
Research

Analyzing Software Evolution
through Feature Views

Orla Greevy, Stéphane Ducasse and Tudor Gı̂rba

Software Composition Group, Institute for Applied Mathematics and Computer Science,
University of Berne, Neubrückstrasse 10, CH-3012 Berne, Switzerland
LISTIC, University of Savoie, France

SUMMARY

Features encapsulate the domain knowledge of a software system and thus are valuable
sources of information for a reverse engineer. When analyzing the evolution of a
system, we need to know how and which features were modified to recover both the
change intention and extent, namely which source artifacts are affected. Typically, the
implementation of a feature crosscuts a number of source artifacts. To obtain a mapping
between features and the source artifacts, we exercise the features and capture their
execution traces. However this results in large traces that are difficult to interpret. To
tackle this issue we compact the traces into simple sets of source artifacts that participate
in a feature’s runtime behavior. We refer to these compacted traces as feature views.
Within a feature view, we partition the source artifacts into disjoint sets of characterized
software entities. The characterization defines the level of participation of a source entity
in the features. We then analyze the features over several versions of a system and we
plot their evolution to reveal how and which features were affected by code changes. We
show the usefulness of our approach by applying it to a case study where we address the
problem of merging parallel development tracks of the same system.

1. Introduction

Software evolution is driven predominantly by activities such as iterative development, bug
reports and changing requirements. Typically, change requests and bug reports are expressed in
terms of system features. Previous works on feature identification define a feature to be a unit
of observable behavior of a system [1, 2, 3, 4]. As such, a feature represents a unit of domain
knowledge, as it typically corresponds to a realized functional requirement of a system. Many
researchers have highlighted the potential of exploiting features when reverse engineering a
system [1, 5, 6, 7]. Popular object-oriented programming languages such as Java or C# do not
provide a language construct that encapsulates the notion of a feature. The structuring unit
of object-oriented languages is the class. Typically, features do not map directly on the classes
of the system, but extend across several classes [6]. At the same time, a class may participate

ANALYZING SOFTWARE EVOLUTION THROUGH FEATURE VIEWS 1

in several features. In other words, there is a n-to-n relationship between classes and features
[8].

Reverse engineering approaches based on static analysis focus mainly on the structural
entities and implementation details. Thus, key semantic information about the roles of source
artifacts in the features of a system is overlooked. Furthermore, source code analysis of object-
oriented systems is difficult due to language features such as inheritance, dynamic binding
and polymorphism. The behavior of the features and the parts of the system participating
in their functionality can only be completely determined at runtime [9]. Recently researchers
are advocating a combined approach to reverse engineering based on both static and dynamic
analysis to achieve optimal results [10, 11, 12, 13]. By exploiting feature knowledge of a system,
the reverse engineer obtains higher-level abstractions than those obtained by examining the
static source code artifacts.

The development and maintenance phases of a software system typically involve several
developers working in parallel on a common code base. This may often lead to branches in the
code base representing parallel development tracks. For example, enhancements and additional
features are made in one branch in preparation for the next release of a system, whereas
bug fixes are made in a branch that corresponds to the release of the system in production.
Inevitably branches need to be merged to reestablish a coherent code base. Merging branches is
a nontrivial task as changes to one feature may conflict or break other features. Developers are
faced with the task of understanding what motivated changes in the code and how the changes
affect the system as a whole. Furthermore, without an explicit mapping between features and
source artifacts, introducing new changes may result in undesired side effects such as increased
complexity of the system due to unnecessary code duplication, or the introduction of bugs.

Much of the research effort in feature-centric approaches to date has focussed on feature
identification, a well-known technique to identify subsets of a program source code activated
when exercising a functionality [7]. The main contribution of this article is that we build on the
work of previous established feature identification approaches [5, 1] by analyzing the mapping
between features and source artifacts over several versions of a system. Our goal is to reason
about the motivations behind changes in the code. A crucial element of our experimentation
is that for each version of a system, we exercise the same set of features. We extract execution
traces and compact them to feature views (i.e., simple sets of source artifcacts referenced in
the trace). Moreover, we choose a set of features that appear to behave in the same way for
each version that we analyze.

In a previous work, we analyzed how the functional roles of source artifacts (e.g., classes)
changed over time [14]. We computed a feature characterization measurement for classes, based
on the level of participation of a class in all the features we traced. Then we measured and
interpreted changes of the feature characterizations of classes over time. In this work we extend
this approach. The main difference is that in the present paper we treat our representation of
a feature, namely the feature view, as the primary unit of analysis.

Our goal is to show how a feature-centric analysis of a software system supports evolution
and software maintenance activities. In particular, we seek to answer to the following questions:

1. Which features are affected by changes in the code? By identifying which features have
changed and how they are affected by changes gives an insight into change intention.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

2 ORLA GREEVY, STÉPHANE DUCASSE AND TUDOR GÎRBA

We characterize changes to determine their extent (i.e., if a change affects one or more
features). Thus, the extent of a change helps us to decide which tests (i.e., unit tests,
integration tests, acceptance tests) need to be performed after the change has been
made. Moreover, we believe that a good understanding of intent and extent of changes
supports the developer to tackle complex maintenance tasks such as merging two distinct
development branches of a system.

2. Are features becoming more complex over time? We define complexity of a feature to
be a function of the number of software artifacts (e.g., classes) participating in its
runtime behavior. An increase in the number of classes may be an indication that new
functionality has been added. As our features appear to behave the same way from a
user’s perspective in each of the versions we analyze, changes imply the addition or
removal of non observable behavior to a feature. Complexity of the features adversely
affects the maintainability and comprehensibility of the system [15]. On the other hand,
an increase or decrease in feature complexity may indicate that the developers have
refactored the code to improve its design [16].

3. Do similar patterns of change indicate relationships between features? Similar patterns of
increases or decreases in the number of source entities shared between features indicates
that the functionality or purpose of certain features are related. Thus, by identifying
patterns of change, we make the relationships between features explicit. This is important
for reverse engineering as it supports maintenance activities such as regression testing.

To validate our claim that feature views provide semantic interpretation of the changes and
support maintenance and software evolution, we apply our feature-centric analysis to four
versions of a medium size software system. We show how we detect and interpret changes in
the context of features. We perform experiments with two distinct development branches of the
system consisting of three and two versions respectively. We address the problems of merging
the changes from two development branches. We cross check our findings with the developers
implementation knowledge.

The contributions of this article are:

• We describe a novel approach to analyze the evolution of a system in terms of features.
• We characterize changes in a way that reflects how the functional roles of software

artifacts change.
• We introduce a simple visualization of the feature views as a grouping of participating

software entities (e.g., classes) for one version of a system. The goal of our visualizations
is to support reasoning about the evolution of a system from a features perspective.
Our visualizations are interactive, as they allow the software developer to query the
visualization to discover the names of the classes that participate in a feature view.
To represent changes in features over time, we describe three variations of the feature
view visualizations: (1) the feature history view shows a summary view of changes in a
feature over time, (2) the feature additions view shows feature views that show only the
additional source entities that have been added to a feature (3) the features intersection
view shows the source artifacts that have been added in both development tracks of the
system (i.e., the intersection of additions). To represent and quantify changes between
the versions of feature views we use a feature evolution chart. This consists of four

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

ANALYZING SOFTWARE EVOLUTION THROUGH FEATURE VIEWS 3

Features

Logout

Authen

HTML
Request

Object

Feature evolution chart

edit

login

...

Feature views

login

Feature history views

Dynamic models

Dynamic and static analysis Feature analysis Feature evolution analysis

Feature addition views

Feature intersection views

Static models

Figure 1. The Elements of our Approach To Evolution Analysis through Feature Views.

simple line graphs that show how four distinct properties of a feature view changes over
a series of versions. Figure 1 shows an overview of our approach and how we derive the
visualizations.

In the next Section we introduce the underlying terminology of our feature analysis approach.
In Section 3 we outline our approach to evolution analysis and describe how we measure,
characterize and visually represent changes. In Section 4 we describe in detail the results of
our experimentation with a medium size application. We discuss and evaluate the results of our
analysis in Section 5. In Section 6 we review related work. In particular, we review the current
state of the art of feature-centric reverse engineering approaches such as feature location
techniques, feature-based analysis techniques and software evolution analysis approaches. In
Appendix A we provide details of the feature and history measurements, and a glossary of the
feature related terms used throughout the article.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

4 ORLA GREEVY, STÉPHANE DUCASSE AND TUDOR GÎRBA

2. Feature Views

In this section we introduce our feature terminology and describe the underlying concepts of
our feature analysis approach.

To map the features to source artifacts, we combine both static and dynamic analysis
techniques [17, 14]. We analyze the source code to obtain a model of a software system in terms
of static structural entities (e.g., packages, classes and methods). We then extract feature traces
by exercising a set of features on an instrumented system. A feature trace consists of runtime
events represented as a tree of method invocations [18]. We establish relationships between
feature traces and the static structural entities found in the traces. These relationships are the
main focus of our analysis.

