
Hurdles for Developers in Cryptography
Mohammadreza Hazhirpasand

Oscar Nierstrasz
University of Bern
Bern, Switzerland

Mohammadhossein Shabani
Azad University

Rasht, Iran

Mohammad Ghafari
School of Computer Science

University of Auckland
Auckland, New Zealand

Abstract—Prior research has shown that cryptography is hard
to use for developers. We aim to understand what cryptog-
raphy issues developers face in practice. We clustered 91 954
cryptography-related questions on the Stack Overflow website,
and manually analyzed a significant sample (i.e., 383) of the
questions to comprehend the crypto challenges developers com-
monly face in this domain. We found that either developers have
a distinct lack of knowledge in understanding the fundamental
concepts, e.g., OpenSSL, public-key cryptography or password
hashing, or the usability of crypto libraries undermined developer
performance to correctly realize a crypto scenario. This is alarm-
ing and indicates the need for dedicated research to improve the
design of crypto APIs.

Index Terms—Security, cryptography, developer issues

I. INTRODUCTION

Studies have shown that cryptography concepts are hard
to understand for developers, and the complexity of crypto
APIs has rendered their secure usage very difficult [1] [2].
There exist static analysis tools, but developers are reluctant
to employ them due to a lack of familiarity, restrictions in
organizational policies, or high rates of false positives [3],
[4]. Researchers have recently developed new APIs to ease
the adoption of cryptography [5], yet online Q&A forums are
among the main information sources used to resolve developer
issues.

Closer inspection of online forums such as Stack Overflow
provides a shortcut to identifying the frequent challenges that
developers face in this domain. Therefore, in this study, we
address the following research question: What types of crypto
challenges do developers face in cryptography? We extract the
common problems that developers recently encounter when
dealing with various areas of cryptography. The findings
provide significant help for developers in general, and software
team leaders, tutors and crypto library designers in particular,
to raise their awareness of common misunderstandings, or to
highlight areas with a steep learning curve.

Unlike other studies, we only focus on crypto-related
challenges of developers. To cover various types of crypto-
challenges, we need to identify different groups of questions
that are similar in terms of context. Particularly, manual
grouping of such a large number of questions (i.e., 91 954)
is a demanding task. We therefore used the Latent Dirichlet
Allocation (LDA) generative statistical model, and found three
main topics in 91 954 crypto-related posts on Stack Overflow.
We then used stratified sampling to study 383 posts randomly
from the three topics to identify the most common problematic

issues for developers. The results showed that developers
commonly failed to implement a cryptographic scenario due to
two reasons, namely the complexity of crypto APIs, and their
lack of familiarity with fundamental concepts such as digital
certificates, public-key cryptography, and hashing algorithms.

Our findings show that hurdles for developers in cryptog-
raphy are not yet resolved, and due to its impact on security,
this domain urgently needs dedicated research effort. We are
conducting a survey with developers who actively helped
the Stack Overflow community in this domain to understand
potential remedies to this problem.

II. RELATED WORK

Sifat et al. investigated three online sources, i.e., Crypto
Stack Exchange, Security Stack Exchange, and Quora, to
identify complications with respect to implementing security
in data transmission [6]. Their findings suggest that the most
discussed technique is transport layer security (TLS), and
the Cross-Site Scripting (XSS) attack is the main concern
of developers. In another study, Yang et al. conducted a
large-scale analysis of security-related questions on Stack
Overflow [7]. They identified five main categories, i.e., web
security, mobile security, cryptography, software security, and
system security but they did not look into the challenges of
each topic. A recent study conducted by Meng et al. has
recognized the challenges of writing secure Java code on
Stack Overflow [8]. Their examinations provide compelling
evidence that security implications of coding options in Java,
e.g., CSRF tokens, are not well-perceived by a large number
of developers. Nandi et al. conducted an empirical study
on the frequent crypto obstacles with which Java developers
commonly face [1]. They triangulated data from a survey,
100 randomly selected Java GitHub repositories, and the top
100 Java cryptography questions asked on Stack Overflow.
Their analyses depicted nine main crypto topics, suggesting
that developers face difficulties using cryptography. This issue
has adversely affected developer performance and software
security [9]. A recent study showed that developers blindly
use the provided vulnerable code snippets found on Stack
Overflow [10]. They mentioned that 15.4% of the 1.3 million
Android applications contained security-related code snippets
from Stack Overflow. The previous studies solely focused on
security or crypto implications of a particular language or in
general security-related concerns. In contrast, we specifically

ar
X

iv
:2

10
8.

