by inheriting the remote

interface. Instead, it is the configuration, namely

the EJB Deployment Descriptor, which glues the

parts of EJBs together. A reference to the remote

interface indicates a dynamic dependency on the

EJB implementation class. Unfortunately, static

analysis techniques are unable to capture these

dependencies because the service requester

references the remote interface which is not

inherited by the implementing class.

2.3 Java Messaging Service (JMS)

JMS allows J2EE components to communicate by

exchanging synchronous or asynchronous

messages using message queues. There are types

of JMS communication mechanisms other than

message queue. While we focus on queue in our

research, a similar approach can be applied to

other types of JMS communication mechanism. In

the queue based communication model, messages

are stored in queues which can receive messages

from multiple senders. JMS queues can also have

multiple receivers. When JMS delivers a message,

it picks a receiver and delivers the message to that

receiver.

The message based communication model

decouples message senders from message

receivers. At compile time, each message sender

knows the name of queue to which it is sending

and each receiver knows the name of queue from

which it is receiving. However a sender does not

in general know which receiver will receive a

given message, nor does a receiver know which

receiver sent a message. This allows different

developers, possibly different vendors to work on

senders and receivers separately as long as a

common message format is agreed upon. The

ability to ensure the persistence of messages

allows the message sender and receiver to run

asynchronously. These persisted messages are

delivered when receivers become available.

Adding more receivers increases the throughput of

message processing leading to better performance.

As illustrated in Figure 5, Foo and Bar are not

statically dependent on each other. At runtime,

Foo and Bar ask the J2EE framework for a

reference to a common queue by invoking a

predefined method. This queue object is used to

send or receive messages. It is clear that if Foo,

the sender and Bar, the receiver are referencing the

same queue, Foo has a dynamic dependency on

Bar.

Foo Bar

Queue

Figure 5: JMS Communication

Although there are no configuration files required

for components using JMS, we consider the name

of the JMS queue to be configuration information

since this can be changed without affecting

expected behaviour. In fact, the name of the JMS

queue used by components is normally stored in a

configuration file as key value pairs such as:

Order.Queue.Name=orderQueue, although this is

not specified by J2EE as a standard configuration

file.

2.4 Development Challenges

Although J2EE provides great flexibility to

configure application behaviour to meet changing

business requirements without recompilation, it

also introduces additional complexity to

application development. Because components are

statically decoupled and no longer visible to

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

14

regular IDEs, dynamic configuration dependencies

that are established at runtime are often not

apparent to developers.

For example, large, evolving projects with web

interfaces may have many, possibly thousands of

ever changing JSPs. And due to changing

requirements, JSPs can be obsolete very quickly

without immediately being removed from the code

base, which results in many unused JSPs. Without

assistance from tools that crystallize dynamic

configuration dependencies, it is difficult to locate

and remove these unused JSPs due to these

unapparent dynamic dependencies.

EJBs also pose problems, since the implementing

class is not required to inherit the remote interface.

Missing implementations of exposed methods

would not immediately result in compilation

errors. This delays detection of these errors and

consequently negatively impacts programming

productivity.

The complexity of JMS technology makes it

difficult to dependencies between components.

Without a tool that understands J2EE

configuration, problem determination requires

time consuming error prone manual inspection.

3 Crystallizing Dynamic

Configuration Dependencies

Understanding dynamic configuration

dependencies is a challenge facing J2EE

application developers. Existing Java compilers

and IDEs do not notify developers of erroneous

dependencies resulting from mis-configuration. To

assist developers in overcoming these challenges

we crystallize the configuration information into

an understandable form.

We accomplish this using our crystallization

process as follows. First, we analyze the J2EE

technology and its configuration to identify

configuration and coding patterns that could result

in runtime dependencies. Second, we search for

the identified patterns in the source code and

configuration to predict dynamic dependencies.

Finally, developers are presented with the

recovered dependencies in an easily consumed

form using color highlighting.

3.1 Crystallization Process

In order to crystallize dynamic configuration

information, we need to understand what and how

J2EE components are invoked. Different types of

J2EE components are invoked in different ways.

J2EE provides APIs to invoke J2EE components.

The invoked J2EE components are normally

identified by name which is passed to the API

methods as parameters. The name of J2EE

components has to be further resolved into Java

classes by investigating J2EE configuration files,

e.g. Deployment Descriptors.

Figure 6 shows the type of documents that are

included in our process. Java Server and HTML

Pages, Web deployment descriptors, and EJB

Deployment descriptors are analyzed using our

crystallization parsers. The Java source code is

analyzed using traditional reverse engineering

methods to extract static dependencies. Further,

our crystallization parser is also applied to capture

parameters that are used to invoke special APIs.

These parameters are use later in the process to

determine the target of the invocation.

Java Server/

HTML

Pages

Web

Deployment

Descriptor

EJB

Deployment

Descriptor

Java Source

Code

TA Fact

Base

Extract URL References Extract Web Component

Definitions

Extract EJB Component

Definitions
Extract JMS queue lookup,

EJB lookup, Queue sender
and receiver creation,

HTTP redirect/forward in

Servlet

Visualization

in Eclipse

Figure 6: Crystallization Process

3.2 Dependency Notation

The extracted dependencies including method

invocations, which are relationships between

components, are stored in Tuple Attribute[2]

format as follows:

dependency-type origin destination

A reference to URL, bar.do in foo.java is stored as

url-reference foo.java bar.do.

A web component named bar.do with

implementing class, example.web.Bar is stored as

web-define bar.do example.web.Bar.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

15

The composition of these two relations reveals the

real relation between foo.java and

example.web.Bar. The employment of TA allows

us to apply relational calculus operations such as

union, subset, and composition [2] on the set of

extracted references to obtain higher level,

meaningful relations.

3.3 Important J2EE APIs

Method invocations to particular J2EE APIs such

as Servlet request dispatches and JMS queue

sender and receiver creation indicates runtime

dependencies on Sevlet and JMS queue,

respectively. The invocation and the parameters to

the invocation, together with information gathered

from deployment descriptors, enable us to locate

target J2EE components to be invoked at runtime

and hence allowing us to predict possible dynamic

dependencies in the source code.

It is normal for Servlets to forward requests to

another servlet for further process. In order to do

so, the Servlet creates a RequestDispatcher object

with the URL of the target servlet and calls its

forward() method. These invocations indicate

dependencies from the Servlet to the web

component represented by the URL.

Senders and receivers in JMS communication are

distinguished by the API method invoked. Senders

and receivers are created by invoking

javax.jms.QueueSession.createSender() and

javax.jms.QueueSession.createReceiver()

respectively. Based on this difference, we are able

to determine the direction of the communication

and hence the dependency.

Table 1 summarizes the types of reference that can

be found in a type of components. E.g. we can find

component-url type references in web components

defined in HTML and JSP pages

Component

 Type

 References

 Captured

 Sources

 Included

 “component-url” HTML, JSP Web

 Component sendRedirect()

 forward()

 Servlet

 EJB ejb.RemoteInterface Java

 JMS Queue queue = …

 createSender();

 createReceiver();

 Java

Table 1: Component References and Sources

3.4 Crystallizing Web Dependencies

Web components are referenced by their URLs in

JSPs, Servlets and HTML files. There are various

places these URLs may be used as enumerated by

the following list:

• HTML links, e.g.,
bar

• HTML form action targets
<form action=”bar.do”>

• JSP forward tags, a special tag used by

JSP to forward HTTP requests

• Servlet request redirects and forwards,

invocations to sendRedirect() and

forward() introduced in section 3.3

Extracting the URL references in these files is the

first step to crystallizing web dependencies. For

this step, We have built three parsers. The

HTML/JSP parser extracts references to URLs.

The Servlet parser captures method invocations to

sendRedirect() and forward(). The DD parser

extracts web component definitions.

The following source code snippet shows how a

HTTP request is dispatched to “bar.do” by

invoking the RequestDispatcher.forward()

method.
ServletContext context =

getServletConfig().getServletContext();

RequestDispatcher dispatcher =

context.getRequestDispatcher("bar.do");

dispatcher.forward(req, resp);

In the deployment descriptor shown in

 <servlet-mapping>

 <servlet-name>BARServlet</servlet-name>
 <url-pattern>BAR.DO</url-pattern>

 </servlet-mapping>

 <servlet>

 <servlet-class>example.web.Bar</servlet-class>
 </servlet>

 <servlet-name>BARServlet</servlet-name>

 Figure 3, “bar.do” is implemented by

example.web.Bar. An HTTP request to “bar.do”

results in the invocation of the predefined method,

example.web.Bar.doPost().

The extracted URL reference in TA notation,

url-reference foo.java bar.do, is

composed with the web component definition,

web-define bar.do example.web.Bar,

which reveals a dynamic dependency from

foo.java to example.web.Bar as shown in Figure 7.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

16

Figure 7: Crystallized Web Dependency

3.5 Crystallizing EJB Dependencies

EJB callers possess references to the remote

interface defined in the EJB deployment

descriptor. The remote interface defines the

business methods that are exposed by the EJB.

As shown in the following code snippet, the EJB

caller has a reference bean to the BarRemote

interface as depicted in Figure 4. The reference

bean is then used to invoke business methods.

BarRemote bean = getInstance();

bean.method1();

bean.method2();

The EJB parser captures references to remote

interfaces of EJBs. As shown in Figure 8, the

remote interface reference relation is composed

with EJB definitions found in EJB deployment

descriptors to reveal the real dependency between

the referencing component and the EJB

implementing class.

Figure 8: EJB Interaction

3.6 Crystallizing JMS Dependencies

In order to communicate through a JMS queue,

senders and receivers must have a reference to the

JMS queue. Capturing JMS interactions starts with

capturing JMS queue references. JMS queue

references reveal all components; consisting of

senders and receivers. However, we are not only

interested in the participants of communication but

also their relationships. JMS participants invoke

the createSender() and createReciever() methods,

capturing these invocations allows us to separate

them into senders and receivers.

The following code snippet shows how

QueueSender and QueueReciever objects are

created. JMS participants ask J2EE for a reference

to a queue instance. To initiate communication a

connection must be established followed by

opening a session.

Queue queue = (Queue) context.lookup(“OrderQueue”);

QueueConnection conn = createConnection();

QueueSession session = createSession(conn);

QueueSender qSender = session.createSender(queue);

QueueReceiver qReceiver = session.createReceiver(queue);

JMS queue communication involves sender(s) and

receiver(s); we need to determine which sender(s)

is associated with which receiver(s). This is

achieved by matching sender(s) and receiver(s)

that communicate through the same queue. Since a

reference to a JMS queue is obtained from J2EE

by queue name as follows:

Queue queue = (Queue) context.lookup(“OrderQueue”);

In TA notation, we have the following:

queue-send Foo.java OrderQueue
queue-recv Bar OrderQueue

The composition of these relations yields the

following dependency:

dependency foo.java bar.java

This is illustrated in Figure 9.

Figure 9: Crystallized JMS Interaction

4 Implementation

The parsers we have implemented extract

dependencies from HTML files, JSPs, Java

sources and deployment descriptors. Moreover, we

integrated these parsers into the Eclipse Java

Development Tool [1], a popular Java IDE, to

improve programming efficiency and

comprehension by providing easy navigation. By

easy navigation we mean the ability to follow

dynamic dependencies and present their endpoint

implementation such as a Servlet or EJB

implementing class. The integration of these

parsers within an IDE ensures the instant

accessibility of the Crystallization technique

without switching to another tool.

Reverse engineering is traditionally a slow process

because it extracts and calculates dependencies

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

17

from the complete code base. As we are

integrating our crystallization technique into

Eclipse, it is unacceptable for this integration to

incur a perceivable impact on its responsiveness.

In order to achieve this, we employ a “lazy”

approach, which extracts and processes only those

dependencies in the source code currently being

edited. These extracted dependencies are cached

into an in-memory database for reuse.

4.1 Crystallization Framework

The crystallization framework is responsible for

presenting dynamic dependencies in a manner that

does not interfere with daily programming

activities. Our integration of Crystallization into

Eclipse does not clutter the user interface with

syntax highlighting. Dependencies are presented to

developers as HTML like links that become

visible only when the “control” key is pressed

while the curser is over the origin of a dynamic

dependency. By clicking on the link, the IDE will

unveil the implementing source code in an editor.

This allows the developer to easily rationalize and

comprehend dynamic dependencies. The

framework displays erroneous dependencies by

placing problem markers, shown as red crosses,

beside their origins in the source code editor.

Crystallization Framework

J
a
v
a

P
a

rs
e
r

H
T

M
L

/J
S

P
P

a
rs

e
r

W
D

D

P
a

rs
e
r

E
D

D
P

a
rs

e
r

J2EE Extension

Another Extension

Figure 10: Crystallization Framework

As shown in Figure 10, the Crystallization

Framework relies on extensions to detect and

validate dynamic dependencies. The crystallization

framework is implemented as an Eclipse extension

point to leverage the automatic discovery of

extensions. Crystallization extensions must

implement an extractor which extracts a specific

type of dependency and a validator which

validates the extracted dependency.

Although we have only implemented a J2EE

extension to assist developers in comprehending

J2EE applications, crystallization is extensible to

encompass other application frameworks.

4.2 Crystallization Extensions

A crystallization extension consists of an extractor

and validator for dynamic dependencies in a

specific domain.

An extension is added to the Crystallization

Framework simply by adding its compiled binary

code to a predefined directory known to Eclipse.

When Eclipse is started, it examines the directory

and notifies the Crystallization Framework of

available extensions.

Detected extensions are activated automatically

and applied to the source code and thus provides

the ability to detect and validate applicable

dynamic dependencies.

4.3 Dependency Visualization

Besides revealing valid and erroneous dynamic

dependencies through the use of HTML like links

and problem markers, we have also implemented a

view which presents all dynamic dependencies of

the currently edited source file in a graph. Valid

and erroneous dynamic dependencies are

differentiated through the use color. This view

provides developers with a high level overview of

all dynamic dependencies in the source file

currently being edited.

4.4 Performance and Scalability

In order to achieve acceptable performance and

still allow for quick dynamic dependency

detection, we employ an in-memory database to

store information about extracted dependencies.

For traditional reverse engineering processes

which extract all dependencies from all of the

source files at once, storing these dependencies in

memory may present problems and inhibit

scalability and performance. Since Crystallization

extracts only dependencies from files that are

currently being edited, the number of

dependencies is reduced. In one test, Eclipse

demonstrated acceptable responsiveness with one

million dependencies in the in-memory database.

Our extraction strategy ensures the ability to scale

to large projects because a developer is only

capable of working on a handful of files at any

given moment. This means the number of

dependencies stored in the database is not

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

18

proportional to the size of the project, instead; it is

proportional to the number of scrutinized files.

5 Case Study

The Pet Store application is a sample J2EE

application [3] from Sun Microsystems used to

evangelize J2EE technologies. The Pet Store

application demonstrates the capabilities these

technologies provide to develop robust, scalable,

portable and maintainable distributed e-business

enterprise applications. We use this application to

demonstrate how the crystallization technique

increases the visibility of erroneous dependencies

and hence improves programming efficiency and

quality. The following table enumerates the

artifacts found in the Pet Store application.

Number of Java Classes 283

Number of JSPs 75

Lines of Java Source Code 45261

EJB Components 23

Lines of Configuration (WDD + EDD) 14710

Other Configuration Files 20

We imported the source code of the Pet Store into

an Eclipse project; the unmodified version of

Eclipse is unable to detect any dynamic

dependencies in the project. No error messages are

displayed when we change the code base by

removing needed JSPs or referencing nonexistent

JSPs. These errors would only manifest

themselves at runtime.

5.1 Dependency Manifestation

The editor contained in the unmodified Eclipse

provides real-time dependency checking and

syntax highlighting. Eclipse pinpoints erroneous

static dependencies though the use of problem

markers and underlining. Within the

Crystallization Framework, invalid dynamic

dependencies are shown in the same manner.

Figure 11: Highlighting Invalid Dependency in

Unmodified Eclipse

Figure 12: Highlighting Invalid Dependency in

“Crystallized” Eclipse

Figure 11 is a screen shot of the unmodified

Eclipse showing an invalid dependency,

“invalidObjectRef”. It is unaware of the other

invalid dependency, “NonexistSvlt”. However,

the “crystallized” Eclipse is aware of both as

shown in Figure 12. The invalid dependency is

shown on the left hand side of the editor pane as a

red cross. Invalid Servlet references are also

shown in the same manner as invalid object

references. The attention grabbing red color

enables developers to quickly identify problems.

On the right hand side is a bookmark, which if

clicked will take the developer immediately to the

origin of the invalid dependency. This is especially

beneficial when working with large source files.

The “lazy” approach we employ allows us to focus

on a specific source file without incurring a

noticeable impact on responsiveness.

Dependencies are extracted from the source code

and deployment descriptors and validated on the

fly as the developer is typing. Changes to source

files trigger the extraction and validation process

to ensure the up-to-date analysis of dependencies.

Since extracted dependencies are not discarded

when developers switch to another source file, we

do not perceive any negative impact in

responsiveness after many files are scrutinized.

This ensures the stability of the enhanced Eclipse.

5.2 Source File Visualization

Although the erroneous dependencies are indicated

clearly in the source editor, this presentation is

insufficient to provide a concise overview of large

source files with many dependencies. We have

thus introduced a “Class View” which presents

dynamic dependencies that are extracted by our

crystallization process.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

19

Figure 13: Class View

Figure 13 shows the dynamic dependencies

extracted from the “RcvrRequestProcessor”

servlet. It shows a dependency against the

“NonexistSvlt” in red which indicates an

erroneous dependency. This view is refreshed

whenever there is a change to the source code.

6 Future Work

Our implementation covers the case where string

literals are used to represent component names.

However, it is unable to detect dependencies on

components referenced using constant string

variables even though their values are known at

compile time.

Although our research covers several important

areas of J2EE, we are not crystallizing tag

libraries. Tag libraries allow developers to define

custom tags similar to HTML tags. These tags are

mapped to Java class executed on the J2EE server.

An HTML or JSP page using a custom tag has a

dependency on the tag library’s implementing Java

class.

We have not used extracted dynamic dependencies

to help derive application architectures. With an

integrated application architecture viewer, the

crystallization process can assist developers,

especially new comers to quickly grasp the

intricacies of application components and their

interrelations and thus gain program

comprehension.

7 Conclusion

Typically developers use a “trial and error”

strategy to gain program comprehension about

applications. The feedback from IDEs assists

developers in learning the dependencies between

components. Without prompt feedback on

dynamic dependencies, the “trial and error”

learning cycle is prolonged and hence results in

longer learning cycle. Developers must either wait

until runtime or manually inspect the configuration

and source code to observe dynamic dependencies.

This resulting long turn around time complicates

the program comprehension process.

Crystallization allows IDEs to detect and validate

dynamic dependencies in applications. The results

of crystallization can potentially improve

developer efficiency, coding productivity and code

quality.

References:

[1] The Eclipse Project,
http://www.eclipse.org

[2] R. C. Holt. An Introduction to TA: the Tuple-

Attribute Language, March 1997

[3] Java Pet Store.

http://java.sun.com/developer/releases/petstore/,

Sun Microsystems Inc.

[4] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K.

Kontogiannis, H. Muller, J. Mylopoulos, S.

Perelgut, M. Stanley, and K. Wong. The Software

Bookshelf, IBM Systems Journal, Vol. 36, No. 4,

pp. 564-593, November 1997.

