
Dynamix - a Meta-Model to Support Feature-Centric Analysis

Orla Greevy

Software Composition Group
University of Berne, Switzerland

greevy@iam.unibe.ch

Abstract

Many researchers have identified the potential of exploit-
ing domain knowledge in a reverse engineering context.
Features are abstractions that encapsulate knowledge of a
problem domain and denote units of system behavior. As
such, they represent a valuable resource for reverse engi-
neering a system. The main body of feature-related reverse
engineering research is concerned with feature identifica-
tion, a technique to map features to source code. To fully
exploit features in reverse engineering, however, we need
to extend the focus beyond feature identification and exploit
features as primary units of analysis.

To incorporate features into reverse engineering analy-
ses, we need to explicitly model features, their relationships
to source artefacts, and their relationships to each other. To
address this we propose Dynamix, am meta–model that ex-
presses feature entities in the context of a structural meta-
model of source code entities. Our meta-model supports
feature-centric reverse engineering techniques that estab-
lish traceability between the problem and solution domains
throughout the life-cycle of a system.

Keywords: meta-model, feature analysis, program com-
prehension, software maintenance

1 Introduction

From an external perspective, users understand a system
as a collection of features that correspond to system be-
haviors to fulfill requirements. As such, features are well-
understood abstractions that encapsulate domain knowledge
and denote a system’s behavioral units. However, the soft-
ware engineer cannot identify and manipulate features, as
they are not explicitly represented in the source code of
object-oriented systems. Typically, feature implementa-
tion cross-cuts the structural boundaries (i.e., packages and
classes) of an object-oriented system [10].

The task of locating the parts if the code that are rele-
vant to a feature in object-oriented systens is widely recog-
nized as a non-trivial task and a body of reverse engineer-
ing research collectively referred to as feature identification
has emerged [1, 6]. A software engineer is frequently con-
fronted with features. Typically, change requests and bug
reports are expressed in a language that reflects the features
of a system [9]. Therefore, to perform maintenance tasks, a
software engineer needs to maintain a mental map between
the features and their implementation as source artefacts.To
support the software engineer during maintenance activi-
ties, system comprehension techniques need to incorporate
and explicitly model the notion of a feature as a first-class
entity.

Typically the software developer is familiar with a struc-
tural representation of a system’s source code, for example
a UML class diagram. UML describes sequence diagrams
to represent runtime behaviors. To support comprehension,
we need to capture the relationship between the structural
perspective of a system in terms of software artefacts and
the dynamic behavioral entities of an object-oriented sys-
tem, namely object instantiations and message sends. To
represent features we understand dynamic behavior in terms
of units that correspond to the features of a system.

In this paper, we describe Dynamix, our meta-model that
supports feature-centric analysis of object-oriented systems
by focusing on features as first-class entities of analysis
in the context of the structural entities, namely packages,
classes and methods.

Structure of the Paper. In the next section, we iden-
tify the motivation for descibing a meta-model for features.
In Section 3 we introduce Dynamix our meta-model for ex-
pressing features as first-class entities in the context of a
structural model of the source code. We present related
work in Section 4 and finally in Section 5 we outline our
conclusions.

2 Motivation

Our work is centered around the notion of a feature: We
adopt the generally accepted definition as a unit of behavior
of a system triggered by a user [6].

The main motivation of our work is to exploit domain
knowledge of object-oriented systems inherent in a user’s
perspective of how a system behaves at runtime so that (1)
existing reverse engineering analyses can be enriched with
semantic context, and (2) we can define reverse engineer-
ing analysis techniques that exploit the notion of features as
first-class entities [8]. We establish the goals of Dynamix,
our meta-model to express features in the context of a sys-
tem’s behavioral and structural entities as follows:

1. Behavior. Due to language features like polymorphism
and late binding of object-oriented systems, behavior
of a system cannot be completely automatically deter-
mined by analyzing its source code alone. Thus, to
capture a system’s behavior, we need to perform dy-
namic analysis.

2. Combining Static and Dynamic Analysis. Two main
distinct approaches to system comprehension have
dominated reverse-engineering research efforts [2]:
dynamic analysis approaches and static analysis ap-
proaches. Both perspectives are necessary to support
the understanding of object-oriented systems [4].To
complement structural analysis of a system, roles of
source artefacts need to be enriched with feature con-
text (i.e., how they participate in features at runtime).