Interpretation of execution traces is difficult due to their sheer size [19, 20], thus filtering
or compressing the data is a crucial step in the construction of high level views. As our focus
is on establishing relationships between features and code, we reduce the volume of data by
compacting the feature traces into sets of software entities (e.g., sets of classes). We refer to the
compacted sets as feature views [17]. They are simplified representations of a feature trace that
do not preserve the sequence of execution or time information, as this is not relevant for our
particular research focus. The advantage is that we reduce the volume of dynamic data while
at the same time we preserve the information needed to establish the relationships between
features and software entities. For the purpose of this explanation, we limit our discussion
to classes. Our technique is equally applicable to other types of entities such as packages or
methods. In a previous work, we applied our feature analysis technique to methods [17].

As with the feature location approaches of Wong et al. [6] and Eisenbarth et al. [1], we
characterize software entities based on their level of participation in the features as either
general or specific. The level of participation, or characterization of a software entity, is highly
dependent on the feature definition and the choice of features.

Our approach defines a more fine-grained characterization of software entities. We distinguish
between five mutually exclusive levels of participation of a software class with respect to the
features under analysis. We define a simple measurement to calculate the usage level, or feature
characterization of a class based on the number of features we analyze and the number of these
features they participate in.
Let NOF be the number of features in our model and NOFC the number of feature-traces
referencing a class.

Not Covered (NC) is a class that does not participate to any of the features under analysis.

(NOFC = 0)

Single-Feature (SF) is a class that participates in only one feature of our analysis

(NOFC = 1)

Low Group Feature (LGF) is a class that participates in more than one but less than half of
the features under analysis. In other words, a low group feature class provides common
functionality to a subset of features.

(NOFC > 1) ∧ (NOFC < NOF/2)

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

ANALYZING SOFTWARE EVOLUTION THROUGH FEATURE VIEWS 5

High Group Feature (HGF) is a class that participates in half or more of the features of a
feature model. In other words, high group feature classes provide functionality most but
not all of the features under analysis.

(NOFC > 1) ∧ (NOFC >= NOF/2)

Infrastructural (IF) is a class that participates in all of the features under analysis.

(NOFC = NOF)

The characterizations of classes may vary depending on which features chose to include in
our analysis. We chose a threshold of 50% of the features under analysis. This enables us to
distinguish between classes that appear to be common only to a small group of features and
those that are common to most of the features. Our experimentation with a number of case
studies have shown that by distinguishing between low group and high group classes, we obtain
an accurate interpretation of the functional roles of the classes. Single-feature and Low group
classes represent classes that provide functionality that is specific to one feature or a group
of related features. The high group and infrastructural classes reveal classes that implement
common or infrastructural functionality of the system as they participate in most, or all of the
features.

Figure 2 shows the relationships between features and classes. On the left hand side we show
classes and on the right hand side we show simple visual representations of feature views as
groupings of classes. The visualization is composed of large rectangles thar represent features.
Each feature contains four subgroups of characterized classes represented as small squares
colored according to their characterization.

To quantify the feature views, we compute the cardinalities of the individual sets of
characterized classes of a feature view as SFc (number of single feature classes in a feature
view), LGFc (number of low group feature classes in a feature view), HGFc (number of high
group feature classes in a feature view) and IFc (number of infrastructural feature classes in
a feature view), and the cardinality of the set of all classes referenced in a feature view (CF).
These cardinalities represent properties of a feature view.

3. Feature Views Evolution

In the previous Section we have described how we extract feature views. We now extend our
focus to consider how the mapping between features and classes change over time. To achieve
this we extract feature views for each version of the system and plot changes in their properties.
The goal of our evolution analysis is twofold: (1) we want to detect which features are affected
by modifications and (2) we want to interpret these modifications in the context of our feature
views.

Approaches to analyzing system evolution can be characterized as version-centered or
history-centered [21]. Version-centered approaches compare versions of a system with the
aim of revealing when (i.e., in which version) a particular change occurred. History-centered

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

6 ORLA GREEVY, STÉPHANE DUCASSE AND TUDOR GÎRBA

Feature ViewsClasses

«single feature»
ClassB

«low group feature»

ClassC

«infrastructural»
ClassE

 «infrastructural»
ClassF

«single feature»
ClassA

«not covered»
ClassX

«high group feature»
ClassD

Feature 5

Feature 4

Feature 3

Feature 2

Feature 1

Figure 2. Example of the relationships between classes and features. A feature is represented by a
feature view.

approaches on the other hand, are concerned with revealing what the changes were and where
these occurred, by summarizing the evolution according to a particular point of view. For
example, a graphic plotting the values of a property in time (e.g., the line graph or our
evolution chart as show in Figure 3) is a version-centered approach; on the other hand, a
measure of how a property evolved over time is a history-centered approach.

Our evolution analysis combines both history-centered and version-centered evolution
analysis approaches. We apply history-centered analysis to gain an overall impression of which
features are affected by change and how. We summarize changes to focus on where (i.e., in
which feature views) changes occurred. Subsequently, we apply a version-centered analysis to
obtain a more detailed view of the actual changes and when they occurred.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

ANALYZING SOFTWARE EVOLUTION THROUGH FEATURE VIEWS 7

3.1. History Measurements for Feature View Properties

History-centered approaches to evolution analysis define history as an ordered set of versions
of the same kind of entity (e.g., a class history contains all the versions of the class) [21]. As
we treat feature views as first class entities of our analysis, our primary focus is feature view
histories (i.e., it contains all the versions of a feature view and thus summarizes its evolution).

We measure changes in feature views over time by applying two history measurements
(further details are given in Section 7) defined by the Hismo meta-model [22] to the properties
of our feature views.

Number of Changes of P - This measurement counts in how many versions the property P
has been changed with respect to the previous version. We apply this measurement to
isolate which features have changed.

Additions of P - This measurement sums additions of a property P . We apply this
measurement to detect an increase in a feature view property over time. We interpret
additions in features to mean one of the following: (1) increased complexity: an increase in
the number of classes participating in a feature may indicate the appearance of additional
non-observable functionality in a feature, (2) refactorings or design improvements: these
activities often lead to an increase in the number of classes to implement a functionality.

The Number of Changes gives us an overview of the amount of changes that occurred over
a series of versions. The Additions history measurement gives an indication about how the
features are growing. According to Lehman’s second law of evolution, the increase in size
of the code is a typical characteristic of an evolving system and effort is required to reduce
complexity to ensure the system is still maintainable [15]. Thus increasingly complex features
highlight places in the code where refactoring may be required.

3.2. Visualizing When Features Change

Figure 3 shows how a feature, named editPage in our case study, is changing over a series of
three versions. For each version, we show its corresponding feature view. The views group
classes by characterization and the classes are shown in different colors (grayscale). We
represent the history of feature views as changes in the 4 sets or characterized classes. Thus,
the chart shown below the feature views is a group of 4 evolution charts, each representing
the evolution of a different property of the feature view (i.e., how the cardinality of a
class characterization set changes over time). For each evolution chart, a horizontal delimiter
indicates the maximum value of a property when all the analyzed features of our case study
experiment are considered (e.g., max LGFc = 36 classes). The values are indicated on the
sides of the chart. The actual values of the properties (i.e., the number of classes of each
characterization) for each version are represented as points on the line graph. We use evolution
charts to visually represent when (i.e., in which version) a change in a property occurred.

In the case of the editPage feature, we detect that for LGFc (number of low group feature
classes in a feature view) the value increased from 10 to 36 classes.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

8 ORLA GREEVY, STÉPHANE DUCASSE AND TUDOR GÎRBA

editPage version 1
(39 classes)

editPage version 2
(69 classes)

editPage version 3
(69 classes)

time
1 2 3

LCFc=10 LCFc=36

0
2

10

21

27
36

6
8

0
2

10

21

27
36

6
8

LGFc HGFc IFcSFc

editPage feature evoution chart

Figure 3. Version Analysis of the editPage Feature View (Branch development track).

A class characterization may change and disappear from one characterization set (e.g., the
single feature set) of a feature view. At the same time, the class may reappear in another set
(e.g., the infrastructural set) of the same feature view. This means that the class has a new
characterization value and the evolution chart registers it as a removal and an addition in the
two sets respectively. This represents a change in the system. Thus, it offers a good starting
point for a developer for further investigation.