[5] Inversion of Control Containers and the

Dependency Injection Pattern. Martin Fowler,

http://www.martinfowler.com/articles/injection.ht

ml

[6] Ahmed E. Hassan. Architecture Recovery of

Web Applications, Master’s Thesis. Department of

Computer Science, Faculty of Mathematics,

University of Waterloo, Ontario, Canada. 2001

[7] JavaServer Pages Technology -

Documentation.

http://java.sun.com/products/jsp/docs.html

[8] Enterprise JavaBeans Fundamentals:

Introduction.

http://java.sun.com/developer/onlineTraining/EJBI

ntro/

[9] J2EE introduction.

http://java.sun.com/developer/technicalArticles/J2

EE/Intro/

[10] Lei Wu, Houari Sahraoui, Petki Valtchev.

Program comprehension with dynamic recovery of

code collaboration patterns and roles. Proceedings

of the 2004 conference of the Centre for Advanced

Studies on Collaborative research. 2004

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

20

[11] Kenny Wong. Software Understanding

through integrated structural and run-time

analysis. Proceedings of the 1994 conference of

the Centre for Advanced Studies on Collaborative

research. 1994.

[12] Carlo Bellettini, Alessandro Marchetoo,

Andrea Trentini. WebUml: Reverse Engineering

of Web Applications. Proceedings of the 2004

ACM symposium on Applied computing. 2004.

[13] Eleni Stroulia, Tarja Systä. Dynamic Analysis

for Reverse Engineering and Program

Understanding. ACM SIGAPP Applied Computing

Review. 2002.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

21

DDgraph: a Tool to Visualize Dynamic Dependences

Françoise Balmas Harald Wertz Rim Chaabane
Laboratoire Intelligence Artificielle

Université Paris 8
93526 Saint-Denis (France)

{fb,hw,lysop}@ai.univ-paris8.fr

Abstract

Following previous work on displaying static data de-
pendences and experience with large sets of dependence
displaying strategies, we developed a tool for visualizing
dynamic data dependences.
Our prototype is based on a modified Lisp interpreter

and this paper presents our evaluation of its application to
a highly complex AI program. This permitted us to build
efficient visualizations and to evaluate the benefits of using
dynamic dependences for program understanding, debug-
ing and correctness checking.
In this paper, we present our prototype, detailing espe-

cially the different visualizations we introduced to allow
users to deal with hard to understand programs, and we
discuss our findings working with dynamic dependencies.

1. Introduction

In this paper, we report on our research using dynamic
data dependences during program maintenance.

In previous work on static data dependences [3], where
we developed displaying strategies for very large sets of de-
pendences, we discovered that visualizing sample values for
a well chosen execution could be of great help to under-
stand what a program computes and how it works [2]. This
pushed us to explore dynamic dependences – dynamic anal-
ysis is recognized to bring precise information for a given
execution [1] – and to evaluate the benefits of visualizing
them for those activities where knowledge about given exe-
cutions is crucial, that is program understanding, debugging
and correctness checking.

For the sake of evaluation, we developed a prototype
around the Lisp language; actually, modifying an interpreter
is much easier than modifying a compiler, and hard to un-
derstand Lisp programs are still small enough to prevent al-
gorithmic and optimization problems which arise when ma-
nipulating huge amounts of data. We thus modified a Lisp

interpreter to let it, in addition to normal execution of pro-
grams, extract dependences at runtime. These dependences
are sent to a Lisp program that acts as a database, storing the
dependences and producing on demand the corresponding
graph – in dot [5] format. Finally, a Tcl/Tk GUI displays the
graph, using strategies to reduce its size, and allows users to
interact with it to tune several kinds of visualizations.

To evaluate our approach, we applied our tool to a ver-
sion of the classical AI Blocks World program [6]. In our
version, the world is a table and the blocks – different pos-
sible shapes of objects – are manipulated by a one-handed
robot. Basically, the program presents itself as an inter-
preter the user interacts with in order to create objects, let
the robot move them to other places or ask for information
about the current state of the world.

The program is around 1200 LOC long1 and includes
more than 125 functions and macros, many global variables
modified through pointers, indirect recursive calls, thus long
circularities, and escapes (i.e. non standard return controls).
It evolved over time, since first developed for an AI pro-
gramming class and then modified several times to add fur-
ther reasonning capabilities. All these features make this
program rather complex, hard to understand for newcomers
to the program and difficult to maintain for the one of us
who developed it.

In this paper, we present our tool (Section 3), the differ-
ent kinds of visualizations we defined (Section 4) and then
we discuss the benefits we got for the maintenance of a hard
to understand program (Section 4 and 5).

2. Tool

Our tool relies on three modules: a modified Lisp inter-
preter (a C version is under construction [4]), a database
(currently a Lisp program) and a GUI (implemented in

1Note that LOC in Lisp is very different from LOC in more usual pro-
gramming languages such as C, because of the compactness of code and
the powerfull functional primitives it offers.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

22

(de square (a)
(* a a))

(de som2 (x y)
(+ (square x) (square y)))

? (som2 3 5)
= 34

Figure 1. Sample code

Tcl/Tk). We modified a Lisp interpreter to make it, in addi-
tion to normal execution of programs, extract dependences
at runtime. These dependences are sent to a Lisp program
that acts as a database, storing the dependences and produc-
ing, on demand, the corresponding graph – in dot [5] for-
mat. Finally, a Tcl/Tk GUI displays the graph, using mech-
anisms to reduce its size, and allows users to interact with it
to tune several kinds of visualizations.

The full set of dependences for a given call is unlikely to
be displayed as is, since it is usually to large to be readable.
For this reason, following our past experience with display-
ing strategies to deal with large sets of dependences [3], we
integrated aggregation and filteringmechanisms in our tool.

ENV

A2 = 5 A1 = 3

som2

A1 = 5 A1 = 3R-som2 = 34

square

R-square = 9

square

R-square = 25

Figure 2. Data dependence graph with all
calls visible

Aggregation is done by grouping together nodes (that is
pieces of code) belonging to the same function call. For
example, in the sample code of Fig. 1, wich computes the
sum of the square of two numbers, we have nodes belonging
to the two calls to function square and we aggregate them
to form two groups. These two groups, as well as other
nodes, belong to function som2 and are aggregated to form
the main group. We can then display dependences showing
only these groups, thus only the calls, and the dependences
between them. Fig. 2 gives the corresponding graph for
the call (som2 3 5) and shows how values are transmitted

som2

R-som2 = 34

3
Toplevel

A1 = 3

5
Toplevel

A2 = 5

Figure 3. Data dependence graph with only
the toplevel call visible

between calls. Alternatively, we can also get a graph with
only the toplevel call visible (see Fig. 3), showing just in-
put and output of the whole program. Such views are very
helpful when global variables are used and modified by the
program (see Section 4).

For a large program, the number of function calls may
become too large to get readable graphs. For this reason, our
filtering mechanism classifies functions into control struc-
tures (they are functions in Lisp), primitives (those stan-
dard functions that are implemented in Lisp itself), routines
(small reusable functions related to the program at hand)
and user functions (all the remaining functions). The next
Section will show different visualizations that depend on
this classification to filter out given set of calls.

3. Visualizations

Our basic navigational functionalities – going down/up
one level while opening/closing groups – becomes tedious
as soon as the call tree exceeds more than a dozen levels.
Actually, a typical call to the robot instruction for moving an
object produces a call tree of more than 3600 groups (calls),
distributed in a maximum depth of 90 levels and 45 in the
mean. That’s why we propose different visualizations of
the call graph to use as an help either to understand the pro-
gram or to navigate in the dependences graphs. This Sec-
tion introduces the different possible visualization of both
call graphs and data dependence graphs.

Call Graph This view is based on the group hierarchy
created to handle aggregation and shows the different calls
performed during the program execution. It is displayed in
another window than the data dependence graph.

Such a visualization offers a global overview of the func-
tions the program evaluated and the way they are organized
(see the Section 4). It also permits the user to ask for a given

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

23

Toplevel

creObjet-1

definieObjet-7 trouvePlaceSur-128 metSur-193

definieObjet-13 enleveObjet-214 ferme-256 deposer-258

Figure 4. User call graph

data dependence graph by interactively selecting a call. This
group becomes then the focus of the displayed data depen-
dence graph (see below).

Note that such call graphs may be very large, thus re-
stricted versions are also available (see below).

User call graph This is a restricted version of the call
graph just described where only user functions are shown.
This not only permits to get a graph with much fewer groups
– from more than 3600 groups in the whole call graph for
a ‘move-object’ instruction we could get down to about 30
groups –, thus more easily readable, but also to get a global
overview of the main function calls from a programmer’s
conceptual perspective. In Fig. 4, we see the user call graph
for the creation of an object: from the initial 159 groups,
only 9 are displayed.

One level user call graph This view is a mix of the two
previous. Actually, in many cases, once the programmer
found the function s/he is interested in investigating further,
s/he might be willing to know more about all the calls per-
formed by this function, and not only the user function calls.
For this, we provide a call graph beginning at a given user
function and ending at the next user function call, that is
when traversing the call tree, we stop drawing the graph
whenever we reach leaves or we encounter user functions.

Return graph The Blocks World program uses inten-
sively the ‘escape’ mechanism of Lisp2 that allows the pro-
gram control to directly return to a calling function up in
the call tree, restoring the local environment of the place
where the ‘escape’ was set. If this clearly eases coding and
speeds up execution time – less tests are to be written and
evaluated – it also seriousely complicates maintenance and
debugging: as soon as several ‘escapes’ are embedded, be-
cause in recursive calls, it becomes hard to conceptually fol-
low where the control is supposed to get back and how the

2Sometimes called ‘catch-and-throw’, this mechanism is similar to the
‘setjmp-longjmp’ mechanism of C.

program is supposed to continue after the activation of the
‘escape’.

That’s why we integrated the possibility to extend the
call graphs with the return graph: whenever control gets
back to another function than the one that called the current
one, the return arrow is displayed in red.

Data dependence graph This visualization provides the
standard data dependence graph as we introduced in Section
2, with either only the top level call, or all calls visible. It
may focus on a given call, this way considering only the sub
calltree beginning at this call.

The construction of several different views is possible.
When all groups are visible, the visualization gives a global
overview of the different calls of a program execution,
showing more specifically how arguments and returned val-
ues are transmitted between calls. When only the main
group is visible, one can clearly see the effect of the call
on global variables. When one or more groups are open,
examination of the detail of the evaluated code is possible.

Examples are given in Sections 2 and 4 (Fig. 2, 3, 5 and
6). The next Section will further discuss this visualization.

Filtered data dependence graphs This visualization is
obtained whenever classes of functions are flagged to be
filtered out. It is especially useful with data dependence
graphs where all groups are to be displayed, since it per-
mits to hide functions of lesser interest for the task at hand.
For example, it is often useful to filter out primitives – very
often recursive functions called a huge number of times –
that fill a graph with irrelevant information. Displaying con-
trol structures is also often useless when the programmer is
more interested in focusing on what the program computes
than on how it does it. To the contrary, s/he might be inter-
ested in examing the overall control of the program execu-
tion without considering how it is encoded in functions.

With this mechanism, one has just to tune the settings for
each class of functions and then to select a group – in a call
graph for example – and the tool automatically builds the
corresponding view.

First level graphs The two basic possibilities to examine
groups – only the top group visible, or any group visible –
proved to be insufficient in several cases, since giving either
too few or too many details. We extended our tool function-
alities with a view where the focus group is visible along
with each first level group. This allows the user to examine
how a given action – implemented by a function call – is de-
composed into smaller actions without the need to examine
the actual code of the call, which is always visible through
the group nodes. One can then navigate up/down one level
for further examination.

3

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

24

Note that the filtering out of given function classes is also
active in this view.

Sets of groups Sometimes, the automatically built views
we just described are not satisfying because centered on one
function, while we might need the ability to see a set of spe-
cific calls, especially to examine the values of global vari-
ables before and after these different calls (see discussion in
Section 4). For this reason, selecting a few groups on a call
graph results in a data dependence view where only these
groups are shown while all others are hidden.

The different visualizations presented in this section were
inspired by the needs we encountered during the process of
trying to understand a rather large and complex program.
They proved to be very useful for interactive goal-directed
exploration. In the next Section we will discuss the use of
dynamic data dependences during program maintenance.

4. Dynamic data dependences for program
maintenance

In this section, we report on different programming ac-
tivities around the Blocks World program where we used
dynamic data dependences and we discuss our findings.

4.1. Program discovery

The first context where our visualizations proved to be
useful is program discovery, that is the task a programmer
faces when s/he has to get aquainted with a program s/he
didn’t implement her/himself. Two of the authors were in
this situation with the Blocks World program and had to
work hard to understand the program. Even if interacting
with the robot, on the Lisp terminal, was easy to grasp, try-
ing to understand how the program works in order to handle
object creation, placement and moving was another ques-
tion!

The first view we used for this is the data dependence
graph which focused on the called function. Fig. 5 shows
this view for the call (creObjet ’a ’boite ’taille ’(2 2 3)) that
asks for the creation of an object, named ‘a’, that is a box
– boite in french – of size 2x2x3. The view shows the in-
put/output of the call, highly uninformative, since the result
of the call is just printing out ‘c’est fait’ (or ‘done’) and that
doesn’t say anything about how the program did this. How-
ever, this view also shows the global variables (filled in dark
gray) that were used and/or modified by the call, informa-
tion not easily accessible in the interpreter itself. Here we
see that the table before the call was empty3, as was the
object list (variables on the top), while after the call, it has

3nil stands for empty in Lisp.

been filled with ‘a’ that also appears in the object list and
has properties (variables below the call). With this view, we
could discover the real effect of the call.

To better understand how the program functions, we used
the user-call-graph, as it gives a first global overview of
the actions performed by the program. Of course, this re-
lies on the fact that our program is well decomposed into
well named functions: looking at the user-call-graph given
in Fig. 4, one can easily grasp that creating an object means
first to define the object (definieObject) – this function is re-
cursively called once –, then to find a place where to put it
(trouvePlaceSur) and then to actually put this object at this
place (metSur); this last action is again decomposed into
three steps, namely grasping the object (enleveObjet), clos-
ing it whenever it is a box (ferme) and putting it down on
the table (deposer).

We then got back to the data dependence graph to get
more information about how these different steps affect the
global variables. We filtered out everything but user func-
tions and built a first level graph focused on the call to cre-
Objet.

In the case of an object creation, we could verify that
the performed actions are always the same. In some other
cases, on the contrary, different calls to the same function
resulted in really different sets of actions; this was immedi-
ately visible in the user call graph and pointed us towards
other possible ’traversals’ of the program we had to analyze.

4.2. Finding bugs

While working on the data dependence graphs we men-
tioned in the previous section, we examined in detail how
finding a place where to put a object was done. Here, to
put an initial 2 by 2 box on an empty table, the program
checked whether positions 1-1, 1-2 and 2-1 were free and
decided that this was a good place where to put the box.
Check of 2-2 was not performed and this didn’t produce
any error since the table was empty, but of course this also
showed a buggy behavior that caused errors in other cases
where many objects were already on the table. Incorrectly
nested loops were responsible for this error that could be
quickly corrected.

Detecting this bug would have been very difficult look-
ing only at the input/output of the program on the Lisp
terminal, even when using the built-in inspecting features,
while it was straightforward with our data dependence
graphs. Fig. 6 shows the corresponding graph, where only
three calls, instead of four, to quoiA? are performed, and the
argument values indicate which positions were checked.

In other cases, we noticed unexpected behaviors of the
program and used different possible views to find why it
was behaving this way. Our main strategy was to exam-
ine the values of the global variables, in iteratively refined

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

25

creObjet

a =
 ((sur . Table) (at 1 1 0)

 (surfaceInterne (nil nil) (nil nil))
 (surface (nil nil) (nil nil))

 (etat . ouverte) (taille 2 2 3) (forme . boite))

Table =
 ((a a nil nil)
 (a a nil nil)
 (nil nil nil nil)
 (nil nil nil nil))

Objets = (a) R-creObjet = "c’est fait"

’a
Toplevel

A1 = a

’(2 2 3)
Toplevel

A4 = (2 2 3)

’taille
Toplevel

A3 = taille

’boite
Toplevel

A2 = boite

Table =
 ((nil nil nil nil)
 (nil nil nil nil)
 (nil nil nil nil)
 (nil nil nil nil))

Objets = nil

Figure 5. Overview of computation performed

views on the different actions performed by the program, to
point to a function call working incorrectly. Then we nav-
igated backward and forward to see whether this call was
receiving a bad argument – in this case, we again refined
views to see what happend before this call – or whether
it was effectively performing incorrectly. As soon as we
had detected the buggy function, we could analyze in more
depth what was performed during its call to find the prob-
lem. For example, in one such case, where an object had
to be moved but was actually not moved, we could detect
that a generic sorting function was called with an incorrect
function pointer as argument, resulting in not sorting at all.
Simply modifiying the call solved the problem!

4.3. Correctness checking

As an extension of the two former points, we also used
our views to verify that the program was behaving properly.
For instance, after correction of the bug in the ‘finding a
place’ action, we built several views of calls where this ac-
tions was performed and carefully verified that it was, now,
correctly implemented.

We also used our views to verify that the program was
behaving the way we expected it to do. Remind that it is
an AI program, relying on the key concept that most gen-
eral problems can be recursively solved through a divide
and conquer method. That’s why, in many contexts, large
parts of the program are reused and reused again, resulting
in deep and broad call trees, extremely difficult to capture.

For example, the user instruction pose-sur, that is put-
on in english, intended to let the robot move objects in the
world, is reused whenever objects are on the object to move

– the robot must first put these objects on the table –, reused
(again) whenever the necessary place on, say, the table is not
available – the robot must first put other objects on another
place, and then finally it can put the initial object on some
place on the table. This way, a single call to function pose-
sur may result in it being recursively called several times,
each one driving calls to a huge number of other functions
each one possibly including non-local returns.

In order to check that this process was correctly imple-
mented, we looked both at user call graphs to check whether
function pose-surwas recursively called the correct number
of times and at a data dependence graph where we rendered
visible only calls to function pose-sur. With such a view,
we were able to examine the values of the global variables
at the different steps of the program execution in order to
verify that they were modified the way we expected.

5. Discussion

From our experience working with the Blocks World
program, as well as several other small to medium sized
Lisp programs, we can affirm that the major benefit given
by the dynamic dependences our tool handles is that precise
information about a program execution is recorded: details
about how execution was driven from one expression to an-
other, as well as about which values variables had at any
point of the program and how these values are transmitted
from point to point.

The different visualizations we propose were designed to
minimize the conceptual overload in order to allow users to
find the exact information they need, otherwise barely ac-
cessible in the database. Different variants of call graphs

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

26

ENV

A4 = aA3 = Table A1 = ((nil nil nil ...) R-taille? = (2 2 3)

trouvePlaceSur

A3 = Table A2 = 1 A1 = 2 A3 = Table A2 = 2 A1 = 1 A3 = Table A2 = 1 A1 = 1 R-trouvePlaceSur = (1 1)

quoiA?

R-quoiA? = nil

quoiA?

R-quoiA? = nil

quoiA?

R-quoiA? = nil

Table =
((nil nil nil nil)
 (nil nil nil nil)
 (nil nil nil nil)
 (nil nil nil nil))

Figure 6. A buggy search for place

respond to questions about the control of the program, and
data dependence graphs about the data flow. Clearly, this
dynamic information is of great help when working on
problems like debugging, verifying that a program works
properly, or even optimizing, since it gives information only
for one given execution, when static dependences would
give too much information.

On the other hand, the weakness of this approach is that
it requires enough knowledge from the user on the possi-
ble paths in the programs: verifying that a program behaves
properly means checkingmany possible executions, and the
user has to find which ones are necessary. However, our ap-
proach also makes possible to discover some unforseen exe-
cution paths, sometimes impossible to detect through static
analysis. Combining static information with dynamic de-
pendences is a possible extension we plan to investigate.