3. Exploiting Domain Knowledge. We consider features
to be units of behavior encapsulating domain knowl-
edge.

4. Features as First-Class Entities. Reverse engineer-
ing analysis needs to support system comprehension
by breaking the behavior into groupings that reflect
its features. To support feature-centric analysis we
need to define a meta-model that treats features as first
class entities (i.e., primary units) and establishes re-
lationships between features and source artefacts im-
plementing their functionality. Therefore, our model
needs to unify behavioral data of features and struc-
tural data of source code, thus providing a framework
for our feature-centric analysis. The model needs to
be generic, extensible and should easily accommodate
metrics from other feature analysis techniques.

5. Feature Relevancy Measurements. Feature identifica-
tion represents the foundation of our work. Thus, a
feature-centric analysis approach needs to provide a
measurement to quantify the relevance of a software
artefact to a feature, or set of features.

6. Feature Relationships. Software engineers need to un-
derstand relationships between features, as modifica-
tions to one feature may inadvertently affect other fea-
tures. Furthermore, feature relationships reflect con-
straints and dependencies in a problem domain. Thus,
our meta-model should represent relationships and de-
pendencies between features.

3 Dynamix

We introduce Dynamix, our meta-model to specify be-
havioral entities of feature execution data and their relation-
ships. Dynamix also specifies the relationships between the
behavioral entities and the structural entities representing
source artefacts. Dynamix is MOF 2.0 compliant 1. Our
OCL specifications comply with OCL 2.0 2.

To obtain a model of dynamic and static data of a system
under study, we first extract a structural model by parsing a
system’s source code. Then, we extract feature traces by
exercising a set of features on an instrumented system. We
transform the execution data of feature traces into Dynamix
entities and establish the relationships between the execu-
tion entities and the source entities of the structural model.

In Figure 1 we show the entities of our model in a
UML 2.0 diagram [7]. The Features package represents
the dynamic behavioral data of the feature traces. The
Structure package models the entities of the source code.
We model behavioral data of features using three entities:
Feature, Activation and Instance.

Feature. Each feature trace we capture during dynamic
analysis of a system is modeled as a Feature entity. A
Feature entity is uniquely identified by a name. The
Feature entity allows us to collectively manipulate all the
Activations that correspond to the events of the feature trace
which it models. It maintains a list (modeled as an ordered
collection) of all of its Activations for ease of manipulation.
The first Activation of the list represents the root of a
feature trace. We assign properties to Feature entities
based on the Activations and their relationships to other
entities (e.g., number of Activations, number of Instances
created, number of Methods referenced, and feature affinity
properties). Relationships between features are shown in
the model with a depends association. We provide the OCL
definition for this relationship between features in Figure 2.

Activation. An Activation in our model represents a method
execution. It holds a reference to its sender Activation.
In this way Dynamix models the tree structure of a fea-
ture trace preserving the sequence of execution of meth-
ods. Time is captured and modeled with two attributes,

1http://www.omg.org/docs/ptc/03-10-04.pdf
2http://www.omg.org/docs/formal/06-05-01.pdf

2

Features Structure

Instance

AbstractEntity/packages: Collection<Package>
/classes: Collection<Class>
/features: Collection<Feature>

Model

1

*

1

*

1*

1*

method

instanceOf

receivercreator

activations

* /numberOfFeatures: Integer
/featureAffinity: Integer

Method

/numberOfFeatures: Integer
/featureAffinity: Integer

Class

/numberOfFeatures: Integer
/featureAffinity: Integer

Package

notCovered
singleFeature
lowGroupFeature
highGroupFeature
infrastructuralFeature

<<enum>>
FeatureAffinity

1

disjoint
loose
tight
complete

<<enum>>
FeatureSimilarity

{self.referencedObjects = self.activations.receiver->asSet()}

{self.nReferencedObjects = self.referencedObjects.size()}

{self.methods = self.activations.method->asSet()}

Inheritance

superclass superclass

1 *
model

{self.classes = self.activations.receiver.instanceOf->asSet()}

depends
*

dependentFeature

*

{self.createdObjects = self.activations.creator->asSet()}

startTime: Integer
stopTime: Integer
...

Activation

name: String
/methods: Collection<Method>
/classes: Collection<Class>
/referencedObjects: Collection<Instance>
/createdObjects: Collection<Instance>
/nReferencedObjects: Integer
/featureSimilarity: Real
/depends: Boolean

Feature senderActivation
0..1

Figure 1. The Dynamix Meta-Model

f

context Feature
def: importedObjects : Set(Instance) =

self.referencedObjects->excluding(self.createdObjects)

context Feature
def: depends(aFeature: Feature) : Boolean =
(self.importedObjects->intersection(aFeature.createdObjects)->size() > 0)

and not (self = aFeature)

Figure 2. OCL specification of depends relationship between features.

