
A Trustability Metric for Code Search
based on Developer Karma

Florian S. Gysin
Software Composition Group

University of Bern, Switzerland
flo.g@students.unibe.ch

Adrian Kuhn
Software Composition Group

University of Bern, Switzerland
http://scg.unibe.ch/akuhn

ABSTRACT
The promise of search-driven development is that developers
will save time and resources by reusing external code in their
local projects. To efficiently integrate this code, users must
be able to trust it, thus trustability of code search results
is just as important as their relevance. In this paper, we
introduce a trustability metric to help users assess the qual-
ity of code search results and therefore ease the cost-benefit
analysis they undertake trying to find suitable integration
candidates. The proposed trustability metric incorporates
both user votes and cross-project activity of developers to
calculate a “karma” value for each developer. Through the
karma value of all its developers a project is ranked on a
trustability scale. We present JBender , a proof-of-concept
code search engine which implements our trustability metric
and we discuss preliminary results from an evaluation of the
prototype.

1. INTRODUCTION
Code search engines help developers to find and reuse soft-

ware. However, to support search-driven development it is
not sufficient to implement a mere full text search over a
base of source code, human factors have to be taken into ac-
count as well. At last year’s SUITE workshop [9], suitability
and trustability have been major issues in search-driven de-
velopment, besides—of course—relevance of search results.

In this paper we focus on the trustability of search results.
Relevance of code search results is of course paramount,
but trustability in the results is just as important. Before
integrating a search result the developer has to assess its
trustability to take a go-or-no-go decision. A well-designed
search interface allows its users to take this decision on the
spot. Gallardo-Valencia et al. found that developers often
look into human rather than technical factors to assess the
trustability of search results [4]. For example developers will
prefer results from well-known open source projects over re-
sults from less popular projects.

In this paper we present a trustability metric for search

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SUITE ’10, May 1 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-962-6/10/05 ...$10.00.

results. The trustability metric is based on human factors.
We use data collected from Web 2.0 platforms to assess the
trustability of both projects and developers. Our trustabil-
ity metric is based on collaborative filtering of user votes and
cross-project activity of developers. For example, if a little-
known project is written by developers who also contributed
to a popular open source project, the little-known project is
considered to be as trustable as the popular project.

As a feasibility study, we implemented the trustability
metric in JBender , a proof-of-concept code search engine.
The index of our JBender installation currently contains
trustability assessments for over 3,700 projects, based on
193,000 user votes and the cross-project activity of over
56,000 developers. In this paper, preliminary results from
an evaluation of the prototype are discussed.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses background and related work. Section 3
introduces our trustability metric, and Section 4 describes
JBender , a proof-of-concept prototype. Section 5 discusses
preliminary results from an ongoing evaluation of the pro-
totype. Eventually, we conclude in Section 6 with remarks
on future work.

2. BACKGROUND & RELATED WORK
Since the rise of internet-scale code search engines, search-

ing for reusable source code has quickly become a fundamen-
tal activity for developers [1]. However, in order to establish
search-driven software reuse as a best practice, the cost and
time of deciding whether to integrate a search result must be
minimized. The decision whether to reuse a search result or
not should be quickly taken without the need for careful (and
thus time-consuming) examination of the search results.

Trustability is a big issue for reusing code. When a devel-
oper reuses code from an external sources he has to trust the
work of external developers that are unknown to him. This
is not to be confused with trustworthy computing, where
clients are concerned with security and reliability of a com-
putation service.

For a result to actually be helpful and serve the purpose
originally pursued with the search it is not enough to just
match the entered keywords. User studies have shown that
developers rely on both technical and human clues to assess
the trustability of search results [4]. For example developers
will prefer results from well-known open source projects over
results rom less popular projects.

The issue of providing meta-information alongside search
results and thereby increasing trustabilty has not been widely
studied and we are trying to address this with our work.

In recent years special search engines for source code have
appeared, namely Google Code Search 1, Krugle 2 and
Koders 3. They all focus on full-text search over a huge
code base, but lack detailed information about the project.
Search results typically provide a path to the version control
repository and little meta-information on the actual open
source project; often, even such basic information as the
name and homepage of the project are missing.

Sourcerer 4 by Bajracharya et al. [2] and Merobase 5

by Hummel et al. [6] are research projects with an internet-
scale code search-engine. Both provide the developer with li-
cense information and project name. Merobase also provides
a set of metrics such as cyclomatic- and Halstead complex-
ity. An improved version of Sourcerer with trustability data
is in development, though it has not yet been published6.