The second problem we encountered with our tool is that
even if the set of dependences is restricted to one execution
of interest, it’s still sometimes hard to find the right infor-
mation: either too many nodes and groups are displayed at
the same time, or too much navigation is required in the
graphs before one finds the place to examine more in depth.
For this, we plan to enhance our filtering mechanism with
the ability to filter out global variables, since they are not
all of interest at the same time, and to implement a query
language that will permit to find, thus to jump to, parts of
the execution corresponding to given criteria.

Besides enhancements of our visualizations we just men-
tioned, our main perspective is now to development further
a similar tool for the C language [4], where we will be able
to integrate it with a debugger. This way, the user not only
will examine the dynamic dependence graph after the ex-

ecution of the program, but s/he will have the possibility
to execute the program step by step, or from breakpoint to
breakpoint, while looking at the corresponding graph. We
expect this functionality to greatly enhance maintenance of
long to execute and hard to understand programs.

References

[1] T. Ball. The concept of dynamic analysis. In Proceedings
of the 7th ACM SIGSOFT Symposium on the Foundation of
Software Engineering, Toulouse (France), 1999.

[2] F. Balmas. Using dependence graphs as a support to document
programs. In Proceedings of the Workshop on Source Code
Analysis and Manipulation, Montreal, Canada, 2002.

[3] F. Balmas. Displaying dependence graphs: a hierarchical ap-
proach. Journal on Software Maintenance and Evolution: Re-
search and Practice, 16(3):151 – 185, May/June 2004.

[4] R. Chaabane. Analyse Dynamique de Programmes C.
Mémoire de DEA, Université Paris 8, Saint-Denis, France,
2005.

[5] E. Koutsofios and S. North. Drawing graphs with dot. AT&T
Labs – Research, Murray Hill, NJ, March 1999.

[6] T. Winograd. Understanding Natural Language. Academic
Press, New York, 1972.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

27

Dynamic Estimation of Data-Level Parallelism in Nested Loop Structures:
A Preliminary Report

Lewis B. Baumstark, Jr.
Department of Computer Science

University of West Georgia
Carrollton, GA

lewisb@westga.edu

Linda M. Wills
Department of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA

linda.wills@ece.gatech.edu

Abstract

Retargeting sequential code to data parallel

execution is difficult, but can provide significant
increases in efficiency. Since data parallel execution
depends on performing highly regular operations,
typically on a multi-dimensional data set, retargeting
requires understanding the regular data access
patterns within an application and the homogeneous
operations performed across the multidimensional
space. These are often obscured by their
implementation in sequential code. This paper
describes a dynamic approach to understanding data
dependences in multi-dimensional iteration spaces in
order to estimate the amount of data-level parallelism
that could be exploited in sequential program loops.
For tractability, it uses a dynamic technique to derive
an estimate based on a "representative corner" of the
iteration space. The technique is implemented in a
prototype tool, called DLPEST3, which estimates data
parallelism in sequential loops, regardless of the depth
of nesting, i.e., it is capable of measuring along all
axes in the iteration space.

1. Introduction
Few automatic tools exist for reverse engineering

and retargeting sequential code assets to data parallel
execution mechanisms. This often manual retargeting
process is time consuming and expensive. Potential
performance improvements are difficult to estimate
until lengthy, often undocumented programs are re-
verse engineered.

We have previously explored automated tech-
niques for retargeting sequential code to data parallel

execution mechanisms [1] . These techniques are ap-
plied selectively to programs or code blocks with high
potential for data-level parallelism (DLP). In order to
facilitate the overall retargeting process, low cost tech-
niques are needed to identify portions of code that have
a high potential for data parallelism. Such techniques
will not only aid the reverse engineering process, but
could also be used to focus more traditional vectoriza-
tion-related analyses, such as Fourier-Motzkin elimina-
tion or the Omega test [2].

Data parallel execution depends on uniform data
access. The key to retargeting is to understand the
regular data access patterns that can be extracted from
sequential code and exploited in a data parallel execu-
tion environment. This paper presents a dynamic ap-
proach to understanding data dependences in a multi-
dimensional iteration space in order to estimate the
amount of DLP that could be exploited in sequential
program loops. For tractability, it uses a dynamic
technique to derive an estimate on a "representative
corner" of the iteration space. The technique is imple-
mented in a prototype tool, called DLPEST3 (DLP
ESTimator, 3rd generation). A significant feature is that
it can do this for loop nests of arbitrary depth, i.e., it is
capable of measuring DLP along all axes in the itera-
tion space. The resulting information can guide a re-
targeting tool and/or human developer in selecting the
best parallelization strategy with respect to, for exam-
ple, specific nesting levels to parallelize, number and
dimensionality of processor arrays, and data distribu-
tion.

2. Related Work
Larus [3] presents a system targeted at recognizing

loop-level parallelism. Using an idealized parallel ma-

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

28

chine model (no limit on processors, etc.) it seeks to
find an upper bound on the available program parallel-
ism. The system scans through an externally generated
program trace. When it identifies a loop, it tracks reg-
ister- and memory-based data dependencies for the
loop. The parallelism estimate is computed from the
number of loop iterations without loop-carried depend-
encies. The system also offers the option of ignoring
loop-carried data-dependencies, which provide insight
into the amount of parallelism available if a compiler
can recognize “false” loop-carried dependencies and
remove them. We incorporate their tracking of loop-
carried dependencies, but at the source-code level in-
stead of the assembly-level, allowing better mapping of
dependences to their location in code.

Kumar [4] offers a source-code instrumentation
scheme for Fortran programs. The added code allows
the program to self-compute the earliest time slot for
each source code statement that would complete execu-
tion on a parallel machine with unlimited resources,
based on satisfying data dependence constraints (i.e.,
the statement’s variable and/or memory reads) and
control constraints (e.g., a statement inside an if-then
body cannot execute before the conditional is re-
solved). Under this model, potentially many state-
ments can fall into the same time slot, yielding a paral-
lelism metric. We perform source-code instrumenta-
tion as well, but focus on calculating the dependence
distance which requires only counting the number of
iterations for which a dependency does not exist. This
avoids the complexity of tracking every memory ac-
cess and when its values would be ready for consump-
tion in an ideal machine.

Wills, et al. [5] developed a technique to estimate
measures of three different types of parallelism –
thread-level, instruction-level, and data-level – using a
modified version of the SimpleScalar simulator [6].
After executing each machine instruction, the modified
simulator places the instruction into a schedule grid
(where rows are time slots and columns are instruc-
tions scheduled in parallel into the time slots) based on
its dynamic data-dependency constraints. This sched-
ule modeled a processor with theoretically unlimited
(but practically limited) hardware resources (functional
units, registers, memory, etc.). Each instruction placed
into the schedule was scheduled as early as possible,
i.e., one time slot after the producers of its operand
registers were scheduled (all instructions were assumed
to have a latency of a single time slot). Value predic-
tion and perfect branch prediction were used to meas-
ure the maximum theoretical DLP possible. A parallel-
ism metric was formed by dividing the total number of
instructions exhibiting parallelism (i.e., those that oc-
cur more than once in a given time slot) by the total
number of instructions in the program. While this

technique provided validated parallelism measures, it
did not provide some information of interest. It meas-
ured parallelism for the entire program and thus was
unable to map the results back to certain sections of
code. Similarly, it was unable to report on parallelism
on a per-loop-nest basis. It was also a very time-
consuming process; we are interested in lightweight
techniques that can be applied to an agile development
process and/or used within a profiling compiler.

3. Proposed Technique
DLPEST3 estimates the minimum dependence

distance for each nesting level of a loop. Dependence
distance [7] is the number of loop iterations between
the source of a memory-based dependence and its tar-
get. It is also a useful measure of DLP, as the mini-
mum distance of all dependence pairs represents the
number of iterations of a loop that can be executed in
parallel.

In Baumstark [8], dependence distance was dy-
namically measured for the simplest case: an inner
loop. (Here, an inner loop is defined as one that con-
tains no other loops, even transitively via a function
call.) Fig. 1 illustrates this technique. This approach
compares addresses read in the current iteration with
those written in all previous iterations of the loop. Ad-
dresses are recorded for data types reported as arrays or
pointers by the original C code. If the intersection of
the read set and the write set is empty, no dependence
has been found between the current iteration and all
past iterations, so the measured dependence distance is
incremented and the next iteration is considered. Oth-
erwise, the last dependence distance is returned. Note
that if multiple loop-carried dependencies exist, this
technique will detect the one with the shortest depend-

void main() {
int i, A[100], B[100];
for(i=0;i<96;i++) {

A[i+4] = 5*A[i];
B[i] = B[i+6] + A[i];

}
}

Assume A[100] occupies addresses 500 through 599.
Assume B[100] occupies addresses 700 through 799.

4{504,710}{504,505,506,507,508,700,
701,702,703,704}

4

4{503,709}{504,505,506,507,700,701,
702,703}

3
3{502,708}{504,505,506,700,701,702}2
2{501,707}{504,505,700,701}1
1{500,706}{504,700}0

Dependence
distance

Addresses read,
this iteration

Addresses written,
iterations 0 through i

Iteration
(i)

4{504,710}{504,505,506,507,508,700,
701,702,703,704}

4

4{503,709}{504,505,506,507,700,701,
702,703}

3
3{502,708}{504,505,506,700,701,702}2
2{501,707}{504,505,700,701}1
1{500,706}{504,700}0

Dependence
distance

Addresses read,
this iteration

Addresses written,
iterations 0 through i

Iteration
(i)

Address Collision

tim
e

Fig. 1. Original single-loop DLP estimation
technique.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

29

ence-distance, as this is the dependence constraining
parallelization.

This approach works well for estimation of inner
loops. The amount of memory and number of com-
parisons required is proportional to I×W where I is the
number of loop iterations and W (a constant) is the
number of static write operations. In practice, we lim-
ited I to a threshold TL to improve the time perform-
ance (the tool was programmed to cease measurement
once a dependence was found), reasoning that real
hardware would place practical limits on the amount of
parallelism that could be exploited. This threshold,
then, could be set based on available hardware configu-
rations.

 Such an approach does not scale, however, to
measuring DLP in non-inner loops. Since this
approach records all past memory addresses written
and compares them with current memory reads, mem-
ory write addresses must be recorded for the entire
multi-dimensional iteration space. This increases the
memory requirements and the number of comparisons
to

∏×
N

NIW (1)

where IN refers to the number of iterations at loop nest-
ing level N. Clearly, such an approach would quickly
fall short of our goal of a lightweight estimation tech-
nique.

In our previous one-dimensional approach, de-
pendence distance measurement ceases when a certain
threshold is reached. Part of the reasoning for using
the threshold was that after “a long time,” i.e., after a
sufficiently large dependence distance had been meas-
ured, we could assume the loop was fully parallelizable
or, at the least, far more parallelizable than practical
hardware could exploit. Our goal was only to estimate
DLP, not measure it precisely.

The question now is can such a threshold be rea-
sonably employed in a multi-dimensional iteration
space? The key to keeping the amount of memory and
number of computations tractable is to build the esti-
mate on a “representative corner” of the iteration space
and ignore all other iterations. Fig. 2 illustrates. In
Fig. 2 (a), the representative corner of a one-
dimensional iteration space (a single loop with no en-
closing loop) is simply the first TL iterations of that
loop. In Fig. 2 (b), the corner of a two-dimensional
iteration space is the rectangular region covering the
first TL iterations along each axis. Similarly, for an N-
dimensional space, the corner is a small N-cube cover-
ing the first TL iterations along each axis. By using a
threshold, we constrain the IN-terms of Eq. (1).

To understand why this is acceptable, consider
multimedia instruction set extensions, such as Intel's

SSE [9] or the Complex Streaming Instructions project
[10], which are capable of exploiting DLP. These typi-
cally operate on array-based data with constant mem-
ory strides between elements. The analogous sequen-
tial loops operate on array-based data where the index
of iteration (proportional to the data stride) increases
linearly. Thus, within this representative corner of the
iteration space, if we detect iterations that can be exe-
cuted in parallel, those patterns can be assumed to ex-
tend to the entire iteration space. For example, if we
found a dependence distance of TL (i.e., no dependence
detected within the threshold number of iterations), we
can assume, as with the earlier technique, this dimen-
sion of the loop nest can be fully parallelized. Simi-
larly, if we were to find a minimum dependence dis-
tance of eight by the time TL iterations occurred, we
assume, based on the linearity described above, that
this holds for the entire dimension (and not that an ir-
regular pattern of dependence distances would occur).

4. Preliminary Results
The proposed technique is being prototyped in

DLPEST3. We have been able to run some simple
tests on its current functionality as proof-of-concept.

(a)

(b)

1 2 3 4 5 6 7

Loop Iterations

Dependence detected; distance = 4

1,1 1,2 1,3 1,4 1,5 1,6 1,7

2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,1 3,2 3,3 3,4 3,5 3,6 3,7

4,1 4,2 4,3 4,4 4,5 4,6 4,7

5,1 5,2 5,3 5,4 5,5 5,6 5,7

Inner loop iterations
(x-dimension)

O
ut

er
 lo

op
 it

er
at

io
ns

(y

-d
im

en
si

on
)

Dependence detected; distance = (3,2)

Fig. 2. Representative iteration space “cor-
ners” for (a) one-deep loop nest and (b) two-

deep loop nest.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

30

One test is shown in Fig. 3. This code contains two
synthesized loop nests, a two-deep nest and three-deep
nest, both with some non-trivial dependence distances.
A second example comes from the Mediabench suite
[11], which contains several programs covering a wide
range of multimedia applications. We test DLPEST3
on Mediabench's ADPCM program, which encodes
and decodes waveform data into a quantized digital
format.

 The results from the two test programs are sum-
marized in Table 1. The expected results were gained
by a hand examination of the code. The preliminary
results are encouraging, matching well the expected
estimates.

Table 1
Measured vs. Expected Results

Loop nest
Expected

dependence
distance

Measured
dependence

distance
Simple 2D nest (5,8) (5,8)

Simple 3D nest (4,-14,-14) (4,-14,-14)

ADPCM

(encode)

(1,0) (1,0)

ADPCM

(decode)

(1,0) (1,0)

5. Discussion
Beyond the core DLP-estimation functionality of

DLPEST3, other useful information could be recorded.
For example, many data-parallel hardware architec-
tures are limited in the stride they allow between ele-
ments. DLPEST3 could be extended to report on the
stride between iterations at any depth of nesting, pro-
viding more information for a compiler or developer
wishing to parallelize an application.

6. References
[1] Lewis Baumstark, Jr., and Linda M. Wills, “Retargeting Se-

quential Image-Processing Programs for Data-Parallel Execu-
tion,” IEEE Trans. on Software Engineering, Vol. 31, No. 2, pp.
116-136, Feb. 2005.

[2] Randy Allen and Ken Kennedy, Optimizing Compilers for
Modern Architectures, San Francisco:Morgan Kaufmann
Publishers, pp. 35-121, 2002.

[3] J. R. Larus, “Loop-Level Parallelism in Numerica and Sym-
bolic Programs,” IEEE Trans. on Parallel and Distributed
Systems, Vol. 4, No. 7, pp. 812-826, July 1993.

[4] A. M. Kumar, “Measuring parallelism in computation-
intensive scientific/engineering applications,” IEEE Trans.
on Computers, Vol. 37, No. 9, pp. 1088-1098, September
1988.

[5] L. Wills, T. Taha, L. Baumstark, and S. Wills, "Estimating
Potential Parallelism for Platform Retargeting," In Proc. of

the 9th Working Conference on Reverse Engineering (WCRE
‘02), Richmond, VA, pp. 55-64, October 2002.

[6] Doug Burger and Todd Austin, “The SimpleScalar Tool
Set, Version 2.0,” Tech. Report TR #1342, Univ. of
Wisconsin-Madison Computer Sciences Dept., Madi-
son, WI, June 1997.

[7] Utpal Banerjee, Rudolf Eigenmann, Alexandru Nicolau, and
David A. Padua, “Automatic Program Parallelization,” Proc.
of the IEEE, vol. 81, no. 2, pp. 211-243, 1993.

[8] Lewis Baumstark, “Extracting data-level parallelism from
sequential programs for SIMD execution,” doctoral disserta-
tion, Georgia Institute of Technology, 2004, UMI Catalog
No. AAT 3154911.

[9] Srinivas K. Raman, Vladimir Pentkovski, Jagannath Ke-
shava, “Implementing Streaming SIMD Extensions on the
Pentium III Processor,” IEEE Micro, Vol. 20, No. 4, pp. 47-
57, July/August 2000.

[10] Ben Juurlink, Dmitri Tcheressiz, and Stamatis Vassiliadis,
“Implementation and Evaluation of the Complex Streamed
Instruction Set,” In Proc. of the Int. Conf. on Parallel Archi-
tectures and Compilation Techniques (PACT ’01), Barce-
lona, Spain, pp. 73-82, September 2001.

[11] Chunho Lee, Miodrag Potkonjak, William H. Mangione-
Smith, “MediaBench: a tool for evaluating and synthesizing
multimedia and communications systems,” Proc. of the 30th
annual ACM/IEEE Int’l Symposium on Microarchitecture,
Research Triangle Park, NC, pp. 330-335, 1997.

int x[50][50], y[50][50], z[50][50];

char* a, *b, *c;

int main() {

 int i, j, k;

 a=(char*)malloc(50*50*50);

 b=(char*)malloc(50*50*50);

 c=(char*)malloc(50*50*50);

 /* 2-deep loop nest */

 for(i=0; i<50; i++) {

 for(j=0; j<50; j++) {

 z[i][j] = z[i-5][j-8]

 + x[i][j] + y[j][i];

 }

 }

 /* 3-deep loop nest */

 for(i=0;i<15;i++) {

 for(j=0;j<15;j++) {

 for(k=0; k<15; k++) {

 *(a+i) += *(a+i-4) + *(b+50*j+k)

 + *(c+j+50*k);

 }

 }

 }

 return 0;

}

Fig. 3 Test code for DLPEST3

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

31

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

32

Selective Tracing for Dynamic Analyses
∗

Matthias Meyer, Lothar Wendehals
Software Engineering Group

Department of Computer Science
University of Paderborn
Warburger Straße 100

33098 Paderborn, Germany
[mm|lowende]@uni-paderborn.de

Abstract
Reverse engineering based on dynamic analyses often uses
method traces of the program under analysis. Recording
all method traces during a program’s execution produces too
much data, though for most analyses, a “slice” of all method
traces is sufficient.

In this paper, we present an approach to collect runtime
information by selectively recording method calls during a
program’s execution. Only relevant classes and methods are
monitored to reduce the amount of information. We de-
veloped the JavaTracer which we use for the recording of
method calls in Java programs.

1. Introduction
In the last years, we developed a tool-supported semiau-

tomatic approach to design recovery [5]. Our approach fa-
cilitates the recognition of design pattern [3] instances in the
source code of a system. We recently extended this approach
by combining the existing static analysis with a dynamic
analysis [7]. The static analysis identifies pattern instance
candidates based on their structural properties. The sub-
sequent dynamic analysis confirms or rejects the candidates
by checking their behavior.

The behavior of a design pattern is specified by UML 2.0
sequence diagrams [8]. In our approach, these specifications
are called behavioral patterns. Behavioral patterns describe
typical sequences of method calls between objects of classes
that participate in a design pattern instance. To check the
conformance of a given design pattern instance to the be-
havioral pattern, method traces have to be gathered during
the execution of the program under analysis.

