
MHEye: A Hybrid Android Security Assessment Tool for
Ordinary Users

Mohammadreza Hazhirpasand
Software Composition Group

University of Bern, Switzerland
http://scg.unibe.ch

Abstract

Android users are often overwhelmed by security
issues arising in the apps they use. Although mal-
ware analysis tools exist, they are challenging to
adopt for average users. To avoid burdening mo-
bile devices with complex and computationally
expensive malware tools, we propose a hybrid ap-
proach that combines static and dynamic analyses,
and distributes the analysis mainly on another de-
vice than the phone. We first review the Android
architecture and several of the key security issues
it faces, and we summarize existing approaches to
malware detection. We conclude with a research
plan to explore and develop a more user-friendly
approach to malware detection for ordinary users.

1 Introduction
The constant growth of smartphone applications and sales
has had a great impact on our daily lives, and this fact has
encouraged attackers to develop malicious software for at-
tacking mobile devices. Amongst all smartphone OSs, the
Android OS is the most widely-used platform and its source
code is publicly available. Furthermore, a great number
of interesting Android devices run obsolete versions of the
OS. These factors make Android smartphones attractive
targets for malware authors. According to the F-Secure re-
port, 79% of malware designed to target smartphones in
2013 chose Android OS as their target, and by employ-
ing advanced anti-detection techniques in malware, the ef-
fectiveness of anti-malware programs decreased from 95%
to 40% [MAC+17, CT05]. In 2015, Symantec reported

Copyright © by the paper’s authors. Copying permitted for private and
academic purposes.

Proceedings of the Seminar Series on Advanced Techniques and Tools for
Software Evolution SATToSE 2018 (sattose.org).
04-06 July 2018, Athens, Greece.

a 230% growth of malicious apps on Android platform
that utilized techniques to bypass existing anti-malware
signature-based approaches [sym16]. The most frequently
highlighted techniques used by malware in the Symantec
report include obfuscation of application code, and detec-
tion of the sandbox and virtualized environments.

To battle these types of malware, new research
paths have been explored to enhance malware analysis
techniques in mobile environments [MCW+17, ZZC17,
BK17]. The malware family classification method uses
samples and clues to classify malware into different groups
or families. Malware from the same family should have
similar intentions, exploit the same weaknesses and present
the same behaviour, and this helps save time for malware
analysis.

In practice, malware analysts use both static and dy-
namic analysis techniques to identify and extract clues
from malware. Since static analysis methods do not de-
pend on running the application, they tend to be less useful
for analyzing obfuscated code. On the other hand, dynamic
analysis methods overcome this shortcoming by analyzing
applications while they are running.

We outline the previous work that has widely influenced
detection of malware and malicious applications, and then
briefly explore possibilities for future work combining and
applying both static and dynamic analysis while an ordi-
nary user uses his phone. We propose the following three
research questions for future research:

• RQ1: What are the possible ways for an Android mal-
ware developer to achieve their goals?

• RQ2: How can these malicious files be identified by
current tools and frameworks, and how efficient they
are in terms of resource usage, time and knowledge
required?

• RQ3:What improvements can help existing frame-
works in the automatic detection of malicious appli-
cations without the need of a security expert?

1

http://scg.unibe.ch


In section 2 we explain the current state of Android
structure and types of security issues. Then, in section 3
we explain the existing approaches for detection of mal-
ware as well as introducing well-known frameworks and
tools which are typically used in reverse engineering of an-
droid applications. Finally, we represent a brief perspective
in section 4.

2 Android Architecture and Security Issues
This section briefly assesses the Android structure and se-
curity issues related to each part of the OS. According to
our first research question, by gaining a good understand-
ing of how an application executes, and what are the exist-
ing threats, a malware developer can write some destructive
code and target this platform.

In the Android OS, applications are written in Java while
shared libraries are created in C/C++. Any Android appli-
cation must be compiled to Dalvik bytecode which runs
under the Dalvik Virtual Machine (DVM). Each applica-
tion is compressed into an APK file which contains several
files including images, strings and the source code of the
application. Also, an interesting file called AndroidMani-
fest.XML is located in an APK archive file, and provides
fruitful information regarding permissions, activities, ser-
vices and broadcast receivers. The Dalvik bytecode source
code is stored in a file called classes.dex and serves as an
entry point of the application, to be be executed on DVM.
Many reverse engineers and experts try to decompile this
file to have access to the source code of the application.