In addition to the web user interface, both Sourcerer and
Merobase are also accessible through Eclipse plug-ins that
allow the developer to write unit tests. These are then used
as a special form of query to search for matching classes/
methods, i.e., classes that pass the tests[6]. Using unit tests
as form of formulating queries is a way of increase technical
trustability: Unit-tested search results are of course more
trustable, however at the cost of a more time consuming
query formulation (i.e., additionally writing the unit tests).
The kind of results returned are also limited to clearly-
defined and testable features. A combination of technical
trustability factors (e.g., unit tests) and human trustability
factors might be promising future work.

We are not the first to use collaborative filtering in code
search. Ichii et al. used collaborative filtering to recommend
relevant components to users [7]. Their system uses brows-
ing history to recommend components to the user. The aim
was to help users make cost-benefit decisions about whether
or not those components are worth integrating. Our con-
tribution beyond the state-of-the-art is our focus on human
factors and the role of cross-project contributors.

3. TRUSTABILITY METRIC
In this section, we propose a trustability metric for code

search results that uses collaborative filtering of both user
votes and cross-project activity of developers.

To assess the trustability of code search results we combine
traditional full text search with meta-information from Web
2.0 platforms. Our trustability metric requires the following
information:

• A matrix M = (cd,p) with the number of contributions
per contributor d to a project p.

• A vector V = (vp) with user votes for software projects
to signal the users’ trust in projects. Gallardo-Valencia
et al. refer to user votes as “fellow users” [4].

We use collaborative filtering of both user votes and cross-
project activity of developers. For example, if a little-known
project is written by developers who have also contributed
to a popular open source project, the little-known project is

1http://www.google.com/codesearch
2http://www.krugle.org
3http://www.koders.com
4http://sourcerer.ics.uci.edu
5http://www.merobase.org
6Personal communication with Sushil Bajracharya.

 6

Metadata Collector

Local Git RepoSQL Database

Source Code Crawler

Trustable
Search Result

Web
www.ohloh.net

Developer

Version Control

Figure 1: Architecture of the JBender prototype. JBen-

der enhances search results from source code with a

trustability estimate that is based on social data collect

from the Ohloh Web 2.0 website.

considered to be as trustable as the popular project. Since
both the number of contributions per contributor and the
number of votes per project follow a power-law distribution,
we use log weighting and tf-idf 7 weighting where applicable.

First we define the karma of a contributor as

Kd =
X
P

wd,p log vp where wd,p =
log cd,p

log df(d)

which is the sum of the votes of all projects, weighted by
the number of contributions to these projects and divided
by the inverse project frequency of the contributor (i.e., the
number of projects to which the contributor contributed at
least one contribution).

Based on this, trustability of a project is defined as

Tp =
X
D

wd,pKd where wd,p =
log cd,pP

d′∈D log cd′,p

which represents the sum of the karma of all the projects
contributors, weighted by the number of their contributions.
Note that we divide project trustability by the total num-
ber of contributions, but not contributor karma. This is
on purpose, contributors are more trustable the more they
commit (based on the assumption that all accepted commits
require approval of a trusted core developer, as is common
in many open source projects) but projects are not per se
more trustable the larger they are.

To summarize, we consider a project to be trustable if
there are significant contributions by contributors who have
also significantly contributed to projects (including the project
in question) that have received a high number of user votes.

The proposed definition of trustability is dominated by
cross-project contributors, i.e., contributors who contributed
many times to many projects with many votes. This is in
accordance with empirical findings on open source that have
shown how cross-project developers are a good indicator of
project success [8]. This behaviour is also known as “the
rich get richer” in the theory of scale-free networks and is

7“term frequency-inverse document frequency” http://en.
wikipedia.org/wiki/Tf-idf

http://www.google.com/codesearch
http://www.krugle.org
http://www.koders.com
http://sourcerer.ics.uci.edu
http://www.merobase.org
http://en.wikipedia.org/wiki/Tf-idf
http://en.wikipedia.org/wiki/Tf-idf

Figure 2: Screenshot of a JBender search result with trustability estimate. On the right there is the actual search

result, with full name and code snippet. On the left there is information about the originating project and the trust

value calculated by the trustability metric.

considered an inherent and thus common property of most
social networks [3].

4. THE JBENDER PROTOTYPE
We have developed a prototype, called JBender , which en-

riches code search results with trustability information. To
add to the information content of search results we combine
two main sources to form the JBender code search engine.
On the one hand there is the actual code base of the search
engine over which an index is created. On the other hand
we have created a database of metadata for the projects in
the code base.