Recording all method traces during a program’s execution
not only produces too much information, but also reduces
the runtime performance of the program significantly. Con-
sequently, the tracing should be restricted to those method
calls that are really needed in the dynamic analysis. In our
approach, only specific methods of pattern instance candi-
dates have to be monitored, which means only to record a
“slice” of method calls of the whole program.

For this purpose, we developed a selective tracer which
takes a list of classes and methods to be monitored as input.
The tracer executes the program to be analyzed and records
only calls to the given methods. The gathered information is
saved to a file which can be used by post-mortem analyses.

∗This work is part of the Finite project funded by the German
Research Foundation (DFG), project-no. SCHA 745/2-2.

In the next section we present the application scenario for
our selective tracer in more detail by means of a concrete
example. We will refer to this example throughout the rest
of the paper. In Section 3 we report about related work.
Our approach to selective tracing is described in detail in
Section 4 whereas its good performance is shown in Section
5. The paper is concluded with future work in Section 6.

2. Application Scenario
In a case study of our design recovery approach, we an-

alyzed the Eclipse platform [2]. Among others, our static
analysis identified several candidates of the Strategy design
pattern in the source code.

AbstractStrategy
algorithm()

ConcreteStrategyA
algorithm()

ConcreteStrategyB
algorithm()

strategy

1Context
setStrategy(AbstractStrategy)
request()

strategy.algorithm()

Figure 1: The Strategy Design Pattern

A Strategy design pattern (Figure 1) lets an algorithm
vary independently from the client that uses it. An abstract
class defines the algorithm interface, which is implemented
by different concrete classes (the strategies). A context class
references a strategy and delegates requests received from
its clients to the strategy. Usually, the clients configure a
context object with the appropriate concrete strategy.

Classes Methods

org.eclipse.swt.widgets.Composite setLayout
WM SIZE

org.eclipse.swt.widgets.Layout layout
org.eclipse.jface.viewers.StructuredViewer addFilter

filter
getSortedChildren
setSorter

org.eclipse.jface.viewers.ViewerSorter sort
org.eclipse.jface.viewers.ViewerFilter select

Table 1: Classes and Methods Identified as Parts of
Pattern Candidates.

Table 1 shows the classes and methods1 that have been
identified as parts of three Strategy pattern candidates. The
first candidate consists of the classes Composite and Layout
(cf. Table 1) which were recognized as context and abstract

1Abstract classes and methods are written in italic.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

33

strategy, respectively. The method setLayout was identi-
fied as the method to configure the context with a strategy
and WM SIZE is called by clients to place a request. The
method layout of class Layout was recognized as the method
implementing the actual algorithm. The other classes and
methods listed in the table belong to other candidates.

layout()

client a:Layout b:Layout

bp Strategy

WM_SIZE()loop (1,m)

opt

WM_SIZE()
layout()

loop (1,n)

setLayout(a)

setLayout(b)

c:Composite

Figure 2: Behavioral Pattern for a Concrete Strategy
Candidate.

The dynamic analysis now has to check whether the in-
teraction of instances of the candidate’s classes conforms to
the behavioral pattern of a Strategy design pattern, i.e. the
identified methods are called in the specified sequence.

Figure 2 shows the behavioral pattern of Strategy in which
the methods and object types have been replaced by the
classes and methods of the first pattern candidate. The
behavioral pattern requires that a context object c of type
Composite is configured with a strategy object a of type Lay-
out by calling setLayout. Afterwards, a client has to place at
least one request which has to be delegated to the strategy,
i.e. WM SIZE and layout have to be called consecutively an
arbitrary number of times (indicated by the loop fragment)2.
Furthermore, after several requests have been handled, the
concrete strategy may be changed by another call to setLay-
out with a different b:Layout object. After that, requests
on the context c:Composite have to be delegated to the new
strategy object by calling layout on b:Layout. However, the
change of the strategy is not required and is thus enclosed
by an optional fragment.

In order to check if the pattern candidate behaves as spec-
ified by the concrete behavioral pattern shown in Figure 2,
we need to record method call traces at runtime. However,
a behavioral pattern does not define a complete trace. Only
significant method calls are specified. Other calls of meth-
ods that are not mentioned in the behavioral pattern may
interleave the given sequence. Consequently, we do not need
to record a complete program trace but only calls to those
methods explicitly mentioned by the pattern.

Furthermore, since some of the classes and methods iden-
tified in the source code are abstract, e.g. Layout and its
layout method, they cannot be monitored directly during
runtime. Instead, classes and methods that implement the
abstract classes and methods must be monitored. Due to
polymorphism and dynamic method binding, the same holds
for methods which override methods to be monitored. The
concrete classes and methods could be determined by static

2Since no methods are called on the client object, its class
needs not to be determined and can be ignored during anal-
ysis.

analysis easily. In our approach, however, this is done by
our selective tracer as well.

3. Related Work
The Java Debug Interface (JDI) [6] offers debuggers a

native technique to receive MethodEntry- and MethodEx-
itEvents. The debugger has to provide a filter which speci-
fies the classes to be monitored. This approach can not be
used to monitor specific methods. Instead, all methods of
classes given in the filter are monitored during the execu-
tion of the program under analysis. For each method call,
MethodEntry- and MethodExitEvents are sent to the debug-
ger. This technique is not practicable, since it slows down
the analyzed program significantly (cf. Section 5).

The Omniscient Debugger [4] records method calls and
variable state changes of Java programs. It instruments the
source code on the byte code level, i.e. additional code is
inserted into the original source code of the program to be
analyzed. The code is used to inform the debugger about
method calls. The instrumentation is also done in a non-
selective way. The author reports about 100MB/sec of data
produced during the execution.

The Instrumentation, Execution, and Coverage Tool In-
sECT [1] allows for collecting different kinds of dynamic in-
formation including method traces by instrumenting and ex-
ecuting the program under analysis. Instrumentation tasks
are used to specify which entities of the program are to be in-
strumented and which kind of information is to be collected.
Monitors can be implemented to process the collected infor-
mation. In [1] it is shown that InsECT is efficient.

However, a problem of instrumentation is that it strongly
depends on the programming language and the runtime en-
vironment used. This approach is difficult to transfer to
other languages, especially those that do not use interme-
diate code such as C or C++. Instrumentation may also
affect the synchronization of concurrent threads, since in-
strumented code directly influences the runtime of threads.
This may cause for example time outs in the synchroniza-
tion, thus resulting in a completely different behavior of the
analyzed program.

4. Selective Tracing
We developed the JavaTracer [9] for selective tracing of

Java programs. As input, it gets a list of classes and inter-
faces as well as methods that have to be monitored during
the execution of the program under analysis. The Java-
Tracer acts as a debugger and executes the program, called
the debuggee. JDI is used for connecting to the debuggee’s
virtual machine.

The principle idea of selective tracing is rather simple.
The JavaTracer is informed by the virtual machine each
time a class is loaded. If this class belongs to the classes in
the input, it adds a breakpoint at the beginning and the end
of the body3 of each method given in the input, indicating
when a method is called and when it returns.

Abstract methods declared by interfaces or abstract clas-
ses can also be monitored, even though they don’t have a
method body. The JavaTracer determines each time a

3The Java VM creates a virtual code line at the end of each
method body that will be passed regardless of the actual
executed return statement.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

34

class is loaded if it is a sub class of the classes given as in-
put. If the loaded class is a sub class, it adds breakpoints
to methods which implement or override one of the given
methods, thus supporting analyses that include polymor-
phism and dynamic method binding.

The advantage of this simple idea is that the approach is
not bound to Java even though the JavaTracer is imple-
mented for Java programs only. Breakpoints are a common
feature of debuggers for nearly all languages. The Java-
Tracer just needs another implementation for the interface
that is used to set breakpoints and receive breakpoint events
to adapt to another debugger.

The JavaTracer will be informed when a breakpoint is
reached during the program’s execution. It then halts the
debuggee. This guarantees that all threads of the program
are halted, not only the thread that is currently running.
Thus, concurrent threads depending on the current thread
are not affected by halting just the current thread, since
they are halted, too.

In the case of a breakpoint event at the beginning of a
method call, the JavaTracer asks the debuggee’s virtual
machine for additional information about the method call.
This includes information about the method name, the time
stamp for the method call, the names and unique identifiers
of the caller and callee objects, the identifiers and values of
objects passed as arguments as well as the current thread.
Then the debuggee’s execution is continued. This informa-
tion is recorded as a method entry event. Breakpoint events
at the end of a method call are recorded as method exit
events. Events about loaded classes are recorded as well.

The debuggee is controlled either manually by the reengi-
neer or by automated tests. The output consists of a list
of class loading events as well as method entry and method
exit events in the order of their occurrence. The output can
then be further analyzed, e.g. by our dynamic analysis of
design pattern behavior.

Input for Tracing
The JavaTracer is started with a trace definition docu-
ment describing the classes and methods that have to be
monitored during the program’s execution. Figure 3 shows
an excerpt of this document using the example of Table 1.

<TraceDefinition>
<ConsiderTrace>

<Class name="org.eclipse.swt.widgets.Composite">
<Method name="setLayout"/>
<Method name="WM SIZE">

<Parameter type="int"/>
<Parameter type="int"/>

</Method>
</Class>
<Class name="org.eclipse.swt.widgets.Layout">

<Method name="layout">
<Parameter

type="org.eclipse.swt.widgets.Composite"/>
<Parameter type="boolean"/>

</Method>
</Class>
...

</ConsiderTrace>
<CriticalTrace>
...
</CriticalTrace>

</TraceDefinition>

Figure 3: Example of the JavaTracer’s Input

The trace definition has two sections. Within the Con-
siderTrace section, classes are listed for which only selected
methods are monitored. That means, only the given meth-
ods and overriding methods are considered in the tracing,
calls of other methods are ignored.

The JavaTracer also provides a tracing on the class level,
the so-called critical monitoring of classes. Using critical
tracing, all methods of a class are monitored. This facilitates
analyses where all method calls on objects of specific classes
have to be recorded. These classes are specified within the
CriticalTrace section of the input.

Output of Tracing
Figure 4 shows an excerpt of the JavaTracer’s output.
The output consists of a list of class loading events as well
as method entry and exit events in the order of their occur-
rence.

<TraceResult>
<ProcessStart name="main" time="1127705886787"/>

<ClassLoaded name="org.eclipse.swt.widgets.Composite">
</ClassLoaded>

<ClassLoaded name="org.eclipse.swt.widgets.Shell">
<SuperType name="org.eclipse.swt.widgets.

Composite"/>
</ClassLoaded>

<ClassLoaded name="org.eclipse.swt.widgets.Layout">
</ClassLoaded>

<ClassLoaded name="org.eclipse.swt.layout.GridLayout">
<SuperType name="org.eclipse.swt.widgets.Layout"/>

</ClassLoaded>
...
<MethodEntry id="22" name="WM_SIZE" thread="main"

time="1127705893547">
<Caller id="1515"

type="org.eclipse.swt.widgets.Shell"/>
<Callee id="1515"

type="org.eclipse.swt.widgets.Shell"/>
<Argument value="0" type="int"/>
<Argument value="3473906" type="int"/>

</MethodEntry>

<MethodEntry id="23" name="layout" thread="main"
time="1127705893557">

<Caller id="1515"
type="org.eclipse.swt.widgets.Shell"/>

<Callee id="1516"
type="org.eclipse.swt.layout.GridLayout"/>

<Argument id="1515"
type="org.eclipse.swt.widgets.Composite"/>

<Argument value="false" type="boolean"/>
</MethodEntry>
...

<MethodExit id="23" time="1127705893617"/>
<MethodExit id="22" time="1127705893627"/>
...
<ProcessEnd time="1127705926565"/>

</TraceResult>

Figure 4: Example of the JavaTracer’s Output

The class loaded events comprise not only the class that
was actually loaded, but also its super class, if the super
class was given in the input. This information is needed
in dynamic analysis to identify where polymorphism and
dynamic method binding was used.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

35

The two pairs of method entry and exit events describe
two method calls. The first method call WM SIZE (id 22)
was called by an object of org.eclipse.swt.widgets.Shell on it-
self. The second method call with id 23 is nested in the first
one which means that the method layout is called within the
first method WM SIZE on an object of type org.eclipse.swt.
layout.GridLayout.

The output of the JavaTracer can be optimized for the
analysis it is used for. Some information can be omitted such
as the time stamps or even method exit events if information
about method stack traces are not needed. Since tracing can
produce huge amounts of information, it is vital to cut down
the recording to a minimum.

The JavaTracer
Figure 5 depicts a screen shot of the JavaTracer Eclipse
plug-in. We made this screen shot during the monitoring
of Eclipse in the application scenario. On the right hand,
the currently used trace definition document is displayed.
In the upper left corner, the Execution Monitor view shows
a tree of classes and methods that are monitored. For each
method, the number of executions is given and an icon in-
dicates if the method was executed at all. In the lower left
corner, the JavaTracer view displays events occurred dur-
ing the monitoring, whereas the Console view displays the
output of the monitored program.

5. Performance
We measured the performance of our approach by com-

paring the startup times of Eclipse with and without trac-
ing. Without tracing or instrumentation, it is very difficult
to measure the startup time due to the lack of well-defined
measuring points. Since we only want to make a qualitative
statement of the performance, we decided to measure the
time manually. The time was stopped when the CPU-load
of the Eclipse process dropped to 0%. We run the scenarios
ten times and calculated the average duration.

The performance was measured on a Pentium 4-M ma-
chine with 1.8 GHz and 1024 MB RAM. The system was
running Windows XP Professional SP2 and Java 2 Standard
Edition 5.0 Update 4. All other processes were stopped as
far as possible. The workspace of the Eclipse platform con-
sisted of one Java project, which was initially loaded during
the startup of Eclipse.

Scenario #c #m #actc #actm #mc

1 5 9 59 107 2945
2 8 13 204 336 12314

Table 2: Performance Measuring Scenarios

Table 2 shows two different scenarios. In the first scenario,
we monitored the 5 classes (#c) and 9 methods (#m) given
in the example. The actual number of monitored subjects
were 59 classes (#actc) and 107 methods (#actm) due to
implementations of abstract classes and methods as well as
polymorphism. During the startup of Eclipse, there were
2945 method calls (#mc) of the 107 methods recorded.

The second scenario comprised 8 classes/interfaces and 13
methods to be monitored. All classes of the first scenario
plus additional classes and interfaces that play a central role
in the Eclipse environment are monitored. The additional

classes are org.eclipse.core.runtime.Plugin, org.eclipse.core.run-
time.IAdaptable and org.eclipse.core.runtime.IAdapterFactory.
These classes and interfaces are extended or implemented by
multiple other classes. This resulted in a scenario where 204
classes and 336 methods were actually monitored. We used
this second scenario to show the scalability of our approach.

Scenario tw/o tbreak tevents

1 16 sec. 41 sec. 36 min.
2 16 sec. 65 sec. ?

Table 3: Duration of Program Tracings

In Table 3, we present the average startup time for each
scenario. First, the program was executed without any trac-
ing (tw/o). Then, the program was monitored using our
breakpoint events (tbreak) and at last (tevents) by using the
native tracing technique offered by the Java Debug Interface
(JDI) [6]. This technique is limited to monitor all methods
of a class. To compare the native tracing of JDI to our
approach, we recorded only entry and exit events of those
methods given in the input.

The startup times without any tracing are of course equal
for both scenarios. The performance results show that our
approach to selectively trace method calls is feasible. Even
though the number of monitored methods is three times
higher than in the first scenario and the number of method
calls is four times higher, the startup time rises by less than
60%.

In comparison to our approach, the event based approach
offered by JDI is not practicable. We abandoned the perfor-
mance analysis of the event based approach for the second
scenario, since it took too much time.

Although the XML output format may seem too verbose,
it has only a very slight influence on the performance of the
JavaTracer. We analyzed the JavaTracer with a profiler
discovering that more than 90% of the time spent in tracing
is consumed by the JDI interface.

6. Future Work
We are planning to use our behavioral pattern analysis for

conformance checking. When designing components, behav-
ioral patterns can be used to describe protocols on how to
use the interface of the component. In an ideal Model Driven
Development process, the source code is completely gener-
ated from the model. In practice, a hybrid development
process is often used, where parts of a system are generated
and parts are implemented manually. During the implemen-
tation and testing of the components, our dynamic analysis
can check if the actual behavior of the components conforms
to the behavior defined by the behavioral patterns.

References
[1] A. Chawla and A. Orso. A Generic Instrumentation

Framework for Collecting Dynamic Information.
SIGSOFT Software Engineering Notes, Section:
Workshop on Empirical Research in Software Testing.
ACM Press, New York, NY, USA, 29(5):1–4,
September 2004.

[2] Eclipse Foundation. The Eclipse Platform. Online at
http://www.eclipse.org. Last visited: September 2005.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

36

Figure 5: The JavaTracer implemented as an Eclipse Plug-In

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley, Reading, MA, USA, 1995.

[4] B. Lewis. Recording Events to Analyze Programs. In
Object-Oriented Technology. ECOOP 2003 Workshop
Reader. Lecture notes on computer science (LNCS
3013), Springer, July 2003.

[5] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, and
J. Welsh. Towards Pattern-Based Design Recovery. In
Proc. of the 24th International Conference on Software
Engineering (ICSE), Orlando, Florida, USA, pages
338–348. ACM Press, May 2002.

[6] Sun Microsystems. Java Platform Debugger
Architecture(JPDA). Online at
http://java.sun.com/products/jpda/index.jsp. Last
visited: September 2005.

[7] L. Wendehals. Improving Design Pattern Instance
Recognition by Dynamic Analysis. In J. Cook and
M. Ernst, editors, Proc. of the ICSE 2003 Workshop on
Dynamic Analysis (WODA), Portland, USA, pages
29–32, May 2003.

[8] L. Wendehals. Specifying Patterns for Dynamic
Pattern Instance Recognition with UML 2.0 Sequence
Diagrams. In E.-E. Doberkat and U. Kelter, editors,
Proc. of the 6th Workshop Software Reengineering
(WSR), Bad Honnef, Germany,
Softwaretechnik-Trends, volume 24/2, pages 63–64, May

2004.

[9] L. Wendehals. Tool Demonstration: Selective Tracer
for Java Programs. In Proc. of the 12th Working
Conference on Reverse Engineering, Pittsburgh,
Pennsylvania, USA, November 2005. to appear.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

37

Dynamic Fan-in and Fan-out Metrics for Program Comprehension

Wang Yuying, Li Qingshan, Chen Ping, Ren Chunde
Software Engineering Institute, Xidian Univ.,Xi’an,710071,China

E-mail:xawyy@hotmail.com

Abstract

This paper presents ongoing work on using run-

time information to discover knowledge about software
systems thus facilitating program comprehension.
Some dynamic metrics based on traces of the subject
system execution are proposed. An approach to get
these dynamic metrics is introduced, in which
instrumentation implemented by using reflective
mechanism based on an open compiler. The system
run-time information is captured with the instrumented
system running. From the information, we obtain the
dynamic metrics. Some cases study is given to illustrate
the use of these dynamic metrics, i.e. identifying
critical components of the subject system. These
critical components should be focus of user attentions
in order to understand the subject system well.

Keywords: program comprehension, dynamic

metrics, critical components, functionality

1. Introduction

A well documented problem faced by maintainers
when understanding a software system is the lack of
familiarity with it, combined with the lack of accurate
documentation. Several techniques and methods have
been proposed in order to facilitate this time
consuming activity [1] [2] [3]. The work presented in
this paper is part of a wider research effort
investigating the applicability and suitability of using
dynamic information to facilitate program
comprehension. This effort aims at development a
methodology for semi automated program
comprehension using dynamic metrics. A fundamental
underlying assumption is that the maintainer may have
little or no knowledge of the examined program .The
work presented here aims to help maintainers to
recognize critical parts of the subject system and to
infer the tasks of this system, i.e. facilitating program

understanding. This work focuses on definitions of
some dynamic metrics with traces of the system
execution. After obtaining these metrics, we can
concentrate on system components that have high
metric values. Careful analyses on it result in system
main functionality inferred.