07
14

1v
1

 [
cs

.C
R

]
 1

6
A

ug
 2

02
1

analyzed crypto-related questions of any kind irrespective of
any programming languages or particular part of cryptography.

III. METHODOLOGY

We first explain the data gathering procedure and then
describe how we clean the data, and briefly introduce the LDA
topic modeling.

A. Data Extraction

To collect crypto-related posts on Stack Overflow, we as-
sumed that the attached tags to a question mainly reflect the
question’s topic. We first used the “cryptography” tag, i.e.,
base tag, to fetch crypto-related posts, i.e., 11 130 posts, with
the help of the Data Explorer platform (Stack Exchange). We
found 2 184 tags (candidate tags) that occurred in posts to-
gether with the “cryptography” tag. However, not all candidate
tags were crypto-related e.g., C#.

To find relevant posts with the base tag, we used two metrics
to determine which of the candidate tags are exclusively
related to the base tag. We introduced the first metric as
affinity to determine the degree to which a candidate tag (T)
is exclusively associated with the base tag (BT). For each T,
we used the posts with tags function, for brevity pwt(), to
calculate the number of posts whose tags contain both T and
BT . We used pwt() to obtain the number of posts whose tags
contain T. Given these two values, we compute affinity(T,BT)
= |pwt(T,BT)| / |pwt(T)|, whose result ranges from zero to one.

The smaller the value of the first metric, the weaker the
association between T and BT. For example, the “C++” and
“encryption” tags each appeared 639 897 and 29 737 times
respectively in the entire Stack Overflow. The “C++” tag
appeared together with BT 540 times and “encryption” was
used 3535 times with BT. The value of affinity for the “C++”
tag is 0.0008 and 0.1188 for the “encryption” tag, values which
demonstrate a strong affinity for “encryption” and BT.

However, higher values of affinity for some candidate tags
do not necessarily indicate tags that are closely related to
cryptography. For example, the “s60-3rd-edition” tag appeared
once with the base tag and in total 11 times in Stack Overflow.
The value of affinity for this candidate tag is 0.09, which
is close to the value of the “encryption” tag, even though it
appeared only once with the base tag. To resolve this issue,
we introduced a second metric, coverage(T,BT) = |pwt(T,BT)| /
|pwt(BT)|. The second metric indicates the coverage of the BT
posts by T. As an example, the value (i.e., 0.00008) of coverage
for the “s60-3rd-edition” tag proves that the candidate tag does
not exclusively cover the base tag while the “C++” tag covers
0.04 of the cryptography-related questions.

Two authors of this paper examined various combinations
of thresholds for the two metrics, and manually reviewed
the resulting tags. We noticed that the thresholds to collect
only crypto-related tags from the candidate tags (i.e., 2 184)
are the ones above the affinity: 0.025 and coverage: 0.005.
There are 40 crypto-related tags that fall within the selected
threshold domain. The list of crypto-related tags as well as

their frequencies are available online.1 Next, we again used
Stack Exchange Data Explorer to extract posts containing each
of the selected tags (i.e., 40 tags) but not the base tag, and
recorded them in CSV files, which are available online.2

B. Data clustering via Topic Modeling

We combined the title and body of a post in order to create
a document. We removed duplicate post IDs in multiple CSV
files, and finally obtained 91 954 unique documents, without
considering when the posts were created. Evidently, each of
the documents contained a large number of unnecessary text
elements that could produce noise in the output of a topic
modeling algorithm. We preprocessed the documents in the
following steps: (1) we removed all the code blocks enclosed
by the “<code>” tag, (2) we removed all the HTML elements
with the help of the Beautiful Soup library,3 (3) we removed
newlines and non-alphanumeric characters, (4) we used the
NLTK package to eliminate English stop words from the
documents, and finally (5) we used the Snowball stemmer to
normalize the text by transforming words into their root forms,
e.g., playing converts to play. We found 269 795 stemmed
words in total. Finally, we used the CountVectorizer class in
Scikit-learn to transform the words into a vector of term/token
counts to feed into a machine learning algorithm.