Figure 1 illustrates the architecture of JBender . JBender
creates a searchable index over the code base and provides a
code search over it. Its novelty however lies in the underlying
metadata which is linked to the projects in the searchable
code base - upon finding results from the latter JBender can
supply the meta information stored for the result’s originat-
ing project.

4.1 JBender’s Metadatabase
Our source of meta data is the Ohloh8 project. Ohloh is a

social networking platform for open source software projects
where projects (or rather their developers) can specify ad-
ditional information. However Ohloh does not allow users
to actually search through or interact with the source code:
Ohloh is not a code search engine. Ohloh provides user con-
tributed information on both open source projects and their
developers, composing valuable information for search users.
Users can vote for both projects and developers whether and
how much they like them by rating projects and giving ku-
dos to certain developers. Furthermore kudos are (automat-
ically) given to developers who have worked for successful
projects, i.e. projects with large user bases.

For the JBender prototype we collected the trustability
meta-information from Ohloh, which is a social web plat-
form for open source projects that provides user contributed
information on both open source projects and their devel-
opers.

Metadata stored in the database includes (among others):
Description of original project, project homepage, rating of
the project, list of current repositories (type, url, last time
of update, ...), licenses of files in the project (exact type of
license, number of files), employed programming languages

8http://www.ohloh.net

(percentage of total, lines of code, comment ratio, ...), the
project’s users and developers who worked on the project
(kudos, experience, commits per project, ...).

4.2 JBender’s Codebase
In addition to the collected metadata, JBender also fol-

lows the links to the version control repositories that are
listed on Ohloh, creates local copies of these repositories and
parses the code in Java projects to build an search index over
them. JBender then provides a basic structured code search
over various parts of the indexed source code. Examples are
method/class names and their bodies, comments, visibility,
dependencies and implemented interfaces.

4.3 Trustability enhanced results
The following data from Ohloh was directly used for the

trustability metric: As contributors we used the developers
of the projects and as the number of contributions we used
the number of commits. As user votes we used the number of
developers who “stacked” a project, which is Ohloh’s termi-
nology for claiming to be an active user of a project.9 Thus
in our case, both users and contributors are open source de-
velopers. To be a user the developers must be registered on
Ohloh. This is not necessary for being a contributor, since
that information is taken from version control systems.

As explained in Section 3 this trustability metric takes
into account several of the collected meta parameters and
calculates a trust metric for each result according to which
the results can be sorted.

Figure 2 shows a screenshot of a single search result from
JBender . On the right there is the actual search result, with
full name and code snippet. On the left there is information
about the originating project and the trust value calculated
by the trustability metric. Currently the raw trust measure-
ment is displayed as a floating point number to the user. We
might change that to a ranked assessment that maps the
trustability to a scale from 1 to 10 to improve usability.

The layout of our search result is deliberately kept very
simple and lucid in order to be efficiently usable. It has
been shown that efficient search requires compact and well-
arranged interfaces, which do not burden the user with too
much information or a complex information seeking process
[5].

9That is, we interpret “votes” as a user expressing his trust
in a project by using it.

http://www.ohloh.net

Top projects (by votes) Top Developer (by karma) Top projects (by trustability)
“firefox”, vp = 7207 “darins”, Kd = 71.97 “grepWin”, Tp = 51.60, vp = 32
“subversion”, vp = 5687 “amodra”, Kd = 70.11 “GNU Diff Utilities”, Tp = 51.18, vp = 645
“apache”, vp = 5107 “darin”, Kd = 69.09 “Eclipse Ant Plugin”, Tp = 49.76, vp = 136
“mysql”, vp = 4834 “nickc”, Kd = 67.14 “Eclipse Java Development Tools”, Tp = 48.36, vp = 647
“php”, vp = 4081 “Dani Megert”, Kd = 66.51 “Crimson”, Tp = 42.41, vp = 2
“openoffice”, vp = 3118 “mlaurent”, Kd = 66.14 “GNU binutils”, Tp = 42.18, vp = 525
“firebug”, vp = 3109 “Paul Eggert”, Kd = 65.89 “syrep”, Tp = 42.12, vp = 2
“gcc”, vp = 2586 “kazu”, Kd = 65.78 “GNU M4”, Tp = 41.85, vp = 54
“putty”, vp = 2519 “rth”, Kd = 65.25 “gzip”, Tp = 41.61, vp = 261
“phpmyadmin”, vp = 2412 “hjl”, Kd = 65.04 “Forgotten Edge OpenZIS”, Tp = 40.86, vp = 1

Figure 3: Top ten results for A) project ranking by Ohloh, B) karma of developers, C) project ranking by trustabilty.