In Android, Discretionary Access Control (DAC) dis-
tinguishes each process by a Unique ID within an isolated
space [PFB+15]. Each application must be digitally signed
in order to create trust relationships between applications
and to guarantee that the application came from the author
of an application. In case of sharing or disclosing a certifi-
cate, application A could use the certificate to sign itself as
well as application B. As a result, both applications have
access to their private files, codes, and manifest permis-
sions.

Generally, an Android application consists of various el-
ements which are briefly explained below: Activity: what-
ever is visible to a user in an application is contained in
an activity, and an application could have many activities
based on the developer’s need. Service: as its name im-
plies, background and long-running tasks in an application
should be run as a service. Broadcast Receiver: this is
where an application can interact with system-generated
events or application-defined events. Content Provider:
when one application wants to request a data from another
application, the data should reside in a Content Provider.

These elements in an application are interesting for mal-
ware authors to perform their malicious code on the An-
droid platform. They are the main focus of existing assess-
ment tools to discover any suspicious activity.

In addition, there are various kinds of threats against
these elements and the Android kernel that are reported and
used by different applications in order to perform malicious
activities on the user’s phone.

Privacy Escalation: gaining root access is a popular way
for malware to access protected resources on Linux ma-
chines and also Android phones. Researchers and attackers
usually analyse the kernel and shared libraries to discover
vulnerabilities to escalate their privilege.

Private Information Leakage: it is very common to gain
access to private information of the user as everyone’s
phone is a place where messages, phone calls and many
other types of data are stored.

Malicious Application: applications that pretend to be
legitimate can earn money in the background and subscribe
to SMS channels without the user’s approval.

Colluding: when several applications are signed with
the same certificate, they have the same UID and are capa-
ble of sharing permissions and code. Malware writers have
great incentives to create colluding malware, for instance
two applications by the same developer where the first one
obtains internet access and the second one obtains location
permission. Since the first application has access to the in-
ternet, it is feasible for this one to send the location of the
user as well through the internet.

Denial of Service: an application can drain resources of
a phone and perform a DoS attack against either a target
machine or another user’s phone.

Dangerous Permissions: Permissions are classified in
Android Marshmallow 6.0 into two normal and dangerous
categories. Once an application requires one of the danger-
ous permissions, the application has access to critical re-
sources of user’s phone. Android 6.0 and higher asks users
for granting any dangerous permissions; however, there are
many old devices that are not capable of getting newer ver-
sions of Android. Moreover, many users do not read care-
fully what permissions an application asks them.

Failure of two-factor authentication: Many applications
need to have access to read SMSs, and this creates various
security threats. One of the major threats affects the reli-
ability of two-factor authentication systems that utilize an
SMS channel as their second factor of authentication. Once
a user has received a One Time Password (OTP) password,
the malicious application is able to send it immediately to
the hacker’s server.

Although Android has experienced a lot of improve-
ments such as preventing stack buffer overflow, integer
overflow and added features like Address Space Layout
Randomization (ASLR), there are still different approaches
for malware writers to bypass or achieve to their goal.

2



3 Malware Detection and Existing Frame-
works

In Android, there are many well-known and widely-spread
worms, ransomware, trojans and backdoors that have con-
vinced researchers and security experts to create differ-
ent tools in order to dissect these malicious applications.
Researchers use two broad categories of methods, i.e.,
static and dynamic analysis, to analyse applications. In
static analysis, there are different techniques like signature-
based, component-based, permission-based, and Dalvik
Bytecode analysis, and converting Dalvik code into Java
Bytecode, which help researchers to analyse an application
from various perspectives. In dynamic analysis, methods
such as profile-based anomaly, behaviour-based and virtual
machine introspection are the most popular ways to dynam-
ically examine an application.

The security of malicious applications can be assessed
in different places. A lightweight security and risk assess-
ment could be accomplished on-device. On-device mal-
ware detection has some limitations. First anti-malware
applications, just as other applications, run under normal
privilege, hence this prevents them from scanning private
files or memory of other applications. While system re-
sources such as battery usage are a major concern for ev-
ery user, background services by anti-malware applications
may consume a lot of system resources by performing var-
ious tasks. Moreover, background services can be termi-
nated by applications that acquire special permissions. An-
droid phones are not shipped with root access, and with-
out having access to the root account, anti-malware appli-
cations cannot hook into system calls or monitor network
activities.

The other method is to distribute analysis work between
the phone and another device. In this approach, high-cost
computational work could be offloaded from the phone
while basic detection can be performed on the device. In
this method, there are some limitations such as continuous
internet usage, bandwidth issues and resource usage.