3.3. Visualizing How Features Change

We represent quantitative changes to the properties of feature views (i.e., SFc,
LGFc,HGFc,IFc) over a series of versions using evolution charts. Each chart consists of four
simple line graphs, each plotting how the value of property changes over a series of versions.
This representation is useful to provide the reverse engineer with a quantitative view of changes,
but does not provide information about which classes have been added or removed from the

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

ANALYZING SOFTWARE EVOLUTION THROUGH FEATURE VIEWS 9

editPage
(30 additional classes)

(c) Feature Additions View

editPage
(69 class histories)

(b) Feature History View

editPage (version 9.48)
(39 classes)

editPage (version 19.15.20)
(69 classes)

time

(a) Feature Views of 2 Versions

white rectangles
indicate change in
characterization
of a class

Figure 4. Feature History View (showing class histories, including the ones that were removed from
the last version) and Feature Addition View (showing classes which have been added) of the editPage

feature (Branch development track).

feature view as a whole. Nor do we see if a class characterization has changed over time, thus
indicating a change in the functional role of the class with respect to the features.

The feature history view visualization provides this level of detail. In Figure 4 we show how
each of our views is derived. Figure 4 (a) shows the first and last version of a feature view
of the editPage feature. A close examination of the figure reveals that the number of classes
has increased by 39 from the first to the last version. Figure 4 (b) shows the feature history
view applied on the same example. As with the feature views of each individual version, (a)
is represented as four characterized class groups. The small colored squares represent class
histories (i.e., a set of versions of a class [21]). The colors represent the characterization of a
class in the last version. The order of the class histories in the sets reveals information about
its history with respect to the feature view (i.e., classes which were present since the early
versions are shown first, newly added classes are shown last in the group). A white square
represents a place holder for class that has disappeared from the grouping during the history

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

10 ORLA GREEVY, STÉPHANE DUCASSE AND TUDOR GÎRBA

of a feature. The class may however still be participating in a feature, but has been assigned
a new feature characterization. In the high-group-feature set of classes of this example, we
see that the first class of the ordered set is shown as a white box. Thus, its characterization
with respect to the features has changed over the evolution. Figure 4 (b) shows the additional
classes participating in the feature. This provides an overview of added classes (i.e., new classes
particpating in the feature).

To conclusively determine whether a class has been added to a feature view, we need to
apply the addition history measurements to the CF (number of classes referenced in a feature
view) property. Figure 4 (b) shows the actual classes that have been added to the editPage
feature. The feature characterization of the classes is computed with respect to the last version.
The Feature Additions View Figure 4 (b) reveals that there are no additional infrastructural
classes, whereas in the Feature History View Figure 4 (a) there appeared to be additions in
this category. However they appear in this category due to a change of characterization of the
classes over time. The place holders in the HGFc category indicate these classes have possibly
been re-characterized.

All our feature view visualizations are interactive; we can query each small rectangle to
discover which class (or class history) is represented. Our visualizations are generated using
Mondrian [23] which is integrated in our Moose reengineering environment [24].

4. Experimentation

For our experiments we chose SmallWiki [25], a fully object-oriented and extensible Wiki
framework. SmallWiki provides features to create, edit and manage hypertext pages on the web.
It is implemented in VisualWorks Smalltalk and is comprised of over 300 classes (considering
only classes from the SmallWiki namespace). We decided to use SmallWiki for our case study
for several reasons: (1) it is open source, thus its source code is freely available, (2) we have
access to multiple versions of the system, (3) we are familiar with the features of the application
from the user’s perspective, and (4) we have access to developer knowledge to verify our
findings.

Figure 5 shows the versions of SmallWiki we selected for our feature evolution analysis of
two distinct development tracks originating from the same version. These are representative
versions that reflect different phases of development in the lifecycle of SmallWiki.

Version 9.48 (22.03.2004). The original development of SmallWiki was done
predominantly by two developers. The results of their work are represented by this
version, a major release of the system.

Version 9.52 (17.09.2004). As SmallWiki system is an open source project, modifications
and extensions are implemented by open source developers. 9.48 and 9.52 represent the
main open source development track.

Versions 19.15.6 (30.08.2004) and 19.15.20 (08.09.2004). We selected this series of
versions as it represents the work of a developer, who joined the development team
at an advanced stage of development. He undertook the task to refactor and extend

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

ANALYZING SOFTWARE EVOLUTION THROUGH FEATURE VIEWS 11

 9.48

17.09.200430.08.200422.03.2004 08.09.2004

time

 19.15.6 19.15.20

 9.52

Figure 5. The order of the analyzed versions of Smallwiki.

SmallWiki with new features and new generic functionality which crosscuts the features
of the application. These two versions represents a development branch of the system
that is based on version 9.48. Changes to this version were not included in the 9.52
version of the system.

For our experimentation we want to analyze two distinct development tracks. In our first
experiment we analyze the evolution of the branch development of the system in terms of
how the modifications affected the existing features. In our second experiment we analyze the
evolution of the same features from version 9.48 to 9.52 (the main open source development
track). We want to see what changed in the branch (versions 19.15.6 and 19.15.20) and detect
changes that could cause conflicts when merging the branch with the main development track.

In accordance with our definition of a feature as an observable unit of behavior [1], we identify
features of SmallWiki by making the assumption that the elements of the user interface, namely
the links, buttons and entry forms of the SmallWiki pages exercise distinct features. Based on
this assumption, we selected 14 distinct interactive features (14 typical user interactions with
the SmallWiki application such as login, editing a page or searching a web site). In addition,
we also selected one non interactive feature (start SmallWiki) that initializes the application
at startup. We exercised them on an instrumented system to capture 15 distinct execution
traces.

Our dynamic analysis tool TraceScraper [17] allows us to define scripts to automate the
execution of features. Thus, we ensure that the features are executed in the same way with
the same inputs for each version of the system we analyze. We achieved 84 % coverage of the
classes.

We assume a one-to-one mapping between features and traces. However, this assumption
may not yield optimal results. Only by applying our feature analysis technique can we uncover
similarities (e.g., a generic approach to the way that they are implemented) in features. Thus,
this suggests that an iterative approach to the selection and definition of features is required
to obtain an optimal choice of features that execute distinct functionalities. We discuss feature
definition in more detail in Section 5.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

12 ORLA GREEVY, STÉPHANE DUCASSE AND TUDOR GÎRBA

Figure 6. Feature History Views of 15 feature views considered in the branch of Smallwiki.

Figure 6 (feature history view) shows a summary of the evolution of the 15 feature views of
SmallWiki in the branch.

4.1. Outline of our Evolution Analysis Approach

The goal of our analysis is to reveal the extent and intent of changes that are made to
the system over time. We interpret these changes in the context of the features. We detect
which features are affected by change and we interpret the extent of a change based on the
characterization of the class where the change occurred. In other words, we describe the changes
we detect in terms of the feature property that revealed that change. In general, our approach
consists of the following steps:

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

ANALYZING SOFTWARE EVOLUTION THROUGH FEATURE VIEWS 13

1. We define a model for each version of our evolution analysis. We instrument each version
and exercise the same set of features. For each feature we execute, we extract traces of
runtime behavior. We resolve the references in the traces to the class and method entities
of the model, which we derive by static analysis of the source code. Our feature views
are generated for each feature trace and we apply our measurement to characterize the
classes of feature views into four groups.

2. We apply history measurements to (1) the feature view properties (SFc, LGFc, HGFc

and IFc), and (2) to the CF (number of classes referenced in a feature view) property.
The interpretation of the history measurements depends heavily on the key aspect of our
approach: we always analyze the same set of features, in the same way for each version.
Furthermore, from a users perspective, the system appears to behave in the same way
in each version.

3. To obtain a more fine-grained view of the changes, we plot the values of the feature
view properties over the root version of our analysis (9.48) and the two versions of the
SmallWiki branch development track (19.15.6 and 19.15.20) as simple line graphs, as
shown in Figure 7. This visualization reveals when (i.e., in which version) the changes
occurred. Thus this visualization supports a version-centered approach to analyzing the
evolution of feature views.

4. We analyze the feature history view visualization (e.g., Figure 6 of the branch
development track) which summarize the changes in feature views. The position of the
class histories within the class characterization group of a feature view indicates of when
they appeared in the feature view (i.e., classes that have been present in early versions
of the analysis appear first in the ordered set of characterized classes. Additions to the
set appear at the end of the set).

5. We drive the analysis with the questions we asked in the introduction.
6. We summarize our findings and check them with the developers. Based on the developer

knowledge, we document the context of the changes that our feature analysis reveals.

4.2. Experiment 1 - Analyzing the evolution of the branch development track

The branch development code base of SmallWiki consists of the evolution of the versions on
the main axis as shown in Figure 5. Simply by applying history measurements to feature
views properties, we detect what has changed in the system in the context of the features.
By applying the history measurement to the individual properties, we qualify the changes and
thus define the extent of their influence on the features of our model.

Which features are affected by changes in the code?

As a first step we isolate the features that have changed. Then we group the changes by
applying the number of changes history measurement to each of the four properties (SFc,
LGFc, HGFc and IFc) of feature views. Figure 7 shows the evolution charts for 3 versions of
the 15 features.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

14 ORLA GREEVY, STÉPHANE DUCASSE AND TUDOR GÎRBA

Figure 7. The evolution charts of the 15 features considered in Smallwiki (branch development).