The remaining sections of this paper are organized
as follows. First, we introduce related works that could
possibly appeal to be considered metrics. Section 3
summarizes the terminology and definitions used to
express the proposed metrics. In Section 4 we give out
an approach to get dynamic fan-in and fan-out metrics
we proposed in detail. In Section 5, we use a case study
of a highway application, as well as a simple
Client/Server system, to demonstrate the use of
dynamic metrics defined here. We conclude the paper
and discuss possible future works finally.

2. Related work

2.1. Definitions fan-in and fan-out metrics

Fan-in and fan-out metrics are structural metrics
which measure inter-module complexities.

The fan-in and fan-out metrics of modules were first
defined by Henry and Kafura [4]. They defined the
fan-in of a module as “the number of local flows that
terminate at a module, plus the number of data
structures from which information is retrieved”; and
the fan-out as “the number of local flows that emanate
from a module, plus the number of data structures that
are updated by that module”.

For Objected Oriented Programs, modules can be
considered in method-level and in class-level
respectively. (Because an object is a class instance only
existing in run-time, it is not necessary to consider fan-
in and fan-out in object-level.)

In[5], author extended the original fan-in and fan-
out metrics in class-level, he used the following
definition for fan-in. Let C be a class and S the set of

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

38

classes calling methods from C. Then SFI = .
As the fan-out metric can be used synonymously

with CBO (coupling between objects [6]), the author
only use the latter term and use the following definition
for CBO:

Let C be a class and }m,...,m,m{M n21= the set of

methods of C , iR the set of methods called by im and

iA the set of attributes accessed by im . Let

determine from a set of features (i.e. attributes or
methods) the set of their owners (i.e. classes). Then

In [7], author defined fan-in and fan-out metrics in

method-level. They defined the fan-in of a method m as
the number of distinct methods that can invoke m, the
fan-out of a method m as the number of distinct
methods that can be invoked by m.

2.2. Usage of fan-in and fan-out metrics

In [4], Henry and Kafura used fan-in and fan-out

metrics to define complexity of a module. The
complexity of each module is then defined as:

Module length * (fan-in * fan-out) 2
In [9], authors gave out a simplification of the

original complexity of each module metric using fan-in
and fan-out, they considered that it is better to measure
interface complexity than measuring the complexity of
the modules, something that can be achieved by
excluding length from the Henry-Kafura formula.
Therefore, the formula used to calculate IF(information
f low) would be the following:

IF= (Fan-in * Fan-out) 2
In class-lever, the fan-in metric can be used to find

classes which services are used by many others, i.e.
those that have a high reusability. Fan-out(i.e.CBO)
measures the number of classes to which a class is
coupled. High CBO value indicates large numbers of
interconnections between classes[5].

In[7],authors described a technique to identify
Aspects using fan-in metrics. Methods with higher fan-
in values are candidate aspects in a number of open-
source Java systems. Case studies demonstrate the high
fan-in method is a key element of the aspect
implementation, such as the output method for logging,
tracing or debugging functionalities, and some design
patterns with a crosscutting structure can lead to high
fan-in values when they are given a central role in the
project design. So fan-in metric can be used to identify
above aspects in Aspect Oriented Program and find

design patterns.

2.3. Limitations of static fan-in and fan-out
metrics

Fan-in and fan-out metrics reflect structure
dependency. They are defined based on a static
analysis of source code and the ability of these metrics
to accurately predict the actual amount of coupling
between modules(or class, or method) is as yet
unproven. As a static metric, they cannot capture all
the dimensions of object-level coupling, as features of
object-oriented programming such as polymorphism,
dynamic binding and inheritance render them
imprecise in evaluating the run-time behavior of an
application. The behavior of a program is going to be a
function of its operational environment as well as the
complexity of the source code. Therefore static metrics
may fall short when determining the run-time
properties of a program.

For a example[7], fan-in metric is derived from
parsing design models, the systems run-time
information are not under consideration.

During the process of calculate the fan-in value,
many times method m invoke method n only contribute
one to the value of n’s fan-in metrics. This reveals the
structural dependence.

 Because of polymorphism, one method call can
affect the fan-in of several other methods. It is difficult
to determine which one is called from source code, so a
trade-off approach is given out. A call to method m
contributes to the fan-in of all methods refined by m as
well as to all methods that are refining m. detailed
description is presented in [8].

Static fan-in and fan-out metrics contribute less to
the behavior of system during the process of program
understanding.

We are convinced that the static (syntactical)
situation of a software program reflects only
inaccurately the situation of the dynamic behavior of
the system, like actual number and type of procedure
calls, size of the actual transferred information etc.
Only dynamic characteristics present us a real picture
about the coupling in software system [10].

Currently, to the best of our knowledge, most
researches on OO metrics are on class-level, and these
metrics are static. Many researches aim at evaluation of
the quality of OO software as well as system
complexity. Quality of software systems can be
characterized by the presence of a certain number of
external attributes like functionality, reliability,
usability, efficiency, maintainability and portability
[11].Using appropriate metrics and evaluation
techniques, they give out a quantitatively description

Set(Class)e)Set(Featur:) W(→

U U
n

1v

n

1w
wv |)A(W)W(R|)C(CBO

= =

∪=

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

39

on software quality and complexity. How to use the
result to understand a software? Less literature is
available. In this paper, we propose an approach to
understand a subject system use fan-in and fan-out
metrics.

In following sections, we identify a set of new
dynamic metrics and discuss their uses in reverse
engineering.

3. Dynamic fan-in and fan-out metrics

The dynamic metrics are less frequently discussed
in OO metrics literature as compared to static metrics.

In this section, we define four dynamic metrics
based on dynamic behavior of applications. The
dynamic behavior of a system is obtained from run-
time information rather than inferred from design
models.

Before the definition of fan-in and fan-out metrics,
we give out some terminology.

 im : is a method of a class
 iC : is a class of a system.
Definition 1: scenario s . A scenario s is a

sequence of user inputs triggering actions of a system
that yields an observable result to an actor. In other
words, s is a sequence of interactions between
objects stimulated by input data or events.

Formally we can define the function:

)m ,m call(s,-Number ji indicates the number of

the method im have been invoked directly by
method jm in the execution of scenario s , where

methods im and jm can be defined in same class or

not.
Using this formula, we define some fan-in and fan-

out metrics in method-level and class-level separately.
Definition 2 :

Where TMS is the total number of methods defined

and implemented in all classes under consideration
system. TMC is the total number of methods defined
and implemented in a class under consideration.

)m,s(inFan i− indicates the times of method im be
invoked by other methods in the execution of scenario
s while)m,s(outFan i− the times im invoke other

methods.)C,s(inFan i− indicates the total number of
methods defined in class iC be invoked in the
execution of scenario s while)C,s(outFan i− the
total number methods defined in class iC invoked
other methods.

A method cm is called a client of method sm , and
ms a supplier of method cm , whenever cm call at least
one times method ms. A high)m,s(inFan i− value
shows high activity of im as a client and a high

)m,s(outFan i− value shows high activity of im as a
supplier. In our experience those methods with high
fan-in or fan-out values play an important role in the
system performance, as well as classes with high fan-in
or fan-out values. These will be demonstrated in
section 6.

4. Approach to get dynamic fan-in and fan-
out metrics

The tools XDRE we developed can be used to get
metrics we defined above section.

The approach adopted in XDRE is divided into 5
steps.

Step 1. Duplicate the source code. It is necessary
because we will change the source code during the
followed steps.

Step 2. Creat a software trigger for the source code.
 We developed a class named _FunctionTracer. It

can be used to instrument C++ program. It has no
member function but constructor and destructor. Using
object-lifecycle it traces system execution. When a
function start a call, an object of class
_FunctionTracer is instanced and saved in system
stack. This object will be destroyed automatically when
the call returns. The traced information is handled in
the object’s constructor and destructor. The advantage
of this instrumentation is that it is not need to concern
when the call occurs or ends.

∑
=

− =
TMS

1j
jii)m ,m l(s,number_cal)m,s(inFan

∑
=

− =
TMS

1j
iji)m ,m l(s,number_cal)m,s(outFan

∑
=

− =
TMC

1i
ii)m fan_in(s,)c,s(inFan

∑
=

− =
TMC

1i
ii)m fan_out(s,)c,s(outFan

)m ,m call(s,-Number ji =

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≠

≠

j
 m

i
m

, s scenarioof execution the in n times
j

m
bydirectly invoked been not has

i
m iff . 0

j m im
, s scenarioof execution the in n times
j

mby directly invoked been has
i

m n. iff

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

40

Step 3. Instrument the subject system.
A set of objects of class _FunctionTracer are used

as software trigger. Utilizing Open C++, we instrument
these objects into the subject system.

After studying Open C++, we find it has many
limits to instrument a system. For example it has no
interface to handle global functions, etc. So we
improved it. The improvement is out of scope for this
paper, so we don’t discuss it in detail. The improved
Open C++ is facility to instrument the subject system.

We develop a set of meta objects to implement
software triggers, dynamic information protocol, and
instrumentation mechanism. These meta objects act on
the compiler by MOP(Metaobject Protocol.). During
the base level program compiling, these objects inject
the software trigger into base-level program
automatically. After being compiled, the source codes
have been instrumented and then are delivered to a
regular compiler, linked to supports needed in run-time
(i.e. the implement of dynamic information protocol.).
Thus by employ the reflective mechanism of Open
C++, the instrumented codes and system source codes
are placed at different two levels. The process of
instrumentation is completed in the code analysis
process of open compiler.

For example, after instrumentation, the method
Draw(pDC) is wrapped into a method named void
_occ_Draw (__InteractionInfo* pIInfo,CDC * pDC)
(we call it wrapper method). In the wrapper method, an
object of class _FunctionTracer is declared.When
Draw(pDC) is invoked, the wrapper method is then
invoked. So the object is created while its constructor
runs, the call information is recorded. After Draw(pDC)
returns , its destructor runs, the return information is
recorded. In this way, we obtain traces of the subject
system execution.

Step 4. Run the instrumented system, and collect the
dynamic information .

Software triggers which are injected into the subject
system don’t affect the system behavior but generate
information about method calls and returns while the
system running. In XDRE, the dynamic information is
sent to a block of shared memory, and then filtered and
collected by a process responsible for information
handling, written into a XML file.

Step 5. Calculate metrics from dynamic information
file.

A class name shows the class functionality in many
cases, as well as a method name. When parsing the
dynamic information file to calculate metrics, we force
on the class name and method name regardless of the
object name and method parameters. Based on this,
several overloading methods of a method are regarded
as a same method.

5. Usage of dynamic fan-in and fan-out
metrics

In a system, there are some components that
implement the main functions or main structure. We
call these components as critical components. In our
experience, methods that invoke others frequently or
invoked by others frequently play an important role in
the system performance. So we propose a hypothesis.

Hypothesis: Methods with high fan-in or fan-out
values implement the system main functions in all
probability, and can be used to infer the subject system
functionality. So do the Classes that with high fan-in or
fan-out values.

This will be demonstrated in next section by a case
study.

6. Case study

We have selected a case study of a highway
simulation system to discuss the applicability of the
proposed dynamic metrics, fan-in and fan-out., and
demonstrate the hypothesis we proposed.

6.1. The experiment

The highway simulation system is developed by a
programmer who studied in our Research Center
several years ago. The system simulates buses states
running in a highway linking two cities.

It is required to give out the number of passengers
in each bus and the location of each buses running on
the highway. It is also needed to show passenger ports
information including the number of passengers who
want a bus and the number of buses which will start.

Main classes of this system are CHiwaySystem,
CPassengerPort, CHighWay, and CPassengerList etc.

Using the tool XDRE, the approach we discussed in
section 4 has been applied on the highway simulate
system. Its source code is duplicated firstly, and then
software triggers are developed and injected into it.
The run of instrumented source code results that its
run-time information, i.e. dynamic information, stream
into a block of shared memory. A process responsible
for information collection fetches the information from
the shared memory and filters it, and writes its useful
part into a XML file.

Examination on the XML file, metrics we defined
are calculated.

6.2. Result and Analysis

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

41

The result we obtained suggests that those metrics is
effective to identify critical methods, critical classes,
and can be used to infer the system functionality. The
methods with higher)m,s(inFan i− values are
CPassengerPort::getYQ(), CPassengerPort::getWQ(),
CHighWay::getpYQE(), CHighWay::getpYQW(),
CMyTime::getMinute(), which)m,s(inFan i− values
higher than the average value. After inspected the
source codes, we find those methods just deal with the
critical entities of the system. They return information
about buses that locate in passenger ports or run in the
high way.

The methods with higher)m,s(outFan i− values are
CHiwaySystem::savePortInfo (CString a [] , int &
aSize , CString b [] , int & bSize) and
CHiwaySystem::run (). CHiwaySystem::savePortInfo
(CString a [] , int & aSize , CString b [] , int & bSize)
formalizes and saves running buses states ,
CHiwaySystem::run () realizes all simulate, i.e.
passengers actions ,buses actions (start, run ,stop and
enter stations). The system main function is even
implemented using them.

The class with the highest)C,s(inFan i− is
CPassengerPort in which passengers ports are dealt
with. The class with the highest)C,s(outFan i− is
CHiwaySystem in which all actions of the highway
system are simulated. Both of these classes are
important in this system.

Analysis of the system document and source code
suggests that methods and classes we identified using
fun-in and fan-out metrics just are critical.

This experiment demonstrates dynamic fan-in and
fan-out metrics are clues which assist us to identify
critical components and capture the main
functionalities of the subject system for program
understanding.

Experiment on a simple Client/Serve system also
validates our hypothesis. In this system, methods with
high fan-in and fan-out values are Receive (char * buf ,
int len , int flags), and Send (const char * buf , int len ,
int flags). They are the critical methods and from them
we can infer that the system main business is
communication.

7. Further works

In this paper, some dynamic metrics have been
defined. These metrics depend on a scenario, a
sequence of user inputs triggering actions of the
subject system. For a system, different user input will
generate different scenario, and a scenario is related to
a part of functionality in many case. In order to detect
te critical component of a system and infer its

functionality fully, we should run the system in
different inputs as much as possible and get their
scenarios, and obtain those metrics we proposed under
each scenario considered. An open question is how to
merge those aspects to realize our purpose.

This is the further work we will study.

Acknowledgments

This work is partially supported by the National

Natural Science Foundation of China under Grant Nos.
60473063, the Defence Pre-Research Project of the
‘Tenth Five-Year-Plan’ of China under contract
number 413060601 and the National Research
Foundation for the Doctoral Program of Higher
Education of China under Grant No. 20030701009.

References

[1] G. Canfora, L. Mancini, and M. Tortorella. A Workbench
for Program Comprehension during Software Maintenance.
Proc. 4th Int’l Workshop on Program Comprehension
(IWP96), IEEE Comp. Soc. Press, 1996, pp. 30-39.
[2] P. Linos, Z. Chen, S. Berrier, and B. O'Rourke.A Tool
For Understanding Multi-Language Program Dependencies.
Proc. IEEE 11th Int’l Workshop Program Comprehension
(IWPC 03), IEEE Comp. Soc. Press, 2003, pp. 64-72.
[3]Von Mayrhauser and A.M. Vans. Program Understanding
Behavior During Adaptation of Large Scale Software. Proc.
6th Int'l Workshop Program Comprehension (IWPC 98),
IEEE Comp. Soc. Press, 1998,pp.164-172.
[4] S Henry and K Kafura. Software structure metrics based
on information flow. IEEE Transactions on Software
Engineering, 1981, 7(5):510– 518.
[5] R. Kollman, M. Gogolla, Metric-Based Selective
Representation of UML Diagrams, Proc. 6th European Conf.
Software Maintenance and Reengineering (CSMR 2002).
IEEE, Los Alamitos, 2002.
[6] B. Henderson-Sellers. Object-Oriented Metrics: Measures
of Complexity. Prentice Hall, 1996.
[7] Marius Marin, Arie van Deursen, Leon Moonen.
Identifying Aspects using Fan-In Analysis.
http://csdl2.computer.org/dl/proceedings/wcre/2004/2243/00/
22430132.pdf
[8] Sherif M. Yacoub, Hany H. Ammar, and Tom Robinson.
Dynamic Metrics for Object Oriented Designs. Proceedings
of the 6th International Symposium on Software Metrics
table of contents. pp50 Year of Publication: 1999 ISBN:0-
7695-0403-5
[9] Shepperd, M. J. “Software Engineering Metrics Volume I:
Measures and Validations”. McGraw-Hill International, 1983.
[10] Erich Schikuta, Dynamic Software Metrics,
http://softlib.rice.edu/pub/CRPC-TRs/reports/CRPC-
TR93361.pdf
 [12] ISO/IEC 9126, Information Technology - Software
Product Evaluation - Quality Characteristics and Guidelines
for their use, 1991.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

42

The Concept of Trace Summarization*

Abdelwahab Hamou-Lhadj
University of Ottawa

800 King Edward Avenue
Ottawa, Ontario, K1N 6N5 Canada

ahamou@site.uottawa.ca

* This research is supported by Natural Sciences and Engineering Research Council of Canada (NSERC)

Abstract
Recently, trace analysis techniques have gained a lot

of attention due to the important role they play in
understanding the system behavioral aspects. However,
manipulating execution traces is still a tedious task
despite the numerous techniques implemented in existing
trace analysis tools. The problem is that traces are
extraordinary large and abstracting out their main
content calls for more advanced solutions. In this paper, I
introduce the concept of trace summarization as the
process of taking a trace as input and returning a
summary of the main invoked events as output. A
discussion on how text summarization techniques can be
applied to summarizing the content of traces is presented.

Keywords:
Analysis of program execution, Program analysis for
program understanding, Dynamic Analysis, Reverse
Engineering.

1. Introduction
Dynamic analysis is crucial for understanding the

behavior of a software system. Understanding an object-
oriented (OO) system, for example, is not easy if one
relies only on static analysis of the source code [15].
Polymorphism and dynamic binding, in particular, tend to
obscure the relationships among the system artifacts.

Run-time information is typically represented using
execution traces. Although, there are different kinds of
traces, this paper focuses on traces of routine calls. I use
the term routine to refer to a function, a procedure, or a
method in a class.

Many studies such as the ones presented by Systä [14],
Zayour [17], Lange et al. [8], and Jerding et al. [6] have
shown that, if done effectively, trace analysis can help
with various reengineering tasks such redocumenting the

system behavior, maintaining the system, or simply
understanding the implementation of software features.

However, the large size of traces poses serious
limitations to applying dynamic analysis. To address this
issue, most existing solutions provide a set of fine-grained
operations embedded into tools that software engineers
can use to go from a raw sequence of events to a more
understandable trace content [6, 8, 14, 17]. But due to the
size and complexity of typical and most interesting traces,
this bottom-up approach can be difficult to perform.

In addition, software engineers who have some
knowledge of the system and the domain will most likely
want to have the possibility to perform a top-down
analysis of the trace – They want to have the ability to
look at the ‘big picture’ first and then dig into the details.
Many research studies in program comprehension have
shown that an adequate understanding of the system
artifacts require usually both approaches (i.e. bottom-up
and top-down) [12].

In this paper, I discuss the concept of trace
summarization, which is a process of taking an execution
trace as input and return a summary of its main content as
output. This is similar to text summarization where
abstracts can be extracted from large documents. Using
an abstract, the reader can learn about the main facts of
the document without having to read entirely its content.