3

namely startTime (i.e., the timestamp in milliseconds, when
the method was invoked) and stopTime (i.e., the timestamp
in milliseconds when it completed execution) of an activa-
tion. Each Activation is associated with a Method entity in
the structural model. The Method entity of the structural
model has a relationship to the Class entity where it is de-
fined. In this way, we model relationships between features
and source entities. Furthermore, an Activation is associ-
ated with an Instance entity which represents the receiver
instance of a message. The sender instance is accessible
via its sender Activation. Thus, Dynamix models the actual
object that invokes a method. This does not necessarily cor-
respond to the static relationship between Method and Class
entities, due to inheritance in object-oriented systems. The
return value of a message is also stored as a reference to an
Instance entity in the Activation that models the message
send.
Instance. We model every instantiated object of a feature
trace as an Instance entity. An Instance is created by an
Activation and maintains a list of references to all Activa-
tions that hold a reference to this object (i.e., Activations
reference the receiver instance of a message, Activations
that hold a reference to the Instance in the return value of a
message send). The Instance is associated with its defining
Class entity of the structural model.
Abstract Entity and Model.The entities (Structure and Fea-
ture entities) of our model, are derive from emphAb-
stractEntity. A Model comprises every entity, and every
entity is associated with the Model entity. For example a
Method entity obtains a collection of all the Feature entities
in the model via this association.

Dynamix supports feature analysis from different levels
of granularity. We exploit relationships between Feature
entities and source entities to view a system at the package,
class or method level of detail.

4 Related Work

Our work builds on feature identification research that
deals with locating the implementation of features in the
source code [5, 10]. The main variation to our work is in
our research focus. We seek to extract and model feature
entities and establish them as first class entities for analysis
of a system from different perspectives. We seek to extract
and model feature entities and establish them as first class
entities for analysis of a system from different perspectives.

The work of Deissenboek and Ratiu emphasizes the role
of a unified meta-model to exploit the concepts for reverse
engineering [3]. Similarily, we identify the need to model
features in the context of a structural model of source code
for the basis of our work.

5 Conclusion

To fully exploit features in reverse engineering, we need
to treat features as primary units of analysis. We moti-
vated the need to describe a meta-model for features : (1) to
enrich reverse engineering analysis techniques that extract
structural views of a system with semantic knowledge about
roles of source artefacts in features of a system, and (2) to
reason about a system in terms of features themselves and
relationships between features.

We describe Dynamix, a meta-model that expresses the
execution entities of feature behavior and their relation-
ships. Furthermore our meta-model expresses the relation-
ships between the execution entities and a structural model
of source code. Dynamix supports analysis that combines
static and dynamic views of a system.

References

[1] G. Antoniol and M. Di Penta. An automatic approach
to identify class evolution discontinuities. In Proceedings
IEEE International Workshop on Principles of Software
Evolution (IWPSE 2004), pages 31–40, Los Alamitos CA,
Sept. 2004. IEEE Computer Society Press.

[2] E. Chikofsky and J. Cross II. Reverse engineering and de-
sign recovery: A taxonomy. IEEE Software, 7(1):13–17,
Jan. 1990.

[3] F. Deissenboeck and D. Ratiu. A unified meta-model
for concept-based reverse engineering. In Proceedings of
the 3rd International Workshop on Metamodels, Schemas,
Grammars and Ontologies (ATEM’06), 2006.

[4] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refac-
torings via change metrics. In Proceedings of 15th Interna-
tional Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA ’00), pages
166–178, New York NY, 2000. ACM Press. Also appeared
in ACM SIGPLAN Notices 35 (10).

[5] T. Eisenbarth, R. Koschke, and D. Simon. Locating features
in source code. IEEE Computer, 29(3):210–224, Mar. 2003.

[6] A. Eisenberg and K. De Volder. Dynamic feature traces:
Finding features in unfamiliar code. In Proceedings IEEE
International Conference on Software Maintenance (ICSM
2004), pages 337–346, Los Alamitos CA, Sept. 2005. IEEE
Computer Society Press.

[7] M. Fowler. UML Distilled. Addison Wesley, 2003.
[8] O. Greevy. Enriching Reverse Engineering with Feature

Analysis. PhD thesis, University of Berne, May 2007.
[9] A. Mehta and G. Heineman. Evolving legacy systems fea-

tures using regression test cases and components. In Pro-
ceedings ACM International Workshop on Principles of Soft-
ware Evolution, pages 190–193, New York NY, 2002. ACM
Press.

[10] E. Wong, S. Gokhale, and J. Horgan. Quantifying the close-
ness between program components and features. Journal of
Systems and Software, 54(2):87–98, 2000.

4