Single Feature Changes. A change in the number of single feature classes (SFc) is referred
to as a single feature change. (i.e., the extent the change is limited to the feature where the
change was detected). This reveals that none of features of our analysis exhibit single feature
changes. The evolution charts shown in Figure 7 reflect this result as the plot for the single
feature classes ((SFc) column) remains unchanged for each version.

Low Group Feature Changes. By definition low group feature change affects a subset of
the features (< 50% of the features of our model). Most of the considered features are affected
by this type of change. This is reflected in Figure 7. Only four features are not affected by this
type of change, namely properties, stylesheets, resolveURL and comps.

High Group and Infrastructural Feature Changes. All features have been affected by
these types of changes. Both high group feature change and infrastructural feature change
imply changes to generic functionality of the application that is being used by all the features.
The evolution charts (Figure 7) reveal that all changes were made in the second version
analyzed.

Are features becoming more complex over time?

To determine if a feature is becoming more complex over time, we apply the Additions
history measurement to the CF (number of classes referenced in a feature view) property.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

ANALYZING SOFTWARE EVOLUTION THROUGH FEATURE VIEWS 15

props comps stylesheets history login

editTemplate searchrss resolveURLchanges

addFolder addPage editPage startSWcontents

additions of '*Property' classes
affect these 4 features, implying a

relationship (eg. generic implementation)

Figure 8. Feature Addtions Views (i.e., showing only classes which represent additions to a feature
view) of the Branch. The characterizations are then calculated based on the last version under analysis.
The feature addition views are sorted by similarity to highlight patterns of change. For example, we

emphasize the similar additions of low group classes.

In Figure 9 we plot the values of the CF measurement for both the main development track
and the branch. The light colored bars represent additions to the features in the branch, thus
revealing that all features show an increase in CF . Our graph shows that most of the additions
occur in the 4 features contents, addPage, addFolder and editPage.

To differentiate between types of additions and determine the extent of their influence on the
features, we then compute feature characterization for the added classes with respect to the
last version. We discover that most of the changes are in the characterization LGFc (number
of low group feature classes in a feature view) and the features that are most affected are
contents, addPage, addFolder and editPage. The feature views visualization of these features
reveal similarities in classes and patterns of evolution. In Figure 6 we show the feature views
of these features in the root version of our analysis (9.48) and the last version (19.15.20) of the

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

16 ORLA GREEVY, STÉPHANE DUCASSE AND TUDOR GÎRBA

branch development track. We highlight the patterns of additions in the classes characterized
as low group. By querying the classes, our visualizations reveal that theses additions represent
the same classes. We discover that the added classes are named in a similar way *Property
e.g., AccessEditProperty, AccessRemoveProperty, AccessViewProperty, BrokenProperty.

Do similar patterns of change indicate relationships between the features?

An increase in the number of software entities shared between features suggests that the
features may be related. For example, the implementation of these features may be realized
using generic functionality. We see from the feature views that a large number of the classes
participating in feature views are characterized as high group feature classes or infrastructural
classes. This is due to the fact that SmallWiki is a web application and all features that are
initiated by the user deal with the http request/response communication and page rendering.

We focus on changes to low group feature classes. By definition these are the classes that are
shared by a subset of features. We identify patterns of change in these classes. One obvious
pattern is shown in Figure 8. The features editPage, addPage, addFolder and contents are
concerned with page rendering and storing of new pages or folders in SmallWiki. As these
features change in a similar way over time, this indicates that they are closely related as they
exercise generically implemented functionality of the system.

The line graph representations (see Figure 7) of the feature view evolution in terms of its
properties reveal interesting patterns of evolution. We ordered the evolution charts in Figure 7
to emphasize patterns of change.

4.3. Developer Validation (Experiment 1)

As previously stated, for our analysis we chose features that, from a user’s perspective, appear
to behave in the same way for each version. Applying our history measurements to the
classes reveals however, that for each feature, there is an increase in the number of classes
that participate in the features. To obtain a contextual perspective of the additional classes
appearing in the feature views we looked for Additions to each of the four characterized groups
of classes. Our analysis reveals two main results:

• There are similar patterns of change (addition of low group feature classes) detected
in the features addPage (31 classes), addFolder (31 classes) , Contents (28 classes) and
editPage (27 classes).

• There is a small increase in high group classes and infrastructural classes (3 classes per
feature on average), thus indicating the addition of functionality that affects most or all
the features under analysis.

To verify our hypothesis that our feature views support understanding of the extent and
intent of change, we asked the developers to state the purpose of the changes made during this
development phase. In particular, with respect to the results, we asked if the changes were made
to the four features listed above. The developer confirmed our findings by stating that a large
proportion of the changes that he made were to reengineer how elements of the application
(e.g., form fields, labels, pages, folders) were manipulated and represented internally. This

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

ANALYZING SOFTWARE EVOLUTION THROUGH FEATURE VIEWS 17

0

5

10

15

20

25

30

35

40

45

co
nt
en

ts

ad
dP

ag
e

ad
df
ol
de

r

ed
itp

ag
e

hi
st
or
y

st
yl
es
he

et
s

co
m
ps

pr
op

s

ed
itT

em
pl
at
e

ch
an

ge
s

lo
gi
n

st
ar
tS
W

se
ar
ch rs

s

re
so
lv
eU

RL

Features

A
d

d
it

io
n

s
(
C

la
s
s
e
s
 i
n

 a
 F

e
a
t
u

r
e
)

Additions Branch Additions Main

Figure 9. Additions History measurement applied to Number of Classes of a Feature (CF) for all
features of the two (branch and main) development tracks.

reengineering effort accounts for the appearance of new classes, not specific to one feature but
rather to a group of features concerned with page and folder manipulation.

The reengineering effort accounts for the appearance of new classes in the feature views
over the versions of the branch, which our feature analysis characterized as Low group
additions. Using the interactive capability of our feature view visualizations, we query to
reveal the names of the additional classes. The new classes, for example AccessEditProperty,
AccessRemoveProperty, AccessViewProperty, BrokenProperty participated in the features of the
last two versions of the branch . Once again the developer confirms that these classes implement

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

18 ORLA GREEVY, STÉPHANE DUCASSE AND TUDOR GÎRBA

a generic mechanism to define and add properties to SmallWiki pages. The classes are accessed
by all the features that manipulate pages and folders. Thus our feature analysis reveals the
addition of the classes and the context of these additions in terms of the features in which
they participate. Furthermore, the developer confirmed that these classes do not affect their
external observable behavior of the features.

The High group and Infrastructural Changes. The small increase we detected in our
analysis was also identified by the developers. This reveals an the extension of the user role
authentication functionality. The classes BasicRole and AdminRole are responsible for limiting
access to administrator functionality. The developers confirm that this functionality has been
incorporated into all the features included in our analysis. The integration of role-based
authentication for all features was one of the defined goals of this development track.

4.4. Experiment 2: Analyzing the Evolution of the Main Development Track

The main development code base of SmallWiki consists of the evolution of the two versions
on the main axis as shown in Figure 5. The focus of our second experiment was to apply our
analysis technique to identify changes in the main development track that conflict with or
duplicate the effort of changes in the branch.

Before we can merge two development branches, we first need to locate where changes in the
system occurred and then determine if there are any conflicting changes. Our feature views
provide us with the context of the changes.

The most striking result we obtained was when we compare the results of applying the
additions history measurement to all the classes (CF) in the main development track and in
the branch. The results are shown in the bar chart of Figure 9. The bars (light gray/blue) on
the left to represent the number of additions in the branch track, and the bars (dark gray/red)
on the right to represent the number of additions to the main development track. Only five
features of the main development track additional classes appear (at most seven additional
classes), whereas in the branch we see that all features have additional participating classes.
Thus, we detect that the branch development exhibits more additions that affect more features.

As a next step we compute number of changes of the feature view properties to see which
and how features changed:

numberOfChanges(F,SFc): only the startSW (SmallWiki initialization) exhibits single feature
change.

numberOfChanges(F,LGFc): two features Login and changes exhibit low group feature
change. In Figure 10 we indicate a white box in the low group position for the login
feature view. This represents a class history of a class that is no longer characterized as
low group in this version. Similarily we detect a white box in the low group class histories
of the changes feature view.

numberOfChanges(F,HGFc), numberOfChanges(F,IFc): all features exhibit high group
feature and infrastructural feature change.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

ANALYZING SOFTWARE EVOLUTION THROUGH FEATURE VIEWS 19

Changes in characterizations
of low group classes

Figure 10. The Feature Change Charts of the 15 features considered in the main development track
of Smallwiki.

We apply the Additions history measurement to the CF property and characterize the classes
with the respect to version 9.52. Figure 11 shows the resulting Feature addition views. Our
plot reveals that one additional class, namely ResourceStore, is participating in the startSW
feature in version 9.52.