Trace summaries can be used in various ways:

• Enable top-down analysis of execution traces,
something that is not supported by most existing
trace analysis tools.

• Recover the documentation of the dynamics of a
software system that suffers from poor to non-
existent documentation.

• Uncover inconsistencies that may exist between
the way the system is designed and its
implementation. This can be achieved by

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

43

mailto:ahamou@site.uottawa.ca

comparing the extracted models to the models
created during the design phase [6, 11]. The
analysis of these inconsistencies can help
determine areas of the system that need
reengineering.

The rest of this paper is organized as follows: In the
next section, I discuss trace summarization from the
perspective of text summarization techniques and show
the similarity between the two fields. In Section 3, I
discuss how a summary can be validated.

Most of the concepts presented in this paper are still
fresh ideas that constitute an ongoing research. They will
need to be validated in the future.

2. What is Trace Summarization?
In general, a text summary refers to an abstract

representing the main points of a document while
removing the details.

Jones [7] defines a summary of a text as “a derivative
of a source text condensed by selection and/or
generalization on important content”. Similarly, I define a
summary of a trace as an abstract representation of the
trace that results from selecting the main content by both
selection and generalization.

Although, this definition is too specific to be used to
define a summary of a trace, it points towards several
interesting questions that deserve further investigation.
These are: what would be a suitable size for the
summary? And how should the selection and
generalization of important content be done?

2.1 Adequate Size of a Summary
While it is obvious that the size of a summary should

be considerably smaller than the size of the source
document, it seems unreasonable to fix the summary’s
size in advance.

In fact, a suitable size of a summary of a trace will
depend in part upon the knowledge the software engineer
has of the functionality under study, the nature of the
function being traced and the type of problem the trace is
being used to solve (debugging, understanding, etc.). This
suggests that any tool should allow the summary to be
dynamically expanded or contracted until it is right for
the purpose at hand. I suggest that no matter how large
the original trace, there will be situations when a
summary of less than a page will be ideal, and there will
be situations where a summary of several thousand of
lines may be better.

2.2 Content Selection
In text summarization, the selection of important

content from a document is usually performed by ranking
the document phrases according to their importance.
Importance is measured using various techniques. In what
follows, I present the most classical techniques and
discuss their applicability to trace summarization.

Perhaps, the most popular technique for building text
summaries is the word distribution method [4, 9]. This
method is based on the assumption that the most frequent
words of a document represent also its most important
concepts. Once the word frequencies are computed, the
document phrases are ranked according to the number of
the most frequent words they contain. Similarly, one
possible way of selecting the most important events from
a trace is to examine their frequency distribution.

In fact, frequency analysis has also been used in
various contexts of dynamic analysis. Profiles, for
example, use the number of times specific events are
executed to enable software maintainers prevent
performance bottlenecks. In [1], Ball introduces the
concept of Frequency Spectrum Analysis which is a
technique that aims to cluster the trace components
according to whether they have similar frequencies or not.
This can help recover the system architecture.

However, the application of frequency analysis to
select important events from execution traces raises
several issues. First, the fact that traces contain several
repetitions due to the presence of loops and recursion in
the source code might render the results of frequency
analysis inaccurate. For example, there is no evidence that
something that is called ten times due to a loop would be
more or less important than a routine that is called once or
twice just because it did not happen to be in a repetitive
code. Second, something that is repeated several times in
one trace might not have the same behavior in another
trace. Finally, our experience with using traces has shown
that even if we remove the most frequent event from
traces, traces will still be very large for humans to
understand, which might make this technique useful but
far from sufficient.

Another text summarization technique is the cue
phrases method, which is based on the idea that most
texts contain phrases that can lead to the identification of
important content (e.g., “in conclusion”, “the paper
describes”, etc) [4]. Similarly, the routine names can be
used to extract important routines assuming that the
system follows strict naming conventions. For example,
during the exploration of a trace generated from a system
that implements the C4.5 classification algorithm [16],
my colleagues and I found that many routines are actually
named according to the various steps of the algorithm

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

44

such as buildClassifier, buildTree, etc. The ‘cue routines
(or events)’ technique is certainly a powerful approach
for building summaries from traces. However, in order to
be successful, it requires having a system that follows
some sort of naming conventions. In addition to this,
there is a need to deal with the various naming matching
issues that might occur. For example, some routine names
might use acronyms or short names which might
complicate the matching process.

The third text summarization technique discussed in
this paper is the location of phrases in the document [2].
The idea is that the position of sentences in a document
can be an indicator of how important they are. In text
summarization, the first and last phrases of a paragraph
are usually the ones that convey the most relevant
content.

When applied to traces, we need to investigate whether
the location of routines in the call tree (i.e. trace) can play
a relevant role in determining their importance. There are
certainly situations where this can be valid. For example,
if the system is designed according to a layered
architecture then the bottom layers are perhaps the ones
that are the least important since they implement the
system low-level details. These usually appear in the call
tree as leaf nodes.

Some thoughts: a trace can be viewed according to two
dimensions: vertical and horizontal dimensions as shown
in Figure 1. The vertical dimension reflects the sequential
nature of the execution of the system. One possible
scenario for applying the location technique is based on
the ability to partition the trace into smaller sequences
that depict different behavioral aspects of the system, and
then select the first calls of each sequence and add them
to the summary. This is like having a text composed of
many sequential paragraphs and that the summarizer
needs to visit each of them. It is obvious that in practice
this might not be easy to perform. Indeed, the partitioning
of a trace might be challenging. And even if it is done
successfully, we might end up having a considerably
large number of partitions where some of them do not
necessarily convey the most important content.

The horizontal dimension focuses on the fact that a
trace is viewed as a tree structure containing many levels
of calls. The idea is to develop a level analysis technique
in order to detect the levels that introduce trace
components used as mere implementation details. For
example, the routines that appear always in the first levels
of the tree might represent the system high-level concepts
whereas the ones that appear at all levels might be utilities
(because they are called by many other routines).

Figure 1. The vertical and horizontal views

of a call tree

2.3 Content Generalization
Content generalization consists of generalization of

specific content with more general abstract information
[7]. When applied to execution traces, generalization can
be performed in two ways:

The first approach to generalization involves assigning
a high-level description to selected sequences of events.
For example, many trace analysis tools provide the users
with the ability to select a sequence of calls and replace it
with a description expressed in a natural language.
However, this approach relies on user input and would be
very hard to automate.

A second approach to generalization relies on treating
similar sequences of execution patterns as if they were the
same. This approach can be automated by varying the
similarity function. For example, in the simplest case all
sequences with the same elements, ignoring order, could
be treated the same. Or, all subtrees that differ by only a
certain edit distance could be treated the same. All trace
summarization approaches will need to use this technique
to some extent.

For example, the call tree of Figure 1 can be
summarized into the tree shown in Figure 2 by ignoring
the number of contiguous repetitions of the node labeled
‘C’ and by comparing subtrees up to level 2 (this will
ignoring the node ‘E’). A discussion on how matching
criteria can be used to reduce the size of a trace is
presented by De Pauw et al. [3].

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

45

.

Figure 2. A summary extracted from the tree of
Figure 1 by applying generalization

However, it might be hard to determine how the
matching criteria should be combined in order to extract
the most meaningful content. Different combinations will
most likely result in different summaries. Tools that
support the generation of summaries will need to allow
enough flexibility to apply the matching criteria in several
ways.

3. Validating a Trace Summary
Perhaps, one of the most difficult questions when

evaluating a summary is to agree about what constitutes a
good summary. In other words, what distinguishes good
summaries from bad summaries (assuming that there are
bad summaries)?

In text summarization, there are two techniques for
evaluating summaries: extrinsic and intrinsic evaluation.
The extrinsic evaluation is based on evaluating the quality
of the summary based on how it affects the completion of
some other tasks [5]. The intrinsic evaluation consists of
assessing the quality of the summary by analyzing its
content [10]. Using this approach, a summary is judged
according to whether it conveys the main ideas of the text
or not, how close it is to an ideal summary that would
have been written by the author of the document, etc.

Extrinsic evaluation of a trace summary will typically
involve using summaries to help with various software
maintenance tasks such as adding new features, fixing
defects, etc.

The intrinsic evaluation technique can be used to
assess whether the extracted summary reflect a high-level
representation of the traced scenario that would be similar
to the one that a software engineer would design. In
practice, I suspect that both types of evaluations are
needed.

4. Conclusions and Future Directions
The objective of this paper is to present a technique for

analyzing traces based on summarizing their main
content. This technique is referred to as Trace
Summarization, which the process of taking a trace as
input and generating an abstract of its main content as
output. I argued that summaries can be very useful to

software engineers who want to perform top-down
analysis of a trace, understand the system behavior, or
uncover inconsistencies between the system design and
its actual implementation.

In the paper, a discussion on how text summarization
techniques can be applied to extracting summaries from
trace is presented.

Future directions should focus on examining the
techniques presented in this paper in more detail
including experimenting with several traces. The
experiments should take into account systems of different
domains, the expertise software engineers have of the
system, and the type of software maintenance performed.

References
[1] T. Ball, “The Concept of Dynamic Analysis”, ACM

Conference on Foundations of Software Engineering
(FSE), September 1999

[2] P. Baxendale, “Machine-made index for technical
literature – an experiment”, IBM. Journal of
Research and Development 2:354-361, 1958

[3] W. De Pauw, D. Lorenz, J. Vlissides, M. Wegman,
“Execution Patterns in Object-Oriented
Visualization”, In Proc. of the 4th USENIX
Conference on Object-Oriented Technologies and
Systems (COOTS), Santa Fe, NM, 1998, pp. 219-
234

[4] H. Edmundson, “New methods in automatic
extracting”, Journal of the ACM 16(2): 264-285,
1969

[5] H. R. Jing, K. McKeown, and M. Elhadad,
“Summarization evaluation methods: Experiments
and analysis”, In Working Notes of the AAAI Spring
Symposium on Intelligent Text Summarization,
1998, pp. 60-68

[6] D. Jerding, S. Rugaber. “Using Visualization for
Architecture Localization and Extraction”, In Proc.
of the 4th Working Conference on Reverse
Engineering, Amsterdam, Netherlands, October
1997

[7] S. K. Jones, “Automatic summarising: factors and
directions”, In Advances in Automatic Text
Summarization, MIT Press, 1998, pp. 1-14

[8] D. B. Lange, Y. Nakamura, “Object-Oriented
Program Tracing and Visualization”, IEEE
Computer, 30(5), 1997, pp. 63-70

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

46

[9] H. Lunh, “The Automatic Creation of Literature
Abstracts”, IBM Journal of Research and
Development 2(2): 159-165, 1958

[10] C. Paice, and P. Jones, “The identification of
Important Concepts in Highly Structured Technical
Papers”, In Proc. of the 16th Annual International
ACM SIGR Conference on research and
Development in Information retrieval, 1993, pp. 69-
78

[11] Reiss S. P., Renieris M., “Encoding program
executions”, In Proc. of the 23rd international
conference on Software Engineering, Toronto,
Canada, 2001, pp. 221-230

[12] M.A. Storey, K. Wong, H.A. Müller, “How do
Program Understanding Tools Affect how
Programmers Understand Programs?”, In Proc. of
the 4th Working Conference on Reverse
Engineering, 1997, pp. 183 - 207

[13] T. Strzalkowski, G. Stein, J. Wang, B. Wise,
“Robust Practical Text Summarization”, In
Advances in Automatic Text Summarization, MIT
Press, 1999

[14] T. Systä, “Understanding the Behaviour of Java
Programs”, In Proc. of the 7th Working Conference
on Reverse Engineering (WCRE), Brisbane, QL,
2000, pp. 214-223

[15] N. Wilde, R. Huitt, “Maintenance Support for
Object-Oriented Programs”, Transactions on
Software Engineering, 18(12):1038–1044, Dec.
1992

[16] Witten I. H., Frank E. Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations, Morgan Kaufmann, 1999

[17] I. Zayour, “Reverse Engineering: A Cognitive
Approach, a Case Study and a Tool”, Ph.D.
dissertation, University of Ottawa, 2002

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

47

Applying Semantic Analysis to Feature Execution Traces

Adrian Kuhn, Orla Greevy and Tudor Gı̂rba
Software Composition Group

University of Bern, Switzerland
{akuhn, greevy, girba}@iam.unibe.ch

Abstract

Recently there has been a revival of interest in feature
analysis of software systems. Approaches to feature loca-
tion have used a wide range of techniques such as dynamic
analysis, static analysis, information retrieval and formal
concept analysis. In this paper we introduce a novel ap-
proach to analyze the execution traces of features using La-
tent Semantic Indexing (LSI). Our goal is twofold. On the
one hand we detect similarities between features based on
the content of their traces, and on the other hand we cat-
egorize classes based on the frequency of the outgoing in-
vocations involved in the traces. We apply our approach on
two case studies and we discuss its benefits and drawbacks.

Keywords: reverse engineering, dynamic analysis, se-
mantic analysis, features, feature-traces, static analysis.

1. Introduction

Many reverse engineering approaches to software anal-
ysis focus on static source code entities of a system, such
as classes and methods [5, 16]. A static perspective consid-
ers only the structure and implementation details of a sys-
tem. Using static analysis alone we are unable to easily de-
termine the roles of software entities play in the features of
a system and how these features interact. Without explicit
relationships between features and the entities that imple-
ment their functionality, it is difficult for software develop-
ers to determine if their maintenance changes cause unde-
sirable side effects in other parts of the system.

Several works have shown that exercising the features of
a system is a reliable means of correlating features and code
[7, 24]. In previous works [9, 10], we described a feature-
driven approach based on dynamic analysis, in which we
extract execution traces to achieve an explicit mapping be-
tween features and software entities like classes and meth-
ods. Our definition of a feature is a unit of behavior of a sys-
tem.

Dynamic analysis implies a vast amount of informa-
tion, which makes interpretation difficult. We introduce a
novel approach that uses an information retrieval technique,
namely Latent Semantic Indexing (LSI) [4], to analyze the
traces and their relationship to the source code entities. LSI
takes as an input a set ofdocumentsand thetermsused, and
returns a similarity space from which similarities between
the documents are ascertained.

In a previous work, we built a reverse engineering ap-
proach to cluster the source code entities based on their se-
mantic similarities [13]. In this paper we apply our approach
on dynamic information. In other words we use the traces
of features as thetext corpusand we sample this corpus in
two different ways to show the generality of our approach.

1. To identify similar features, we use as a document the
trace and the method calls involved in the trace as the
terms of the document.

2. To identify similarities between classes, we use the
classes that participate in feature execution as docu-
ments, and all method calls found in the traces outgo-
ing from a class as the terms of the document.

Structure of the paper. We start by introducing the ter-
minology we use to describe and interpret dynamic infor-
mation. In Section 3 we give an overview of LSI. In Sec-
tion 4 we describe the details of our approach. In Section 5
we report on the two case studies conducted. We summa-
rize related work in Section 7. Section 8 outlines our con-
clusions and future work.

2. Feature Terminology

In this section we briefly outline the feature terminology
we use. The terms here are based on our previous work [9].

We establish the relationship between the features and
software entites by exercising the features orusage sce-
nariosand capturing their execution traces, which we refer
to asfeature-traces. A feature-traceis a sequence of run-
time events (e.g.,object creation/deletion, method invoca-
tion) that describes the dynamic behavior of a feature.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

48

«single feature»
ClassB

F1

F2

F3

F4

F5

«group feature»
ClassC

«infrastructural»
ClassD

«infrastructural»
ClassD

Group classes

Single classes

Infrastructural
classes number of

 classes = 2

«single feature»
ClassA

«not covered»
ClassX

Feature-fingerprintsClasses

Figure 1. Feature-Fingerprints and Classes
Relationships

We define the measurementsNOFC to compute the
number of feature-traces that reference a class andFC to
compute a characterization of a class in terms of how many
features reference it and how many features are currently
modeled.NOF refers to the number of feature-traces un-
der analysis.

• Not Covered (NC) is a class that does not partici-
pate to any of the features-traces of our current fea-
ture model.

(NOFC = 0)→ FC = 0

• Single-Feature (SF) is a class that participates in only
one feature-trace.

(NOFC = 1)→ FC = 1

• Group-Feature (GF) is a class that participates in less
than half of the features of a feature model. In other
words, group-feature classes/methods provide func-
tionality to a group of features, but not to all features.

(NOFC > 1) ∧ (NOFC < NOF/2)→ FC = 2

• Infrastructural (I) is a class that participates in more
than half of the features of a feature model.

(NOFC >= NOF/2)→ FC = 3

Feature characterizations of classes attach semantic sig-
nificance to a class in terms of its role in a feature. Our
feature characterization approach reduces the large feature-
traces to consider only the relationships between features
and software entities. Information about the frequency of
references to a method or class in a feature-trace is not taken
into consideration.

3. Semantic Driven Software Analysis

Common software analysis approaches focus on struc-
tural information and ignore the semantics of the problem
and solution domain semantics. But this information is es-
sential in getting a full interpretation of a software system
and its meaning. As an example: the class structure of a text
processor, a physical simulation or a computer game might
all look the same; but the naming of the source code will
differ, since each project uses its own domain specific vo-
cabulary.Semantic driven software analysisgathers this in-
formation from the comments, documentation, and identi-
fier names associated with the source code using informa-
tion retrieval methods.

Our semantic analysis tool Hapax [13] useslatent se-
mantic indexing, a state of the art technique in information
retrieval to index, retrieve and analyze textual information
[4]. LSI treats the software system as a set of text docu-
ments and analyzes how terms are spread over the docu-
ments. Principal components analysis is used to detect con-
ceptual correlations and provides a similarity measurement
between both documents and terms.

As most text categorization systems, LSI is based on the
Vector Space Model (VSM) approach. This approach mod-
els the text corpus as a term-document matrix, which is a
tabular listing of mere term frequencies. Originally LSI was
developed to overcome problems with synonymy and poly-
semy that occurred in prior vectorial approaches. It solves
this problem by replacing the full term-document matrix
with an approximation. The downsizing is achieved with
Singular Value Decomposition (SVD), a kind of Principal
Components Analysis originally used in Signal Processing
to reduce noise. The assumption is that the original term-
document matrix is noisy (the aforementioned synonymy
and polysemy) and the approximation is then interpreted as
a noise reduced – and thus better – model of the text cor-
pus.

Even though search engines [2] are the most com-
mon usage of LSI, there is a wide range of applications,
such as: automatic essay grading [8], automatic assign-
ment of reviewers to submitted conference papers [6],
cross-language search engines [15], thesauri, spell check-
ers and many more. As a model, LSI has been used to sim-
ulate language processing of the human brain, such as the
language acquisition of children [14] and high-level com-
prehension phenomena like metaphor understanding,
causal inferences and judgments of similarity.

3.1. Semantic Clustering at Work

To get a semantic model of the software system, we im-
plemented the following four steps:

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

49

1. First, we split the software system into text documents.
While static approaches work with the source code of
classes or methods, in this paper we use the textual rep-
resentation of feature-traces as documents.

2. The second step counts the frequencies of term occur-
rences in the documents. A term is any word found in
the source code or comments, except keywords of the
programming language. Identifiers are separated based
on standard naming conventions (e.g.,camel-case).

3. Then singular value decomposition, a principal com-
ponents analysis technique, is applied on the term oc-
currence data. This yields an index with conceptual
correlations and similarities between both documents
and terms. More in-depth information on using LSI is
given in [4, 2].