With the last method to obtain a deep understanding of
a malicious application sample, the whole process must be
done somewhere else than a smartphone. The main reasons
for choosing to perform analysis off-device could be (i) the
need for human interaction in the static analysis in a more
precise manner, (ii) developing some automated analysis
modules, and (iii) the necessity of greater computational
power and memory.

We are now going to review several tools and frame-
works that are widely used by security researchers. The
first one is Apktool, which can decode an APK file and dis-
assemble the binary resources [PFB+15]. Dex2jar is a pop-
ular disassembler that converts a Dex file to a Jar file for any
additional assessment or manipulation [BHM+15]. Dare is
also another useful tool which is claimed to be 40% more
accurate than Dex2jar [BGM+16]. Dare is capable of con-

verting a Dex file to a traditional .CLASS files for any ad-
ditional inspection. Among many disassemblers, Dedexer
translates a Dex file into assembly-like format syntax and
creates an easy way for a human to track the files and
source-code [CFGW11]. Androguard is a static analysis
tool that uses the off-device approach to generate control
flow graphs of an application and some features that are ac-
cessible through a Python API [Nez17]. This tool also ex-
plores similarities and differences between different appli-
cations. Andromaly runs half on-device and half off-device
and utilizes machine learning to monitor real-time usage of
CPU, memory and network activity [SKE+12]. Andromaly
has a graphical user interface to configure what parame-
ters and options should participate in the detection phase.
APKInspector is an off-device and fully-fledged Android
static tool [ERH+16]. APKInspector presents a GUI inter-
face that helps researchers to perform tasks such as presen-
tation of Dalvik bytecode and Java source code, control-
flow graphs and call graphs. Finally, Drozer is a complete
attack and examination framework that is publicly available
to everyone [YZW+14]. By using this framework, Android
devices could be remotely exploited in order to evaluate
their security reliability. Drozer also uses an Agent app
on the device and a Python script at the server side as an
off-device approach to split the workload of detection and
attack.

Off-device and hybrid tools require special knowledge
to work. On-device tools face many limitations regard-
ing permission and resources, making them less efficient
than hybrid or off-device approaches. Each tool also offers
some specific features, and may use different methodolo-
gies and deployment methods. For instance, APKInspector
only does analysis, and uses the static approach outside of
a device, Androguard conducts assessment, analysis and
detection via the static approach outside of a device, and
Andromaly detects malware via dynamic and profile-based
methodologies via the distributed approach.

4 Research Plan
Ongoing threats against users and existence of malicious
applications in Google Play store and third-party websites
threaten the smartphones and private information of mil-
lions of users. At the same time, at least a basic knowl-
edge is required to perform or deal with security assessment
tools. This issue leaves ordinary users far behind in under-
standing what is their current issue. In addition, security
tools responsible for detection or prevention of malware on
devices have different sorts of limitations. This gap allows
malware authors to target unaware or inexperienced users
more easily.

Resource usage is a big concern for users to have their
phone last longer and perform faster. For this reason, a
hybrid approach should be less dependent on the phone and
transfer most of the tasks to its counterpart which can be a

3



cloud or a computer. It is also important to an ordinary user
to carry a hybrid system which is almost always available to
perform detection and assessment phases. As the internet
might not be always available, and using limited bandwidth
by users could be a big hindrance for a cloud solution, it is
acceptable to have a small device in addition to the phone
which could be used either at home or work.

Android Debug Bridge (ADB) allows an Android phone
to be debugged wirelessly, and this facilitates the process
of an external debugger without being connected to a PC or
external device by a cable. On the external device, a combi-
nation of analysis methods such as network traffic analysis,
file operations monitoring, identifying SMS/CALL misuse
and data leakage, resource hogger app analysis, logcat and
native code analysis is implemented. Unlike many other
solutions that can be run on any computers or laptops, we
want to propose the external device to be a mini computer
like raspberry pi which is small and portable. The device
power consumption on a battery while a user is on the way
and has no access to any outlet, optimization of all mod-
ules and their performance and using limited resources of
a mini computer could be all challenging as well as the de-
tection and assessment phase of the system. In case any
hint of malware is found, the user can be alerted immedi-
ately of the findings regarding the applications installed on
his phone.

According to our vision, software security should not
be a privilege, but a fundamental building block of future
computing. In this spirit, we want to bridge the gap and
remove as many as hindrances between ordinary users and
detection of malware with the least required knowledge.
This should be done via the simplest possible method for
users with the least hassle for them to carry or configure the
device. Also, the coverage of the detection system should
be vast enough to identify any suspicious activity.