The class BasicRole is characterized as an infrastructural feature class. We also detected this
change in the branch development track. This suggests that a similar change has been made
to this class in both development tracks. This change represents the incorporation of the role

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

20 ORLA GREEVY, STÉPHANE DUCASSE AND TUDOR GÎRBA

Resource Class
single feature addition

affects start SmallWiki feature

loginhistorystylesheetscompsprops

editTemplate changes rss resolveURL search

addFolder addPage editPage contents startSW

BasicRole Class
infrastructural feature addition

- a new characterization

Figure 11. Feature Additions Views of the main development track. This shows only additional classes.
The characterizations are calculated with respect to the last version of analysis.

checking functionality in all features of the system. The classes were characterized as single
feature classes in version 9.48 of SmallWiki.

One goal of our experiment is to show how our technique supports developers when changes
from two distinct development tracks need to be merged. We isolate and characterize the types
of changes. Thus, we reduce the volume of information to be analyzed and we consider each
type of change separately. For example, a single feature change is localized to one feature of
our analysis. Furthermore, we distinguish between single feature additions and single feature
removals. In both these cases we need to distinguish between classes that have been added to
a feature view and those whose functional role has changed with respect to the feature model.
Our feature change chart of class histories supports this.

Another important factor when merging two distinct development branches is to identify
source artifacts in the code that have changed in both development tracks. These changes
may be more difficult to merge as the two distinct development tracks may reveal conflicting
changes, which if merged, would result in bugs and loss of functionalities. Classes that appear
to have changed in both development tracks may also indicate that the same functionality

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

ANALYZING SOFTWARE EVOLUTION THROUGH FEATURE VIEWS 21

props comps stylesheets history

editTemplate rssaddPage

addFolder

editPage contents

AdminRole Class

BasicRole Class
Page, Document,

Paragraph, Text Classes

Figure 12. Feature Views showing only the conflicting additions (i.e., classes that have been added to
both main and branch development tracks).

has been added in both places. Our analysis of SmallWiki reveals an example of this. The
BasicRole class appears to have changed in the same way in both development tracks (i.e., it
changed from being a single feature class to an infrastructural feature class. This is due to the
fact that this functionality was reused by all the features in the later versions of the system.

The single feature addition changes that we detected in our two experiments affect different
features and different classes. The changes we detected in the startSW feature of the branch
version represent new functionality. These changes could therefore be merged back in the
original development track without affecting the other features. A useful side effect of our
approach is that we identify which features are affected by changes and thus require to be
regression tested after the merge is complete.

4.5. Developer validation (Experiment 2 - Main development track)

The major findings of our feature analysis of the main development track are:

• We discover the addition of a class named ResourceStore as an addition to the startSW
feature. As it is characterized as single-feature, this suggests that this class provides
specific functionality to the system at initialization.

• We detect that the characterization of the classes BasicRole and AdminRole changes in the
main development branch over time. In the initial version of our analysis, these classes
were characterized as low group feature, whereas in the last version of our analysis, they
are characterized as infrastructural feature classes.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

22 ORLA GREEVY, STÉPHANE DUCASSE AND TUDOR GÎRBA

• We detect additions of infrastructural classes, namely Page, Content, Text, Document in
the contents feature.

Figure 12 isolates the conflicting changes and shows only additions that are common to both
development tracks. For example the BasicRole class appears as an additional infrastructural
class in both places. Similarily AdminRole appears as an additional high group feature class.
In the root version of both tracks, these classes were characterized as low group feature. On
further analysis, we discover that these additions occur in both tracks as a result of changed
characterization.

The developers of the main development track confirm our first finding. They reveal that the
class ResourceStore provides SmallWiki with a a cache implementation that has been added
in the version 9.52 and is instantiated and populated by SmallWiki at startup.

Our second finding, namely the change of characterization of the BasicRole class, is confirmed
by the developers of both main and branch developments. The integration of role-based
authentication for all features represents a goal of both development tracks. The BasicRole
and the AdminRole classes are responsible for role-based authentication that determines if a
user has access rights to the features of the system. Typically access control cross cut all
the features, as it is queried before each execution. The developers confirm that in the first
version of our analysis, these classes were present but role-based authentication was only being
checked by some of the features. This explains why they were initially characterized as low
group feature.

The developers explain our third finding. New functionality has been added that results in
the content feature registering all possible page contents. Thus, these classes are detected as
new additions to this feature view.

5. Discussion

Our analysis of SmallWiki shows how we applied our approach to reason about the evolution
of the system in terms of its features. We analyze changes in the context of feature views in
two parallel development tracks and used the features to define the intent and extent of the
changes. In particular, we highlight changes that may cause conflict when merging the two
branches.

Feature definition. For this analysis, we adopted the definition of a feature as a unit of
observable behavior triggered by the user [1]. However, our approach does not exclude
other definitions such as features that carry out non-observable activities of a system
like house-keeping tasks. Furthermore, for the case studies described in this paper, we
assume a one-to-one mapping between feature-traces and features. This is a simplification
of reality, as the execution path of a feature varies depending on the combination of user
inputs when it is triggered.

Furthermore, our analysis reveals that some features, for example addFolder and
addPage, exercise exactly the same classes. Thus, these actions are closely related and
could be treated as variations of the same feature, for example addPageOrFolder. High

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

ANALYZING SOFTWARE EVOLUTION THROUGH FEATURE VIEWS 23

degrees of similarities between features may suggest that we may need to consider a
many-to-one mapping between user-triggerable actions and features. It is by performing
feature analysis in the first place that we determine such similarities. Thus, obtaining the
best feature definition for an analysis is based on the analysis itself. This clearly suggests
an iterative approach to feature definition based on the findings of feature analysis. We
plan to investigate this more in the future.

Coverage. Our feature analysis approach does not achieve 100% coverage of the system. For
the purpose of feature location, complete coverage of a system is not necessary [5]. Wilde
and Scully’s Software Reconnaissance technique, and other approaches based on this
technique, do not locate all the code associated with a feature, but provide good starting
points for the software maintainer to understand the implementation of a feature [5].

As our focus is on detecting changes over time, we sought to achieve high coverage so as
to obtain a characterization for a large proportion of the classes of the system. However,
as our experiments do not exercise features that have been added in later versions of the
system, 100% coverage is difficult to achieve.

Defining characterizations. In previous works [17, 14] we computed three distinct
characterizations of a software artifact to describe its level of participation in a set of
features, namely single feature, group feature and infrastructural. In addition, we defined
the characterization not covered to describe classes that do not participate in the features
of our model. For our feature view analysis, we refine the granularity of group feature
software artifacts. We distinguish between software artifacts that are common to a small
group of features (low group feature) and those that are common to a large group of
features (high group feature).

Low group feature classes are shared by a small number of features and represent
classes that implement a functionality that is shared by features that exercise similar
functionality. Based on the presence of low group feature classes we detect similarities
between features.

High group feature classes represent classes that provide functionality that is used by
most of the features in our model. In the case of SmallWiki, all the features we exercised
except for the startSW are initiated by the user. These features exercised the classes
responsible for handling http requests (HttpRequest), responses (HttpResponse) and
page rendering code. These classes provide infrastructural functionality to the features.
However they are characterized as high group feature classes and not as infrastructural.
This is because we included the startSW (start SmallWiki) feature in our analysis. This
feature does not involve interaction with the end user, but it does require the system
administrator to act.

The characterization of classes in feature views is therefore dependent on the set of
features we chose to exercise. By distinguishing between low group and high group
feature classes our characterizations are more reliable. We are better able to obtain
a characterization of a class that reveals its role with respect to the features. However,
we are in a position to assess our choice of features only after we have performed feature
analysis.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

24 ORLA GREEVY, STÉPHANE DUCASSE AND TUDOR GÎRBA

Our feature characterization measurements currently define a threshold value of 50% to
distinguish between low group and high group software artifacts. Perhaps the threshold
value could also be defined by the reverse engineer, depending on the type of application
to be analyzed. We plan to experiment with variable threshold values in the future.

Stability of characterizations. Our feature characterization provides a means of interpreting
the role of a class based on the results of exercising a set of features. This feature
characterization is dependent on the number of features exercised and the type of features
traced. If two features with similar functionality are executed, classes that are specific to
these features will be characterized as low group. In our experiment, we chose to exercise
the same set of features for each version. Thus we expect that the characterizations
under these circumstances should remain the same. Our technique detects these changes
in characterization and thus supports the software developer to interpret the changes in
the context of the features that have been exercised.