4. To understand this semantic correlations, we group the
documents using a hierarchical clustering algorithm.
We visualize the clusters on a shaded correlation ma-
trix. A shaded correlation matrix is a square matrix
showing the similarity between documents in gray col-
ors. The color atmi,j shows the similarity between the
i-th and thej-th document: the darker the color, the
more similar these two documents. The visualization
algorithm itself is detailed in [13].

4. Our Approach

The novelty of our approach is the combination between
dynamic analysis and semantic analysis. Our paper has two
goals: to detect similarities between traces, and to detect
similarities between classes based on their involvement into
the traces.

We outline how we apply our technique to obtain a se-
mantical analysis on top of feature-traces from a software
system.

1. We instrument the code of the the application under
analysis and execute a set of its features as described
in Section 6. Our dynamic analysis toolTraceScraper
extracts execution traces and models them as a tree
of method invocation calls. We treat feature-traces as
first class entities and incorporate them into the static
model of the source code. By doing so we establish
the relationships between the methods calls of the fea-
ture traces and the static model class and method en-
tities. We compute the feature characterizations of the
classes as described in Section 2.

2. Our semantic analysis toolHapax is applied on the
feature-traces. To use the feature-traces as text cor-
pus, we createad-hoctext documents with the method
names found in the feature traces. Hapax applies LSI
on the documents, clusters them and finally delivers a

visualization of document clusters and their similari-
ties. For more detail refer to Section 3.1.

a()

c()

b()

Trace X

a()

a()

Trace Y

b()a() c()

Trace X

Trace Y

11 1

02 0

terms

do
cu

m
en

ts

Figure 2. Example of how traces form docu-
ments and the method calls form the terms.

Both tools are built on top of our reverse engineering
framework Moose [19], that provides a generic mechanism
which allows for an easy composition of different tools. Be-
cause of that, we could easily integrate the two tools to per-
form the semantic analysis on the traces.

5. Validation: Ejp-Presenter and Smallwiki

In this section we present the results of applying our ap-
proach to theEjp-presenterand theSmallWikicase studies.

Ejp-presenter[22] is an open source tool written in java
which provides a graphical user interface for viewing ex-
ecution traces of java programs. It consists of 166 classes.
To obtain feature traces we instrumented 13 unit tests pro-
vided with the application. Our assumption was that each
unit test exercised a distinct feature.

SmallWiki [20] is a collaborative content management
system used to create, edit and manage hypertext pages on
the web. It is implemented in Smaltalk and consists of 464
classes. To identify features ofSmalWikiwe associate fea-
tures with the links and entry forms of theSmallWikipages.
We assume that each link or button on a page triggers a dis-
tinct feature of the application. For this experiment we exe-
cuted 6 features.

As mentioned in the introduction we tackle the case stud-
ies at two levels of abstraction, once using features and once
using classes as granularity.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

50

Figure 3. Correlation matrix with the features
of Ejp-Presenter, showing well distributed
concepts.

Figure 4. Correlation matrix with the features
of Smallwiki, showing one concept only.

5.1. Identifying Similar Features

To identify similar features, we use the feature-traces as
documents and the method calls involved in a trace as terms.
Similar features are clustered together, and the clusters vi-
sualized on a shaded correlation matrix. The visualization
reveals the semantic similarity between the features, show-
ing how they are related to each other.

Figure 3 shows theEjp-presentercase study. Its features
are well distributed: there are 6 clusters of different sizes,
and – as indicated by the gray blocks in the off-diagonal –
different correlations among them.

This is a list with the features in each cluster, starting
from top left to bottom right:

1. boolean parameter, string list parameter, radio param-
eter, and remove non significant.

2. loaded method and loaded class.

3. configuration and mainframe.

4. dom.

5. highlight hotspot and color parameter.

6. file chooser dialog and color chooser.

The names shown in the above listing are of a descriptive
nature, and not part of the vocabulary used by the Informa-
tion Retrieval engine itself. Thus we can judge, based on
them, that the analysis revealed meaningful correlations.

Figure 4 shows theSmallWikicase study. Because its fea-
tures use similar methods, they belong to the same semanti-
cal concept. A closer look at the feature-traces reveals that
SmallWikihas a very generic structure, and the traces are
not discriminated by their method usage but by the parame-
ters passed to their methods. Taking only the method names
into account, our approach fails discriminating these fea-
tures.

5.2. Identifying Similar Classes

In Section 2 we give a characterization of classes based
on their structural relationship to features. In Section 3.1 we
show how we retrieve a characterization of classes based on
their semantic correlation.

To identify the semantic correlation between classes, we
use the classes as documents, and all method invocations
originating from a class as terms. Thus classes with simi-
lar outgoing method invocations are clustered together, that
is classes that are based on the same functionality belong
to the same cluster. We expect these clusters to match with
the ‘feature terminology’ characterization, sincesingle fea-
ture classes are based ongroup featureclasses with in turn
are based oninfrastructureclasses.

Figure 5 reveals seven semantical clusters of different
shape. In Table 1 we compare theses clusters – numbered
from top left to bottom right – with the ‘feature terminol-
ogy’ characterization.

And in fact, the two characterizations – once based on se-
mantical analysis, once based on structural analysis – match
pretty well.

6. Discussion

The large volume of information and complexity of dy-
namic information makes it hard to infer higher level of in-
formation about the system.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

51

cluster #1 #2 #3 #4 #5 #6 #7
single 19 4 – – 1 3 1
group 4 6 2 – – – –
infra. – – – 1 – – –
size 23 10 2 1 1 3 1

Table 1. The clusters from Figure 5 and the
types of classes contained.

Figure 5. Correlation matrix with Ejp-
Presenter classes, based on their usage in
features-traces.

Coverage.We limit the scope of our investigation to fo-
cus on a set of features. Our feature model does not achieve
100% coverage of the system. For the purpose of feature lo-
cation, complete coverage is not necessary. However, LSI
analysis yields better results on a large text corpus. There-
fore to improve our results, we need to increase the cover-
age of the application by exercising more of its features.

Trace as Text Corpus.In this paper, we build the text
corpus from the names of the methods that get called from
the studied traces. When applying the approach toSmall-
Wiki, the result was not very relevant becauseSmallWikihas
a generic structure and the difference between traces is not
given by the method names, but by the actual parameters
passed to the methods. Hence, a variation of the approach
would be to take the actual parameter names into consider-
ation when building the text corpus.

Language Independence.Obtaining the traces from
the running application requires code instrumentation. The
means of instrumenting the application is language depen-
dent.Ejp-presenteris implemented in java. To instrument
it we used theEjp (Extensible Java Profiler)[22] based on
the Java Virtual Machine Profiler Interface (JVMPI).Small-

Wiki is implemented in Smalltalk. Our Smalltalk instrumen-
tation is based on method wrappers [3].

We abstract a feature model from the traces we obtain
by exercising the features of the instrumented system. Our
analysis is performed on the feature model and is therefore
language independent.

7. Related Work

Many researchers have identified the potential of feature-
centric approaches in software engineering and in particu-
lar as a basis for reverse-engineering [7, 23, 24]. Our work
is directly related to the field of dynamic analysis [1, 11, 25]
and user-driven approaches [12].

Feature location techniques such asSoftware Recon-
naissencedescribed by Wilde and Scully [23] , and that
of Eisenbarth et al. [7] are closely related to our feature
location approach. In contrast, our main focus is applying
feature-driven analysis to object-oriented applications.

LSI has been recently proposed in static software anal-
ysis for various tasks, such as: identification of high-level
conceptual clones [18], recovering links between external
documentation and source code [17], automatic categoriza-
tion of software projects in open-source repositories [21]
and visualization of conceptual correlations among soft-
ware artifacts [13].

8. Conclusions and Future Work

Reverse engineering approaches that focus only on the
implementation details and static structure of a system over-
look the dynamic relationships between the different parts
that only appear at runtime. Our approach is to comple-
ment the static and dynamic analysis by building a model
in which features are related to the structural entities.

Dynamic analysis offers a wealth of information, but it
is exactly the wealth of information that poses the problem
in the analysis. To deal with it, we employed Latent Seman-
tic Indexing, an information retrieval technique that works
with documents and terms . Our goals were to identify re-
lated features and to identify related classes that participate
in features. We use the method calls from the traces as the
text corpus and then we use two mappings to documents:
(1) traces as documents, and (2) classes as documents. We
clustered the documents based on the terms used to find re-
lationships between them.

The results obtained on two case studies are promising,
yet we did encounter problems with only considering the
method names as text corpus. From our findings we con-
clude that more work is needed to assess the different varia-
tions of the approach. Furthermore, LSI yields better results
on large text corpus, hence we also need to apply our ap-

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

52

proach on larger case studies or to achieve a higher cover-
age of the system by our feature-traces.

Acknowledgments:We gratefully acknowledge the finan-
cial support of the Swiss National Science Foundation for
the project “RECAST: Evolution of Object-Oriented Applica-
tions” (SNF Project No. 620-066077).

References

[1] T. Ball. The Concept of Dynamic Analysis. InProceedings
of ESEC/FSE ’99 (7th European Software Engineering Con-
ference and 7th ACM SIGSOFT International Symposium on
the Foundations of Software Engineering, number 1687 in
LNCS, pages 216–234, sep 1999.

[2] M. W. Berry, S. T. Dumais, and G. W. O’Brien. Using lin-
ear algebra for intelligent information retrieval. Technical
Report UT-CS-94-270, 1994.

[3] J. Brant, B. Foote, R. Johnson, and D. Roberts. Wrappers
to the Rescue. InProceedings ECOOP ’98, volume 1445 of
LNCS, pages 396–417. Springer-Verlag, 1998.

[4] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Fur-
nas, and R. A. Harshman. Indexing by latent semantic analy-
sis. Journal of the American Society of Information Science,
41(6):391–407, 1990.

[5] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refac-
torings via change metrics. InProceedings of OOPSLA
’2000 (International Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications), pages
166–178, 2000.

[6] S. T. Dumais and J. Nielsen. Automating the assignment of
submitted manuscripts to reviewers. InResearch and Devel-
opment in Information Retrieval, pages 233–244, 1992.

[7] T. Eisenbarth, R. Koschke, and D. Simon. Locating Fea-
tures in Source Code.IEEE Computer, 29(3):210–224, Mar.
2003.

[8] P. W. Foltz, D. Laham, and T. K. Landauer. Automated es-
say scoring: Applications to educational technology. InPro-
ceedings of EdMedia ’99, 1999.

[9] O. Greevy and S. Ducasse. Correlating features and code us-
ing a compact two-sided trace analysis approach. InPro-
ceedings of CSMR 2005 (9th European Conference on Soft-
ware Maintenance and Reengineering, pages 314–323. IEEE
Computer Society Press, 2005.

[10] O. Greevy, S. Ducasse, and T. Gı̂rba. Analyzing feature
traces to incorporate the semantics of change in software
evolution analysis. InProceedings of ICSM 2005 (21th Inter-
national Conference on Software Maintenance), pages 347–
356. IEEE Computer Society Press, Sept. 2005.

[11] A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge.
Recovering behavioral design models from execution traces.
In Proceedings of CSMR 2005 (9th European Conference on
Software Maintenance and Reengineering. IEEE Computer
Society Press, 2005.

[12] I. Jacobson. Use cases and aspects—working seamlessly to-
gether.Journal of Object Technology, 2(4):7–28, July 2003.

[13] A. Kuhn, S. Ducasse, and T. Gı̂rba. Enriching reverse en-
gineering with semantic clustering. InProceedings of Work-
ing Conference On Reverse Engineering (WCRE 2005), Nov.
2005. to appear.

[14] T. Landauer and S. Dumais. The latent semantic analysis the-
ory of acquisition, induction, and representation of knowl-
edge. InPsychological Review, volume 104/2, pages 211–
240, 1991.

[15] T. Landauer and M. Littmann. Fully automatic cross-
language document retrieval using latent semantic indexing.
In In Proceedings of the 6th Conference of the UW Centre
for the New Oxford English Dictionary and Text Research,
pages 31–38, 1990.

[16] M. Lanza and S. Ducasse. A Categorization of Classes
based on the Visualization of their Internal Structure: the
Class Blueprint. InProceedings of OOPSLA ’01 (Inter-
national Conference on Object-Oriented Programming Sys-
tems, Languages and Applications), pages 300–311. ACM
Press, 2001.

[17] A. Marcus and J. Maletic. Recovering documentation-to-
source-code traceability links using latent semantic indexing.
In Proceedings of the 25th International Conference on Soft-
ware Engineering (ICSE’03), pages 125–135, May 2003.

[18] A. Marcus and J. I. Maletic. Identification of high-level con-
cept clones in source code. InProceedings of the 16th In-
ternational Conference on Automated Software Engineering
(ASE 2001), pages 107–114, Nov. 2001.

[19] O. Nierstrasz, S. Ducasse, and T. Girba. The story of
Moose: an agile reengineering environment. InProceedings
of ESEC/FSE 2005, pages 1–10. ACM, 2005. Invited pa-
per.

[20] L. Renggli. Smallwiki: Collaborative content manage-
ment. Informatikprojekt, University of Bern, 2003.
http://smallwiki.unibe.ch/smallwiki.

[21] M. M. Shinji Kawaguchi, Pankaj K. Garg and K. Inoue.
Mudablue: An automatic categorization system for open
source repositories. InProceedings of the 11th Asia-Pacific
Software Engineering Conference (APSEC.04), 2004.

[22] S. Vauclair. Extensible java profiler. Masters thesis, EPF
Lausanne, 2003. http://ejp.sourceforge.net.

[23] N. Wilde and M. C. Scully. Software reconnaisance: Map-
ping program features to code.Software Maintenance: Re-
search and Practice, 7(1):49–62, 1995.

[24] W. E. Wong, S. S. Gokhale, and J. R. Horgan. Quantifying
the closeness between program components and features.J.
Syst. Softw., 54(2):87–98, 2000.

[25] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Ap-
plying webmining techniques to execution traces to sup-
port the program comprehension process. InProceedings of
CSMR 2005 (9th European Conference on Software Main-
tenance and Reengineering. IEEE Computer Society Press,
2005.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

53

Enhancing Static Architectural Design Recovery by Lightweight Dynamic
Analysis

(Position Paper)

Andrew Malton
Atousa Pahelvan

{ajmalton,apahleva}@uwaterloo.ca
Software Architecture Group

University of Waterloo

Abstract
Architectural views of software systems recovered

from static analysis of source code often mask what is
really going on, because the dependencies which are
visible by static analysis cannot reveal views which are
part of the dynamic mental model of the developers.
Nevertheless, the static view is always a starting point.
In this work we attempt a minimal dynamic analysis,
performed using simple available tools and without
invasion of the software system, aimed specifically at
resolving the ambiguities of a purely static architecture.

1 Introduction
The subjects of our analyses are software systems

available as source code and related artefacts. By
means of static analysis, essentially fact extraction
[Lin], reflexion [Murphy], and visualization [Finnigan],
we try to capture the mental model [Holt,Fowler] of the
system’s developers. In Kruchten’s terminology
[Kruchten] we are reconstructing a development view
from the available artefacts, and producing a model in a
disciplined style (that is, the landscape view
[Finnigan]) which then has meta-properties which we
can predict: browsable as a landscape (see, e.g.,
[Bowman]), explorable using a catalogue of abstraction
patterns [Bull], exchangable using standard exchange
languages [GXL].
Static fact extraction provides the kind of information

which a compiler can obtain about a program, and
about a whole system when the “build time
architecture” [Tu] is considered as a whole. A fact base
is really a representation of the symbol table of the
compiler (or of some other related build-time tool such
as a pre-processor, or linker) as a simple relational
database. Such “facts” are the ground of static reverse
engineering, so that a static view basically “only knows
what the compiler knows”.
With reflexion, which is a disciplined way of drawing

on the knowledge of domain experts, a view of the

software architecture can be built which goes past the
pure static analysis. However, when the goal is a well
structured development view, basically still a static
view, the information drawn from the expert still only
tells us about modules, subsystems, and dependencies
which are “always true” because they are the static
view. Even though the expert may have a mental
model of the dynamics of the system, that will not be
revealed, at least not recovered and represented, by a
static reflexion model.

A B C D

Figure 1

A B C D

Figure 2

2 The Limitations of the Landscape View
The landscape view of a large software system is a

presentation which allows the huge amount of detailed
information to be viewed at many levels of detail: the
metaphor is that of viewing a landscape “from above”,
as it were from an airplane (or from Google maps!),
zooming in to see detail, or out to see the big picture.
The basic outline is static: containment structures and
relationships visible from static analysis of the code.
A simple example shows the sort of problem which

arises when recovering the static architecture of an
imagined software system from its code base. In
Figure 1, there appears the expected architecture:
probably the expert view. It is a pipeline of four
processes. Typically process A would be obtaining an
event stream from an external source (e.g. a user) and
translating it to an internal form: processes B and C
would be performing operations on the model based on
the events; and process D would be translating model
changes back into external events.
In Figure 2 we see the result of static architectural

recovery on a code base for such a system. The static
structure does not resemble the pipeline in the least! It
appears that the subsystem B is the control centre,
pulling data from A and maintaining the domain
repository. Subsystem C does its work under B's

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

54

control and using B's representation: so the dependence
is mutual. And D receives control from C and data
from B.
Of course, certainly, the view in Figure 2 is ”true”,

and an explorer must see that landscape in order to
understand the design. But the pipeline is the mental

A

B C

D

Figure 3

model of the designers, as stated above. In order to
recover and visualize the architecture in keeping with
that mental model, we need information about the
actual behaviour, such as would be drawn as a
“communication diagram” of some sort in the UML.
In large systems the mismatch between the static view

and the process view [Kruchten] can be particularly
wide. Because large systems tend to evolve into layers,
with lower layers providing services to upper layers,
the desired “official picture” of the system is obscured
by universal dependency on utility libraries, or the fact
that key interactions (data flow, signaling, event
handling) are mediated by other parts of the system. In
the worst case a dependency clique (Figure 3) appears
at the top level of the landscape, ultimately telling us
nothing except the names of the top-level subsystems.

3 Lightweight Dynamic Analysis
Above we discuss the need for actual behavioural

information. This need is quite specific, viz., to
annotate or enrich a basically static view of the
architecture, or to display that static view in a manner
more in keeping with the mental model of the
designers, who know the subsystem interaction
patterns. Thus we attempt a focused dynamic analysis,
executing the system and collecting call sequences
which can be visualized simultaneously with the static
architecture. We call this Lightweight Dynamic
Analysis because we mean to gather a minimum of
such information with a minimum intrusion into the
system’s structure.
Our process presupposes a static architecture

(landscape) has been constructed, and consists of the
following steps, some of which have been automated.

3.1 Identifying Key Scenarios
Using an analogue of the reflexion method, we

identify key scenarios of the system usage by
interaction with domain experts and from informal
artefacts (written documentation).

3.2 Identifying Pivotal Functions
Based on the static landscape, which combines

subsystem structure at the highest level of abstraction
with module, method, and function dependencies at
lower levels, we identify pivotal functions, which are
those externally linked entities which most seem to
break the visual knot of static dependencies. For
example (see Figure 3) those functions which
contribute most to the top-level clique are the ones
which we identify as pivotal.
Pivotal functions are similar in spirit to Walkinshaw’s

landmark functions [Walkinshaw], because both classes
of function are chosen to play a role in a scenario and
have the role of reducing the space which is afterwards
covered by dynamic analysis. In our work, we identify
pivotal functions by examining the static architecture:
those functions are chosen as pivotal which have the
most links across subsystem boundaries, and so which
contribute the most to the confusion of a purely static
view. Thus, this step is an automatic analysis of the
landscape.