5 Conclusion
In this paper, we first described Android’s application
structure and its security issues. Afterwards, various types
of security assessment tools deployment, as well as some
examples of current wide-spread tools and frameworks,
were reviewed. Eventually, we address the challenge of or-
dinary users who are not able to work with current security
assessment frameworks due to the complexity of configu-
ration, lack of technical knowledge and their limited cover-
age in terms of features. Then, we propose a hybrid system
on a mini computer which is portable, energy efficient and
able to perform various common assessment tasks while
the user is at work, home or on the way.

Acknowledgements
We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile

Software Analysis” (SNSF project No. 200020-162352,
Jan 1, 2016 - Dec. 30, 2018).

References
[BGM+16] Hamid Bagheri, Joshua Garcia, Sam Malek,

Alireza Sadeghi, Hamid Bagheri, Joshua Gar-
cia, and Sam Malek. A Taxonomy and Quali-
tative Comparison of Program Analysis Tech-
niques for Security Assessment of Android
Apps. ISR Technical Report, 43(6):24, 2016.

[BHM+15] Damjan Buhov, Markus Huber, Georg Merz-
dovnik, Edgar Weippl, and Vesna Dimitrova.
Network Security Challenges in Android Ap-
plications. 2015 10th International Confer-
ence on Availability, Reliability and Security,
pages 327–332, 2015.

[BK17] Taniya Bhatia and Rishabh Kaushal. Malware
detection in android based on dynamic analy-
sis. 2017 International Conference on Cyber
Security And Protection Of Digital Services
(Cyber Security), pages 1–6, 2017.

[CFGW11] Erika Chin, Adrienne Porter Felt, Kate
Greenwood, and David Wagner. Analyzing
inter-application communication in Android.
Proceedings of the 9th international confer-
ence on Mobile systems, applications, and
services - MobiSys ’11, page 239, 2011.

[CT05] Thomas M. Cover and Joy A. Thomas. Ele-
ments of Information Theory. 2005.

[ERH+16] Meisam Eslahi, Mohammad Reza Rostami,
H Hashim, N M Tahir, and Maryam Var
Naseri. A Data Collection Approach for Mo-
bile Botnet Analysis and Detection A Data
Collection Approach for Mobile Botnet Anal-
ysis and Detection. (April):199–204, 2016.

[MAC+17] Luca Massarelli, Leonardo Aniello, Claudio
Ciccotelli, Leonardo Querzoni, Daniele Ucci,
and Roberto Baldoni. Android Malware Fam-
ily Classification Based on Resource Con-
sumption over Time. pages 31–38, 2017.

[MCW+17] Zhao-hui Ma, Zi-hao Chen, Xin-ming Wang,
Rui-hua Nie, Gan-sen Zhao, Jie-chao Wu, and
Xue-qi Ren. Shikra: A Behavior-Based An-
droid Malware Detection Framework. 2017
International Conference on Green Informat-
ics (ICGI), pages 175–184, 2017.

[Nez17] Maryam Nezhadkamali. Android malware
detection based on overlapping of static fea-
tures. (Iccke):319–325, 2017.

4



[PFB+15] Malware Penetration, Parvez Faruki, Ammar
Bharmal, Vijay Laxmi, Vijay Ganmoor, and
Manoj Singh Gaur. Android Security : A Sur-
vey of Issues , Malware Penetration, and De-
fenses. 17(2):998–1022, 2015.

[SKE+12] Asaf Shabtai, Uri Kanonov, Yuval Elovici,
Chanan Glezer, and Yael Weiss. "An-
dromaly": A behavioral malware detection
framework for android devices. Journal of
Intelligent Information Systems, 38(1):161–
190, 2012.

[sym16] Symantec. Internet Security Threat Report,
2016.

[YZW+14] Kun Yang, Jianwei Zhuge, Yongke Wang, Lu-
jue Zhou, and Haixin Duan. IntentFuzzer:
Detecting Capability Leaks of Android Ap-
plications. Proceedings of the 9th ACM sym-
posium on Information, computer and com-
munications security - ASIA CCS ’14, (June
2014):531–536, 2014.

[ZZC17] Lv Zhuo, Guo Zhimin, and Chen Cen. Re-
search on android intent security detection
based on machine learning. Proceedings
- 2017 4th International Conference on In-
formation Science and Control Engineering,
ICISCE 2017, pages 569–574, 2017.

5