Changing roles of classes. In a previous work [14] we measured how the roles of classes
changed with respect to features over time. We applied the feature characterization
measurement (FC) to classes and analyzed changes in the characterizations of classes
over a series of versions. In contrast to our previous work, where we focussed on changes
in characterizations of the individual classes, in this article we treat the feature views
as the first class entity of our analysis. The feature view defines a dynamic relationship
between classes at runtime. We reason about how features are affected by changes. From
our experimentation with SmallWiki we see that some of the changes we detect in feature
views are due to changes in the characterizations of classes. A change in a feature view
may not necessarily imply that an individual feature is directly affected. For example, in
the case of the components feature of SmallWiki we detected that single feature classes
were removed in the third version of our analysis. However, when we applied the addition
history measurement to the low group feature classes we discovered that the number of
low group feature classes had increased. On closer examination of our visualization, we
discovered that the classes had not really been removed from the feature. Their roles
with respect to all the features of our model had changed. We interpret this change to
mean that the functionality provided by these classes is being used by other features
in the later version. Based on our experience with the feature view approach described
in ths paper and that of the previous work [14], we plan to perform more experiments
based on a combination of both techniques. In this way we would isolate additions or
removals that appear as a result of changing roles from new classes appearing in features
over time.

Levels of granularity. In this article, we experimented with feature views of classes. For
a more coarse-grained overview of a system features, for example when considering
large systems, we could define feature views as sets of characterized packages. During
our experimentation with SmallWiki, analysis of our static models revealed that the
number of packages increased from 13 to 43 in the main development track. We were
interested to see which features where now using functionality of the new packages. Thus
we extracted feature views as groups of packages and applied history measurements to

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

ANALYZING SOFTWARE EVOLUTION THROUGH FEATURE VIEWS 25

compute additions in the number of characterized packages participating in a feature.
Our results revealed that 7 of the new packages were referenced by the components
feature. Thus by analyzing feature views of packages we obtained a coarse-grained view
of which features are affected by the addition of new packages in the system and what
type of functionaliity is provided by the packages (i.e., single feature, low group, high
group or infrastructural).

In the same way we obtain a more fine-grained analysis if we extract feature views as
sets of characterized methods and we apply our measurements to reveal how a feature
view is changing with respect to its participating methods.

Scaleability of feature views. The number of artifacts (e.g., classes or methods) participating
in a feature view may be large, depending on how the features are defined. This could lead
to large visualizations with each feature view containing many entities. In such a case,
an iterative approach to feature analysis could be adopted. Initially the reverse engineer
would obtain a “big picture” perspective of the features. Packages or subsystems could
be the chosen software artifact. Moreover, if the focus of the analysis is restricted to
a particular part of the system (e.g., system startup), the choice of features could be
restricted to relate only to this part. Clearly the problems of scalability may be addressed
by adopting an iterative approach to feature definition and by selecting a more coarse-
grained feature view.

Obtaining feature traces. One of the difficulties of obtaining feature traces for a series of
versions of a system, is that in some of the versions bugs may have been introduced which
cause some or all of the features to be broken (i.e., they do not function correctly). This
problem could be overcome if it became an established best practice to associate usage
scenario tests with each version of the system and incorporate them in the source code
repository.

Language independence. Our technique is language independent as we work with a model
of the system abstracted by static and dynamic analysis. Obtaining the traces from the
running application typically requires code instrumentation. The means of instrumenting
the application is language dependent. To obtain traces from our SmallWiki application,
we use a code instrumenting technique for Smalltalk based on method wrappers [26].
In previous experiments with Java applications [27], we used the Ejp (Extensible Java
Profiler) [28] based on the Java Virtual Machine Profiler Interface (JVMPI). As long
as the traces obtained from the system under analysis contain message send events, our
approach will work for any object oriented language.

6. Related Work

Our work relates to static and dynamic program analysis [29, 30, 31]. Our particular focus
is on abstracting high level views of features to reason about the evolution of a system. The
context of our work is reverse engineering. In the following subsections we outline the context
and related research areas to our analysis.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

26 ORLA GREEVY, STÉPHANE DUCASSE AND TUDOR GÎRBA

6.1. Dynamic Analysis

Two main but distinct approaches to reverse engineering dominated reverse engineering
research [32], namely dynamic analysis approaches and static analysis approaches. In recent
years the synergies and dualities of these approaches have been recognized [33].

Many researchers emphasize the importance of incorporating dynamic analysis into the
reverse engineering process. Stroulia and Systa [12] argue that static analysis approaches,
though valuable are incomplete and do not meet reverse engineering goals of todays object-
oriented systems. They highlight the importance of dynamic metrics as good indicators of
external runtime behaviors. They define important considerations needed to achieve an optimal
reverse engineering approach that combines static structural views and dynamic behavioral
views of a system. A key aspect of our approach is that our model of dynamic feature behavior
is placed in the context of static entities such as packages, classes and methods.

Our feature extraction technique is directly related to the field of dynamic analysis [34, 35].
Approaches based on dynamic analysis tend to be complex. The main reason is that it is
difficult to design tools that process the huge volume of trace data and present the information
in an understandable form [19, 36]. As a result much of the research in dynamic analysis focuses
on this problem. Many compression and summarization approaches have been proposed to
support the extraction of high level views to support system comprehension [37, 38, 39].

In the context of reverse engineering and system comprehension, Zaidman and Demeyer
[39] propose an approach of managing trace volume through a heuristical clustering process
based on event execution frequency. Their goal is to obtain an architectural insight into a
program using dynamic analysis. They use a heuristic that divides a trace into recurring event
clusters and show that these recurring event clusters represent interesting starting points for
understanding the dynamic behavior of a system.

Zaidman et al. [20] define a dynamic analysis approach based on web-mining techniques
that identifies key classes of a system. They show that well-designed object-oriented programs
typically consist of key classes that work tightly together to provide the bulk of a systems
functionality. In contrast to our feature-centric approach, this approach is based only on
dynamic analysis. They do not partition the dynamic information into individual feature-
traces. The advantage of analyzing individual feature traces is that we establish a mapping
between features and code and exploit feature knowledge to reason about the higher level
feature views.

6.2. A Review of Feature-Centered Approaches

Feature location in source code has been an active area of research in recent years. Many
researchers have identified the potential of feature-centric approaches in software engineering
and in particular as a basis for reverse-engineering [40, 41, 42, 43, 3].

Wilde and Scully [5] pioneered in locating features applying a purely dynamic approach
which they call Software Reconnaissance. The goal of software reconaissance is to support
maintenance programmers when they modify or extend functionality of legacy systems. Their
approach deals with a single feature at a time and does not focus on the relationships between
features. Their approach paved the way for subsequent research in feature location techniques.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

ANALYZING SOFTWARE EVOLUTION THROUGH FEATURE VIEWS 27

Wong et al. [6] proposed three different metrics to determine quantitatively the binding of
features to components or program code. Their technique captured the disparity between a
program component and a feature, the concentration of a feature in a program component,
and the dedication of program component to a feature. This technique represents a refinement
of the Wilde technique. The underlying idea of this technique is the main inspiration for our
feature characterization measurement of a software entity. In our experiments we define a
characterization of classes based on their level of participation in the features under analysis.
We exploit this information to determine the degree of relevance of a class for a given feature.

Chen and Rajlich identified requirements for an integrated support tool for feature location
based on abstract system dependency graphs [40]. They proposed a semi-automatic approach
as they emphasize the role of the software developer in the process of feature location.

Eisenbarth et al. [1] described a feature location technique which uses a combination of
dynamic analysis and formal concept analysis to identify which computational units (i.e., parts
of the code) contribute to the behaviors of features. Similar to the software reconnaissance
technique, they distinguished between general and specific computational units. They applied
formal concept analysis to derive the correspondence between features and code. They
used scenarios to invoke features and capture execution traces. Their technique identified
computational units and is not concerned with the order of execution or the notion of time.

Eisenberg and de Volder [2] introduced a technique based on simple heuristics that uses
ranking to determine the relevance of a software entity to a feature. They use test suites to
generate dynamic feature traces. Their technique distinguished between parts of the code which
are relevant for a feature and those which are not. Our four levels of characterization define a
more fine-grained degrees of relevance of software entities to a feature.

Antoniol and Guéhéneuc [7] proposd an approach to feature location and feature comparison
based on consolidated tools and techniques such as parsing and processor emulation. Their
approach combines static and dynamic analysis.

Salah and Mancoridis [4] proposed a hierarchy of dynamic views based on execution traces
of feature behavior. Their goal was to describe views that support program understanding by
depicting low level interaction between objects of a trace and dependancies between features.

We build on the ideas of feature location approaches described above and we exploit the
idea of feature views proposed by Salah and Mancoridis [4]. Our main focus is to exploit
feature analysis to understand and interpret changes in the code over time. Thus, our approach
complements and extends these existing approaches. In contrast to some of the previously
mentioned approaches [1, 5], our main focus is applying feature analysis to object-oriented
applications. The cornerstone of our approach is our definition a four layered characterization
of features based on simple measurements. Thus we contribute to the state-of-the-art by
exploiting feature analysis to understand the evolution of a software system.