5. DISCUSSION

Some preliminary results.
Figure 3 illustrates the top-10 results for a) project rank-

ing through votes by Ohloh, b) karma of developers, c)
project ranking by our trustability metric. Notice how the
project ranking changed through consideration of cross-project
developer activity: grepWin for example has only 32 users
on Ohloh but is ranked by us with top trustability because
its developers are very active and have a high karma value.

Evidence of power law distribution.
We found that our input data (i.e., the user-generated

data that we crawled from Ohloh) follows a power law dis-
tribution: the number of votes per project (r = 0.95157), the
number of commits per developer per project (r = 0.89207),
as well as number of projects per developer (r = 0.85029).
Therefore we applied log and tf-idf weighting so that the
trustability metric is not dominated by high values. At the
moment project trustability ranges from zero to about 52,
developer karma ranges from zero to about 72.

A note on Ohloh’s kudo-rank.
The Ohloh website provides its own measurement of de-

veloper “karma”, called kudo-rank. Kudo-ranks are based on
a mix of user votes for projects and of user votes for devel-
opers, called kudos. User participation for kudos is very low
and as a consequence a small clique of developers can vote
themselves up to top ranks. Therefore, we decided against
including kudo-ranks in our trustability function.

Possible weakness of karma ranking.
One must consider that developers may not use the same

user names for all their commits through various repository
systems. In such a case Ohloh can not auotmatically collect
all the developers commits into one account; the developer
would have to register and do this manually. Furthermore
we blacklist commit bots. Finally the karma value could
be tampered with deliberately if a user was to do a huge
number of (small) commits to few highly ranked projects.

6. CONCLUSION
In this paper we have presented an approach to improve

the trustability of search results. Trustability of search re-
sults is important, so that developers can quickly assess
search results from external code bases before integrating
them into their local code base.

We have proposed Tp as a trustability metric for soft-
ware projects. We have also presented JBender , a proof-of-

concept prototype code search engine that implements the
trustability metric which allows developers to quickly assess
the trustability of search results from a code search engine.
We have discussed the choice of our trustability metric and
presented preliminary results from an ongoing evaluation.

The current trustability metric is defined per project. We
would like to combine it with code ownership data from
project history, so that we can assess the trustability of sin-
gle classes (or even methods) based on developers karma.

Currently we are building up our metadata and code bases
for JBender ; upon reaching a sufficient level we plan do a
user study to evaluate the effect of metadata on result trusta-
bility. We would also like to compare the proposed trusta-
bility metric with other trustability measurements, e.g., cor-
porate backing of projects. It might also be promising to
combine the proposed trustability metric, which is currently
based on human factors only, with technical trustability as-
sessments such as e.g., test coverage.

Acknowledgments.
We gratefully acknowledge the financial support of the Swiss Na-

tional Science Foundation for the project“Bringing Models Closer

to Code” (SNF Project No. 200020-121594, Oct. 2008 – Sept.

2010).

7. REFERENCES
[1] S. Bajracharya, A. Kuhn, and Y. Ye. Suite 2009: First

international workshop on search-driven development -
users, infrastructure, tools and evaluation. In ICSE ’09
Companion Volume, pages 445–446, 2009.

[2] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor,
P. Baldi, and C. Lopes. Sourcerer: a search engine for open
source code supporting structure-based search. In OOPSLA
’06, pages 681–682, 2006. ACM.

[3] A.-L. Barabasi. Linked: How Everything Is Connected to
Everything Else and What It Means. Plume, reissue edition,
April 2003.

[4] R. E. Gallardo-Valencia and S. Elliott Sim. Internet-scale
code search. In SUITE ’09, pages 49–52, 2009.

[5] M. A. Hearst. Search User Interfaces. Cambridge University
Press, 1 edition, September 2009.

[6] O. Hummel, W. Janjic, and C. Atkinson. Code conjurer:
Pulling reusable software out of thin air. Software, IEEE,
25(5):45–52, 2008.

[7] M. Ichii, Y. Hayase, R. Yokomori, T. Yamamoto, and
K. Inoue. Software component recommendation using
collaborative filtering. In SUITE ’09, pages 17–20, 2009.

[8] E. Katsamakas and N. Georgantzas. Why most open source
development projects do not succeed? In ICSEW ’07, pages
123+, 2007. IEEE.

[9] A. Kuhn. Automatic labeling of software components and
their evolution using log-likelihood ratio of word frequencies
in source code. In MSR ’09, pages 175–178. IEEE, 2009.

	Introduction
	Background & Related Work
	Trustability Metric
	The JBender Prototype
	JBender's Metadatabase
	JBender's Codebase
	Trustability enhanced results

	Discussion
	Conclusion
	References