3.3 Key-Pivotal Interactions
For each key scenario we execute the system in the

debugger (gdb, because we have studied open source C
and C++ software) preceded by a script that requests
breakpoints on entry and exit to each pivotal function.
This step is automated dynamic fact extraction. The

resulting debugger log is reduced to a well-nested
sequence of events of the form

call Pi
return Pi

where Pi is a pivotal function. The well-nesting is
simply the fact that it is a call history, so that each call

A B C D

B()

A()
C()

D()

C()

D()

call-of
depends-on

followed-by

Figure 4

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

55

P is followed by a well-nested subsequence and then by
return P. It's convenient to write a call history in a
nested way, like in LISP, as (Pi (Pj ...) (Pk)).
Figure 4 displays a call history for (B (A) (C (D)) (C

(D))).

3.4 Static / Lightweight Dynamic Visualizations
The landscape visualization technique we use is based

on nested boxes and arrows [Malton]. Although
designed for visualizing static structures, it can be used
for any well-nested relationship, to be designated as
“containment”. Since key-pivotal interactions are well-
nested call histories, they can be visualized in the same
way and even in the same diagram as the static
architecture which we presuppose.
We visualize a call history of a function Pi as a box,

labeled with Pi, which “contains” visualized well-
nested subsequences. We draw a “next” arrow from
each to the next in sequence, as exemplified in Figure
4. We link visualized interactions with their static
structure by drawing a ”from” arrow from a call history
of Pi to the box which represents Pi in the static
architecture.

4 In Practice
We extracted the architecture of three Unix shell

programs (zsd, bash, and (t)csh) following the process
presented in previous section. Each is available in open
source. As we sought a common ‘reference architecure’
which might cover all of them, we studied four releases
of each of the three systems.
The derived static architecture is shown in Figure 5,

in layered fashion. It consists of seven subsystems,
which are divided into three tiers.
The highest tier, Initializer, is a repository for storing

central data (state and shell variables) for a shell
session.
The Process tier is a collection of interdependent

components that carry out command processing: the
Parser parses an input command and selects a suitable
process to execute it. The ReadInput subsystem
handles input from the various sources (files for a non-
interactive shell, keyboard for an interactive user, or
from the command line string), and also handles job
control and forking. The Expand subsystem performs
expansion and substitution on different parts of the
parsed command (pathname expansion, parameter
expansion, variable substitution, and command
substitution). The Execution subsystem actually
executes the commands, e.g. by executing
subprocesses.
The GeneralUtility subsystem provides different

facilities such as pattern matching, string libraries, and
signal handling for other subsystems. It also provides
interface to operating-system-dependent built-in
functions,storage allocator, and error printing routines.
Moreover it has many commonly used functions, which
provide support for the basic functionality needed by
various subsystems.
For this example we choose a simple use case of

entering a direct command with a global variable

GeneralUtilities Library

Parser

Parse_event

Gettoke

ReadInput

Ingetc

Zleread

Execute

Execode

Execcmd

Expand

globlist

Prefork

Initializer

Zsh_main

Loop

Figure 5

Figure 6

Case 1

Parse ReadInput

Zsh_main Loop

Parse_event

Zsh_main Loop

Parse_event Ingetc

ReadInput

Zsh_main Loop

Parse_event Zleread

Execute

Parse_event Execode

Execcmd

Expand

Parse_event globlist

Expand

PreforkParse_event

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

56

subsitution, as for example, cat $FILE1.
Pivotal functions are chosen by analysing the static

dependency graph. The pivotal functions found for
the zsd shell are shown in Figure 5, embedded in their
subsystems. Figure 6 shows the pivotal functions
executed in series for the use case which was chosen.
In this case, all the pivotal functions have unique
names, and so the edges, which normally would be
displayed to link dynamic events (calls and returns) in
the call history to static sources (functions) in the static
architecture, need not be drawn.
Two aspects of browsing these structures are invisible

in our diagrams. We use the lsedit tool to explore
landscapes, including our lightweight-dynamic
landscapes. With lsedit, one may (a) suppress the
contents of a box, causing incident edges on its
contents to be “lifted” and appear attached to the
containing box; and (b) suppress edges by class or
origin. Both of these browsing techniques allow the
analyst to adjust his level of “abstraction” depending on
the complexity of the case.

5 Conclusion
Static architectures are usually what results from fact-

based and source-based architectural design recovery.
When the source code clearly reflects the data and
control flow in the design, this is ideal, but for large
systems whose multi-tier architecture both implements
and uses control and data flow, a static design recovery
is not sufficient.
 We have suggested a means for clarifying the static
architecture by adding ‘just enough’ dynamically-
recovered information. By basing the dynamic data
recovery (instrumentation) upon a set of pivotal
functions derived a priori from the static architecture,
we have had some success in limiting the large amounts
of data often produced by dynamic analyses.

References

[Holt] R. Holt, “Software architecture as a shared
mental model”, Proc. ASERC Workshop on Software
Architecture, Edmonton, 2001.

[Bowman] T. Bowman et al, ”Linux as a case study: its
extracted architecture”. Proc. ICSE (1999).

[Bull] I. Bull. Abstraction Patterns for Reverse
Engineering. MSc thesis. Dep. Comp. Sci., U.
Waterloo. (2002).

[Finnigan] P. J. Finnigan et alii multi, “The Portable
Bookshelf”. IBM Systems J. 36(4). (1997).

[Fowler] M. Fowler, “Design – who needs an
architect?”, IEEE Software 20:11-13 (2003).

[GXL] R. Holt et al, “GXL: A graph-based standard

exchange format for reengineering”. J. Sci. Comp.
Prog., accepted (2006).

[Kruchten] P. Kruchten. “The 4+1 view model of
architecture”, IEEE Software, Nov 1995.

[Kruchten] P. Kruchten. “The 4+1 view model of
architecture”, IEEE Software, Nov 1995.

[Lin] Y. Lin, R. C. Holt, Andrew Malton.
“Completeness of a fact extractor”. Proc. 10th WCRE
(2003).

[Malton] A. J. Malton and R. C. Holt. “Boxology of
NBA and TA: A basis for understanding software
architecture”, Proc. 12th WCRE (2005).

[Malton] A. J. Malton and R. C. Holt. “Boxology of
NBA and TA: A basis for understanding software
architecture”, Proc. 12th WCRE (2005).

[Murphy] G. C. Murphy and D. Notkin,
“Reengineering with reflexion models: a case study”,
IEEE Computer 17(2), (1997).

[Tu] Q. Tu and M. Godfrey. “The build-time
architectural view”. Proc. ICSM, Florence, 2001.

[Walkinshaw] N. Walkinshaw, M. Roper, M. Wood.
“Understanding object-oriented source code from the
behavioural perspective”. In Proc. 13th International
Workshop on Program Comprehension. (2005)

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

57

An Approach to Program Comprehension through Reverse Engineering of

Complementary Software Views

Aline Vasconcelos
1,2

2
Computing Department -

CEFET Campos

Brazil

apires@cefetcampos.br

Rafael Cepêda
1

1
Systems Engineering and

Computer Science

Program

COPPE/UFR J, Brazil

rcepeda@cos.ufrj.br

Cláudia Werner
1

1
Systems Engineering and

Computer Science

Program

COPPE/UFR J, Brazil

werner@cos.ufrj.br

Abstract

This paper presents an approach to the reverse

engineering of application dynamic models from Java

programs. These models are represented through UML

sequence diagrams reconstructed at varying levels of

abstraction, i.e. class level and architectural level. The

diagrams are associated with application use-case

scenarios and are extracted in a reuse based software

development environment, complementing the views

already existent for an application. The main goal is to

support program comprehension through

complementary application views. In order to support

the proposed approach, a set of tools is being

developed.

1. Introduction

In order to comprehend how the functionalities are

implemented in a system and to localize the impacts of

a maintenance in the code, its behavioral models are

essential. In object oriented systems these models are

of particular interest, due to specific characteristics of

that paradigm such as late binding and polymorphism

that make it difficult to comprehend the behavior of the

system by means of a code analysis. Moreover, due to

these particularities, dynamic models for an object

oriented system must be extracted by means of

dynamic analysis.

Many approaches to the extraction of dynamic

models for object oriented systems based on dynamic

analysis have already been proposed [2] [3] [4] [7].

One problem faced when dealing with dynamic

analysis of object oriented applications is the volume of

information generated in the execution traces. The

existent approaches apply a set of techniques in order

to reduce this volume of information, such as filtering,

pattern matching, sampling, slicing, information hiding

etc. In [5], a summary and a discussion of such

techniques are presented.

In this work, we employ three techniques to deal

with the trace explosion problem: filtering, slicing, and

information hiding. Filtering allows the selection of

the desired packages or classes to be monitored for

traces collection, being optional for the user. Traces are

sliced by use-case scenarios and message depth level.

Information hiding is achieved through varying levels

of abstraction: traces can be extracted at the class level

or at the architectural level, hiding the messages

exchanged among classes of the same subsystem.

The main goal of the proposed approach is to

support program comprehension for maintenance and

reuse purposes. We argue that in order to effectively

support program comprehension, an approach needs to

integrate different software views. Some approaches,

such as [3], integrate static and dynamic views in the

recovery process, allowing the user to get a broader

understanding of the application. In this work we

propose the extraction of some software architectural

views of the "4+1 View" model [1]. Architectural

views are essential to allow the comprehension of

large-scale software. Following the "4+1 View" model

to architecture description, the proposed approach is

able to recover the process and scenario views of the

architecture. This last one is achieved through the

association of sequence diagrams to use-case scenarios

of the application.

In order to detail the architectural models, the

dynamic diagrams can also be extracted at the class

level. The approach is integrated into a reuse based

software development environment, named Odyssey

[8], and the extracted views complement the static view

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

58

of the application that can be reconstructed by a tool

set already integrated to the environment [6].

The rest of the paper is organized as follows:

section 2 presents the proposed approach to the

reconstruction of dynamic software views; section 3

presents a usage example; section 4 presents related

work; and, section 5 presents some conclusions and

future work.

2. Extracting dynamic software views

The proposed approach to the extraction of

dynamic software views is divided into two steps:

execution traces collection and reconstruction of

sequence diagrams in the Odyssey environment. Two

tools were developed to support these activities: the

Tracer tool and the Phoenix tool, each one being

responsible for one part of the process. Figure 1 depicts

the integration schema between the tools and the

Odyssey environment.

2.1. Execution traces collection

The Tracer tool, shown in figure 2, uses aspect

technology in order to instrument the bytecode of Java

applications. It uses AspectJ [9], an extension of the

Java language to support aspects. In fact, many

techniques can be applied to the collection of event

traces from application programs, such as:

instrumentation of the source code, instrumentation of

the object code, instrumentation of the running

environment, or running the system under the control

of a debugger or profiler. Our use of aspects is

motivated by the fact that they are not intrusive in the

source code and because they allow parametrization,

such as the selection of the classes to be monitored.

Moreover, this approach is general to any Java

application and the user just needs to inform the jar file

and classpath of the application (see figure 2).

Figure 2. The Tracer tool.

The Tracer tool allows the user to select the classes

to be monitored. The advantage of this filter is to

eliminate from the execution traces messages to the

libraries used by the application, such as the Java API.

The tool generates in its output an XML file containing

the methods invoked at runtime along with the

executing thread, class and instance, ordered by

method execution, as shown in figure 3. Methods are

indented according to their calling hierarchy. In the

trace in figure 3, the method m-1 from class

package1.A in thread T-1 calls the method m-2 from

class package2.B of thread T-1. Therefore, method m-2

is indented in relation to method m-1.

The tag "label" in the trace file indicates the use-

case scenario that is being executed and is informed by

the user at runtime. The user can select different use-

case scenarios to execute according to his maintenance

requirements. The same execution trace can contain

many use-case scenarios delimited by tags "label". In

order to delimit these use-case scenarios, the Tracer

tool allows the user to enable and disable the data

collection at runtime.

Execution

Traces

Phoenix Tool

Sequence

Diagrams

Tracer Tool

Legacy

Application

Execution

traces

Odyssey

Environment

Legend: Tool

 Artifact

Figure 1. Tool set to the extraction

of dynamic software views.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

59

Figure 3. A sample of an execution trace.

2.2. Sequence diagrams extraction

The Phoenix tool reads the execution traces in

XML and generates the corresponding sequence

diagrams in the Odyssey environment. The diagrams

are extracted and associated with use-cases. During the

extraction, if the use-case defined by the tag label

doesn't exist yet in the application model of the

environment, it is created by the Phoenix tool.

However, the object types, i.e. classes, must already

exist in the static model of Odyssey in order to allow

the extraction. It is important to state that at this

moment each use-case scenario is being represented by

a distinct use-case in the Odyssey environment.

During the extraction process, the user can select

the thread from which to read the message calls, if he

doesn't want to represent all threads in the same

diagram, and the method in which to start the diagram.

If a method isn't selected, the extraction will start in the

first method of the selected thread or in the first method

of the first thread.

The user can also select the depth level of the

message call in the diagram, as shown in figures 5 and

6. Supposing we have a method call sequence as shown

in figure 4, the diagram in figure 5 depicts the

correspondent sequence diagram extracted until the

message level 3, and figure 6 depicts another diagram

representing the detailing of the message mE.

The Phoenix tool is also able to extract behavioral

diagrams at different levels of abstraction (i.e. class

level and architectural level). At the class level,

instances of the same class are replaced by only one

representation of that class. This is done in order to

reduce the volume of information in the sequence

diagrams and is useful to comprehend which classes

implement which application functionalities. The

architectural level, on the other hand, allows a

considerable reduction of the diagrams size, since

messages exchanged between classes of the same

subsystem are encapsulated in this subsystem and not

shown in the diagram. Therefore, the developer can get

the mapping from system functionalities to

architectural elements, that must already exist in the

static structural view of the Odyssey environment to

allow the extraction.

Figure 4. A sample call sequence.

Figure 5. A sequence diagram until level 3.

Figure 6. Detailing of message mE.

3. A usage example

We have been testing the approach in the extraction

of dynamic diagrams of the Odyssey environment itself

and from some other applications. Here, due to space

limitations, we present a usage example for a use-case

<?xml version="1.0" encoding="UTF-8" ?>

<trace>

<Label name="Use case 1 – Scenario 1 ">

 <Method class="package1.A" instance="@a7552"

 method="m1"thread="T-1"timestamp=

 ”01/04/200512:00:01">

 <Method class="package2.B"

 instance="@14db8d" method="m2 “

 thread="T-1"

 timestamp=”01/04/200512:00:01”/>

 </Method>

……………..

mA->mB

 mE -> mF->mG

 mH

mC->mD

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

60

of a MDA (model driven architecture) transformation

tool.

Using the Tracer tool, we generated the trace file

for the "Export Model" use-case. Then, with the

Phoenix tool, a sequence diagram until level 3 was

extracted in the Odyssey environment, as shown in

figure 8.

Based on the architectural elements extracted for

the MDA-Tool using the software architecture

approach integrated to Odyssey [6], the Phoenix tool

automatically found out that: MDAGui and

MDAFacade classes belong to the same architectural

element, called mda; RepositoryManager class belongs

to repository; and FileUtils belongs to utils. Thus,

when extracting the same sequence diagram at the

architectural level, the messages between MDAGui and

MDAFacade were automatically encapsulated,

generating a higher-level diagram, as presented in

figure 9.

Therefore, it can be realized that in the Odyssey

environment the developer has the opportunity to

navigate through different application views (i.e. static

Figure 8. Diagram extracted for the MDA-Tool at the class level.

Figure 9. Diagram extracted for the MDA-tool at the architectural level.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

61

and dynamic) at different levels of abstraction (i.e.

architectural and low-level design).

4. Related work

In [2], traces are reduced through the detection of

interaction patterns, which are abstracted to high-level

scenarios. Moreover, to facilitate the visualization they

use an information mural, which allows the

visualization of a whole trace in a compact form, where

areas of repeated sequences of events are emphasized.

In [3], Riva and Rodriguez synchronize static and

dynamic views in the architecture reconstruction.

Manipulations made in one view are reflected in the

other. On the other hand, in [4], only a dynamic view is

recovered, but they convey a more rich set of technical

information in the diagrams, such as conditions and

iterations since data collection is performed through the

instrumentation of the source code. In [7], a method for

the extraction of compact sequence diagrams is

proposed, through the identification and reduction of

repetitive call sequences and recursive call sequences.

In this work, the goal is to support program

comprehension through the extraction of

complementary application views in a software

development environment.

5. Conclusions and Future Work

The main contribution of our work is the generation

of integrated software views in a software development

environment. Different from other approaches, that are

more concerned with dealing with trace volume and

visualization, we are concerned with supporting system

comprehension through complementary views, i.e.

logical, process and scenario views, at different levels

of abstraction. The scenario view allows the mapping

from system functionalities to source code and

architectural entities. The logical view is extracted by a

tool set already existent in the Odyssey environment,

complementing the extracted dynamic views.

Therefore, in our approach a richer set of views for an

application is extracted.

Since Odyssey is a reuse environment, the

generated artifacts can later be reused in a domain

engineering process.

As future work we intend to synchronize the

manipulations made to the static and dynamic views, to

identify loops in the execution traces and to generate

diagrams that can reflect the behavior of individual

objects of a class (i.e. statecharts). At this moment, the

sequence diagrams depict message exchange at the

class level. This prevents analyzing the behavior of

individual objects of a class. Moreover, each use-case

scenario must be represented as a case description of a

use-case and not as a distinct use-case in the Odyssey.

6. References

[1] P.B. Kruchten, The 4+1 View Model of Architecture,

IEEE Software, Vol. 12, Number 6, November, 1995, pp. 42-

50.

[2] D. Jerding, and S. Rugaber, “Using Visualization for

Architecture Localization and Extraction”, In Proc.4th

Working Conference on Reverse Engineering, Amsterdam,

Netherlands, October, 1997, pp. 56-65.

[3] C. Riva, and J.V. Rodriguez, “Combining Static and

Dynamic Views for Architecture Reconstruction”, Sixth

European Conference on Software Maintenance and

Reengineering, Budapest, Hungary, March, 2002, pp. 47-56.

[4] L.C. Briand, Y. Labiche, and Y. Miao, “Towards the

Reverse Engineering of UML Sequence Diagrams”, In Proc

10th IEEE Working Conference on Reverse Engineering,

Victoria, Canada, November, 2003, pp. 57-66.

[5] A. Hamou-Lhadj, and T.C. Lethbridge, "A Survey of

Trace Exploration Tools and Tehcniques", In Proc. of the

2004 Conference of the Centre for Advanced Studies and

Collaborative Research, Markham, Ontario, Canada,

October, 2004, pp. 42-55.

[6] A.P.V. Vasconcelos, and C.M.L. Werner, "Software

Architecture Recovery based on Dynamic Analysis", XVIII

Brazilian Symposium on Software Engineering, Workshop on

Modern Software Maintenance, 2, Brasilia, DF, Brazil,

October, 2004.

[7] K. Taniguchi, T. Ishio, T. Kamiya, S. Kusumoto, and K.

Inoue, “Extracting Sequence Diagram from Execution Trace

of Java Program”, In Proc. International Workshop on

Principles of Software Evolution (IWPSE'05), Lisbon,

Portugal, September, 2005, pp. 148-151.

[8] Odyssey Project, in: http://reuse.cos.ufrj.br/odyssey.

[9] Eclipse org., in: http://eclipse.org/aspectj/, AspectJ 1.5.0.

Proceedings of the 1st International Workshop on Program Comprehension through Dynamic Analysis (PCODA'05)

62

	1_HamouTraceSummCameraReady.pdf
	Introduction
	What is Trace Summarization?
	Adequate Size of a Summary
	Content Selection
	Content Generalization

	Validating a Trace Summary
	References