6.3. Evolution Analysis of Features

Researchers have also considered evolution analysis of systems in terms of features. Fischer et
al. [44, 45] modeled bug reports in relation to changes in a system. The purpose was to provide
a link between bug reports and parts of the system that implement the code associated with
the bug. They argue that parts of the system that change together are related.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

28 ORLA GREEVY, STÉPHANE DUCASSE AND TUDOR GÎRBA

Hsi et al. [46] described an approach to studying the evolution of features by deriving
three views of an application, a morphological, a functional and an object view, based on the
domain knowledge of an application. Their models were derived from the user interface of an
application. They compare models of an application while they evolve. The purpose of their
approach is to depict the feature architecture of an application independently of the underlying
software. They highlight the importance of studying the evolution of an feature perspective of
a system.

Licata et al. [47] assumed that unit tests of a system are partitioned into suites that are
roughly aligned with the features of a system. The implementation of a feature ”cross-cuts” the
code base. They emphasized the value to new developers of a system of describing program
changes in terms of features. Typically new developers run the program to form a mental
model of the user-observable features of a system. Test suites describe a vocabulary that
roughly corresponds to the user’s, and thus the new developer’s ontology of the program.
Their approach focussed on the differences between two versions of the program.

Many approaches to evolution analysis are based on comparing two versions of a system to
detect changes. The version-centered models allow for the comparison between two versions
and they provide insights into when a particular event happened in the evolution. Xing and
Stroulia detected server types of changes between two versions [48]. They represented each
version of the system in an XMI format and then applied UML Diff to detect fine-grained
changes like: addition/removal/moving and renaming of classes, methods and fields.

Our approach to evolution analysis through feature views is applicable to multiple versions
of a system. We consider feature view histories as a set of versions and we apply history
measurements to feature characterization properties. In this way we characterize and measure
changes in features views. Our approach exploits the semantic knowledge of a feature view to
interpret modifications to a system over time.

7. Conclusions

Our goal was to show that a features perspective of a system is a valuable asset when
understanding the underlying reasons for changes. We combine static models of the source
code with dynamic models of feature behavior to obtain a mapping between features and
code. We then reason about a feature as a first class entity of our analysis. Our evolution
analysis combines a history and a version anaylsis approach. We use simple visualizations to
show features as groupings of participating structural entities, and we plot changes to the
features to reveal the extent and type of changes in the code in the context of the features.

We describe the changes in a way that reveals how many and which features are affected by
the change. Thus we describe change as single feature, low group feature, high group feature or
infrastructural. In particular, we applied our approach on a case study consisting of versions
from two distinct development tracks and we addressed the following questions:

1. Which features are affected by changes in the code? Our simple visualizations reveal which
classes participate in the features at runtime. Our feature characterization of classes is
computed based on the features we analyze. It categorizes the classes so that we can

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

ANALYZING SOFTWARE EVOLUTION THROUGH FEATURE VIEWS 29

reason about the types of changes we detect in the features over time, in particular
changes that are localized to one feature (single-feature changes) and changes that affect
most or all of the features. We apply history measurements and support evolution analysis
of features with evolution charts and feature history views.

2. Are features becoming more complex over time? Our analysis reveals that in all cases,
number of classes participating in features increases over time. This is a measure of
increasing complexity. Our case study is a typical open source system that is constantly
being maintained and extended with new functionality and features. Although we do not
trace any new features in our experiments, our results reveal the appearance of classes
in the system that indicate the addition of new functionalities or features.

3. Do similar patterns of changes indicate relationships between features? Due to the generic
nature of SmallWiki, our analysis reveals that most of the classes in the feature views are
shared by most or all of the features we analyze. The more classes are shared by features,
the more features are affected by change to these classes. Moreover, our visualizations
reveal changes to the characterizations of classes. For example, we detect classes that
have changed from being single-feature to infrastructural. Although a feature where the
change is detected may not be changed as a result of this type of change, the feature
view perspective makes it possible to detect where changes have occurred and makes
dependencies between features explicit.

In the future we want to apply our approach to more case studies. Furthermore, we want
to extract feature views for different levels of granularity, namely packages and methods. We
are interested to see if our analysis reveals similar patterns in the feature views and their
evolution. Our approach is based on a combined model of static and dynamic information.
We plan integrate this approach more with static analysis to correlate changes in the feature
views with static changes.

Acknowledgments

We would like to thank the reviewers who gave valuable feedback. In particular we would like
to thank Oscar Nierstrasz on his valuable comments on this work.

REFERENCES

1. Eisenbarth T, Koschke R, Simon D. Locating features in source code. IEEE Computer, 2003; 29(3):210–
224.

2. Eisenberg A, De Volder K. Dynamic feature traces: finding features in unfamiliar code. Proceedings
IEEE International Conference on Software Maintenance (ICSM 2004). IEEE Computer Society Press:
Los Alamitos CA, 2005; 337–346.

3. Turner R, Wolf A, Fuggetta A, Lavazza L. Feature engineering. Proceedings IEEE International Workshop
on Software Specification and Design (WSSD 1998). IEEE Computer Society: Los Alamitos CA, 1998;
162.

4. Salah M, Mancoridis S. A hierarchy of dynamic software views: from object-interactions to feature-
interacions. Proceedings IEEE International Conference on Software Maintenance (ICSM 2004). IEEE
Computer Society Press: Los Alamitos CA, 2004; 72–81.

5. Wilde N, Scully M. Software reconnaisance: mapping program features to code. Software Maintenance:
Research and Practice, 1995; 7(1):49–62.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

30 ORLA GREEVY, STÉPHANE DUCASSE AND TUDOR GÎRBA

6. Wong E, Gokhale S, Horgan J. Quantifying the closeness between program components and features.
Journal of Systems and Software, 2000; 54(2):87–98.

7. Antoniol G, Guéhéneuc Y.-G. Feature identification: a novel approach and a case study. Proceedings
IEEE International Conference on Software Maintenance (ICSM 2005). IEEE Computer Society Press:
Los Alamitos CA, 2005; 357–366.

8. Jacobson I, Griss M, Jonsson P. Software Reuse. Addison Wesley/ACM Press, 1997.
9. Jerding D, Stasko J, Ball T. Visualizing message patterns in object-oriented program executions. Technical

Report GIT-GVU-96-15. Georgia Institute of Technology, 1996.
10. Lange D, Nakamura Y. Interactive visualization of design patterns can help in framework understanding.

Proceedings ACM International Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA 1995). ACM Press: New York NY, 1995; 342–357.

11. Richner T, Ducasse S. Recovering high-level views of object-oriented applications from static and
dynamic information. Yang H, White L, editors, Proceedings IEEE International Conference on Software
Maintenance (ICSM 1999). IEEE Computer Society Press: Los Alamitos CA, 1999; 13–22.

12. Stroulia E, Systä T. Dynamic analysis for reverse engineering and program understanding. SIGAPP.
Applied Computing Review, 2002; 10(1):8–17.

13. Systä T. Understanding the behavior of Java programs. Proceedings IEEE International Working
Conference in Reverse Engineering (WCRE 2000). IEEE Computer Society Press: Los Alamitos CA,
2000; 214–223.

14. Greevy O, Ducasse S, Gı̂rba T. Analyzing feature traces to incorporate the semantics of change in software
evolution analysis. Proceedings IEEE International Conference on Software Maintenance (ICSM 2005).
IEEE Computer Society Press: Los Alamitos, 2005; 347–356.

15. Lehman M, Perry D, Ramil J, Turski W, Wernick P. Metrics and laws of software evolution–the nineties
view. Proceedings IEEE International Software Metrics Symposium (METRICS’97). IEEE Computer
Society Press: Los Alamitos CA, 1997; 20–32.

16. Fowler M, Beck K, Brant J, Opdyke W, Roberts D. Refactoring: Improving the Design of Existing Code.
Addison Wesley, 1999.

17. Greevy O, Ducasse S. Correlating features and code using a compact two-sided trace analysis approach.
Proceedings IEEE European Conference on Software Maintenance and Reengineering (CSMR 2005). IEEE
Computer Society Press: Los Alamitos CA, 2005; 314–323.

18. Kuhn A, Greevy O. Exploiting the analogy between traces and signal processing. Proceedings IEEE
International Confernce on Software Maintainance (ICSM 2006). IEEE Computer Society Press: Los
Alamitos CA, 2006.

19. Ducasse S, Lanza M, Bertuli R. High-level polymetric views of condensed run-time information.
Proceedings of Conference on Software Maintenance and Reengineering (CSMR 2004). IEEE Computer
Society Press: Los Alamitos CA, 2004; 309–318.

20. Zaidman A, Calders T, Demeyer S, Paredaens J. Applying webmining techniques to execution traces
to support the program comprehension process. Proceedings IEEE European Conference on Software
Maintenance and Reengineering (CSMR 2005). IEEE Computer Society Press: Los Alamitos CA, 2005;
134–142.

21. Gı̂rba T, Ducasse S. Modeling history to analyze software evolution. Journal of Software Maintenance:
Research and Practice (JSME), 2006; 18:207–236.

22. Gı̂rba T, Lanza M, Ducasse S. Characterizing the evolution of class hierarchies. Proceedings IEEE
European Conference on Software Maintenance and Reengineering (CSMR 2005). IEEE Computer
Society: Los Alamitos CA, 2005; 2–11.

23. Meyer M, Gı̂rba T, Lungu M. Mondrian: an agile visualization framework. ACM Symposium on Software
Visualization (SoftVis 2006). ACM Press: New York, NY, USA, 2006; 135–144.

24. Nierstrasz O, Ducasse S. Moose–a language-independent reengineering environment. European Research
Consortim for Informatics and Mathematics (ERCIM) News, 2004; 58:24–25.

25. Ducasse S, Renggli L, Wuyts R. Smallwiki—a meta-described collaborative content management system.
Proceedings ACM International Symposium on Wikis (WikiSym’05). ACM Computer Society: New York,
NY, USA, 2005; 75–82.

26. Brant J, Foote B, Johnson R, Roberts D. Wrappers to the rescue. Proceedings European Conference on
Object Oriented Programming (ECOOP 1998), volume 1445 of LNCS. Springer-Verlag, 1998; 396–417.

27. Kuhn A, Greevy O, Gı̂rba T. Applying semantic analysis to feature execution traces. Proceedings
IEEE Workshop on Program Comprehension through Dynamic Analysis (PCODA 2005). IEEE Computer
Society Press: Los Alamitos CA, 2005; 48–53.

28. Vauclair S. Extensible Java profiler. Master’s thesis, Ecole Polytechnique Fédérale de Lausanne, 2003.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

ANALYZING SOFTWARE EVOLUTION THROUGH FEATURE VIEWS 31

29. Jacobson I. Use cases and aspects–working seamlessly together. Journal of Object Technology, 2003;
2(4):7–28.

30. Jacobson I, Christerson M, Jonsson P, Overgaard G. Object-Oriented Software Engineering — A Use
Case Driven Approach. Addison Wesley/ACM Press: Reading, Mass., 1992.

31. Memon A, Banerjee I, Nagarajan A. Gui ripping: Reverse engineering of graphical user interfaces for
testing. Proceedings IEEE Working Conference on Reverse Engineering (WCRE 2003). IEEE Computer
Society Press: Los Alamitos CA, 2003; 260–269.

32. Chikofsky E, Cross II J. Reverse engineering and design recovery: a taxonomy. IEEE Software, 1990;
7(1):13–17.

33. Ernst E. Higher-order hierarchies. Proceedings European Conference on Object-Oriented Programming
(ECOOP 2003), LNCS. Springer Verlag: Heidelberg, 2003; 303–329.

34. Ball T. The concept of dynamic analysis. Proceedings European Software Engineering Conference and
ACM SIGSOFT International Symposium on the Foundations of Software Engineering (ESEC/FSC
1999), number 1687 in LNCS. Springer Verlag: Heidelberg, 1999; 216–234.

35. Winstead J, Evans D. Towards differential program analysis. Proceedings ICSE International Workshop
on Dynamic Analysis (WODA 2003). Portland, Oregon, 2003; 37–40.

36. Richner T, Ducasse S. Using dynamic information for the iterative recovery of collaborations and roles.
Proceedings IEEE International Conference on Software Maintenance (ICSM 2002). IEEE Computer
Society Press: Los Alamitos CA, 2002; 34.

37. Hamou-Lhadj A, Braun E, Amyot D, Lethbridge T. Recovering behavioral design models from execution
traces. Proceedings IEEE European Conference on Software Maintenance and Reengineering (CSMR
2005). IEEE Computer Society Press: Los Alamitos CA, 2005; 112–121.

38. Hamou-Lhadj A, Lethbridge T. A survey of trace exploration tools and techniques. Proceedings IBM
Centers for Advanced Studies Conferences (CASON 2004). IBM Press: Indianapolis IN, 2004; 42–55.

39. Zaidman A, Demeyer S. Managing trace data volume through a heuristical clustering process based
on event execution frequency. Proceedings IEEE European Conference on Software Maintenance and
Reengineering (CSMR 2004). IEEE Computer Society Press: Los Alamitos CA, 2004; 329–338.

40. Chen K, Rajlich V. Case study of feature location using dependence graph. Proceedings IEEE
International Conference on Software Maintenance (ICSM). IEEE Computer Society Press, 2000; 241–
249.

41. El-Ramly M, Stroulia E, Sorenson P. Recovering software requirements from system-user interaction
traces. Proceedings ACM International Conference on Software Engineering and Knowledge Engineering.
ACM Press: New York NY, 2002; 447–454.

42. Hsi I, Potts C. Ontological excavation: unearthing the core concepts of an application. Proceedings IEEE
Working Conference on Reverse Engineering (WCRE 2003). IEEE Computer Society Press: Los Alamitos
CA, 2003; 345–352.

43. Mehta A, Heineman G. Evolving legacy systems features using regression test cases and components.
Proceedings ACM International Workshop on Principles of Software Evolution. ACM Press: New York
NY, 2002; 190–193.

44. Fischer M, Gall H. Visualizing feature evolution of large-scale software based on problem and modification
report data. Journal of Software Maintenance and Evolution: Research and Practice, 2004; 16(6):385–403.

45. Fischer M, Pinzger M, Gall H. Analyzing and relating bug report data for feature tracking. Proceedings
IEEE Working Conference on Reverse Engineering (WCRE 2003). IEEE Computer Society Press: Los
Alamitos CA, 2003; 90–99.

46. Hsi I, Potts C. Studying the evolution and enhancement of software features. Proceedings IEEE
International Conference on Software Maintenance (ICSM 2000). IEEE Computer Society Press: New
York NY, 2000; 143–151.

47. Licata D, Harris C, Krishnamurthi S. The feature signatures of evolving programs. Proceedings
IEEE International Conference on Automated Software Engineering. IEEE Computer Society Press: Los
Alamitos CA, 2003; 281–285.

48. Xing Z, Stroulia E. Understanding class evolution in object-oriented software. Proceedings 12th IEEE
International Workshop on Program Comprehension (IWPC’04). IEEE Computer Society Press: Los
Alamitos CA, 2004; 34–43.

49. Bézivin J, Gerbé O. Towards a precise definition of the OMG/MDA framework. Proceedings Automated
Software Engineering (ASE 2001). IEEE Computer Society: Los Alamitos CA, 2001; 273–282.

50. Seidewitz E. What models mean. IEEE Software, 2003; 20(5):26–32.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

32 ORLA GREEVY, STÉPHANE DUCASSE AND TUDOR GÎRBA

APPENDIX A: HISTORY MEASUREMENTS

We define how we calculate the history measurements that we use for the evolution analysis
of feature view histories and class histories.

Number of Changes (Num(P))

We define number of changes measurement applied on a feature view history F for a given
property P .

(i > 1)

Numi(F, P) =
{

0, Pi(F)− Pi−1(F) = 0
1, Pi(F)− Pi−1(F) 6= 0

(n > 2) Num1..n(F, P) =
n∑

i=2

Numi(F, P) (1)

Additions (A(P))

This measurement sums the additions of a property P of a feature view history F .

(i > 1)

Ai(F, P) =
{

Pi(F)− Pi−1(F), Pi(F)− Pi−1(F) > 0
0, Pi(F)− Pi−1(F) ≤ 0

(n > 2) A1..n(F, P) =
n∑

i=2

Ai(F, P) (2)

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

ANALYZING SOFTWARE EVOLUTION THROUGH FEATURE VIEWS 33

Glossary

For entity, we use the definition as found in the Webster Dictionary:

An entity is something that has separate and distinct existence in objective or
conceptual reality.

For the general terms of model and meta-model we use the following definitions:

A model is a simplification of a system built with an intended goal in mind. The
model should be able to answer questions in place of the actual system [49].

A meta-model is a specification model for a class of systems under study where
each system under study in the class is itself a valid model expressed in a certain
modeling language [50].

For features we use the following definitions:

A feature is a realized functional requirement of a system. A feature is an observable
unit of behavior of a system triggered by the user [1].

A feature-trace is a sequence of runtime events (e.g., object creation/deletion,
method invocation) that describes the dynamic behavior of a feature.

A feature model is the set of features of a analysis.

A feature characterization describes the degree of usage of a software entity by the
features of the feature model

A feature view is a set of software entities abstracted from a feature-trace. A feature
view can be a set of sets of characterized classes.

FeatureV iew = (Csf , Clgf , Chgf , Cif)

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 0:0–0
Prepared using smrauth.cls