We used Scikit-learn,4 a popular machine learning library in
Python that provides a range of supervised and unsupervised
learning algorithms. Latent Dirichlet Allocation (LDA) is
an unsupervised learning algorithm based on a generative
probabilistic model that considers each topic as a set of words
and each document as a set of topic probabilities [11]. LDA
has been used to discover latent topics in documents in a large
number of prior studies [12] [7] [13].

Before training a model, LDA requires a number of impor-
tant parameters to be specified. LDA asks for a fixed number
of topics and then maps all the documents to the topics. The
Alpha parameter describes document-topic density, i.e., higher
alpha means documents consist of more topics, and generates
a more precise topic distribution per document. The Beta
parameter describes topic-word density, i.e., higher beta means
topics entail most of the words, and generates a more specific
word distribution per topic.

The optimal values of hyperparameters cannot be directly
estimated from the data, and, more importantly, the right
choice of parameters considerably improves the performance
of a machine learning model [14]. We therefore used the Grid-
SearchCV function in Scikit-learn to perform hyperparameter
tuning to generate candidates from an array of values for the
three aforementioned parameters, i.e., Alpha, Beta, and the
number of topics. As research has shown that choosing the
proper number of topics is not simple in a model, an iterative
approach can be employed [15] to render various models with
different numbers of topics, and choose the number of topics

1http://185.94.98.132/~crypto/paper_data/tags.csv
2http://185.94.98.132/~crypto/paper_data/
3https://www.crummy.com/software/BeautifulSoup/
4https://scikit-learn.org/

http://185.94.98.132/~crypto/paper_data/tags.csv
http://185.94.98.132/~crypto/paper_data/

for which the model has the least perplexity. Perplexity is a
measure used to specify the statistical goodness of fit of a
topic model [11]. We therefore specified the number of topics
from 1 to 25. We also used the conditional hyperparameter
tuning for Alpha, which means a hyperparameter may need to
be tuned depending on the value of another hyperparameter
[16]. We set alpha = 50 / number of topics and beta = 0.01,
following guidelines of previous research [17].

Optimizing for perplexity, however, may not always result
in humanly interpretable topics [18]. To facilitate the manual
interpretation of the topics, we used a popular visualization
package, named pyLDAvis5, in Python. The two authors of
this paper separately checked the resulting top keywords of
the topics, i.e., from 1 to 25, and the associated pyLDAvis
visualizations to ensure that the given number of topics is
semantically aligned with human judgment.

C. Data analysis

We computed the required sample size for 91 954 documents
with a confidence level of 95% and a margin of error of 5%,
which is 383 documents. We then used stratified sampling
to divide the whole population into smaller groups, called
strata. In this step, we considered each topic as one stratum,
and randomly selected the documents proportionally from the
different strata. We then used thematic analysis, a qualitative
research method for finding topics in text [19], to extract
the frequent topics from the documents. Two authors of
the paper carefully reviewed the title, question body, and
answer body of each document. Each author then improved
the extracted topics by labeling the posts iteratively. We then
calculated Cohen’s kappa, a commonly used measure of inter-
rater agreement [20], between the two reviewers. Finally, the
two reviewers compared their final labelling results, and re-
analyzed the particular posts in a session where they disagreed
in order to discuss and arrive at a consensus.

IV. RESULTS AND DISCUSSION

Our hyperparameter tuning demonstrated that the best num-
ber of topics is three. Similarly, after analyzing pyLDAvis’s
visualizations and top keywords for 1 to 25 topics, the two
reviewers also achieved a consensus on three as the number
of topics. The pyLDAvis interactive visualization for the three
topics is available online.6 The reviewers named the topics
by considering the general themes of top keywords returned
by LDA (See Table I). We determined that the first topic is
about digital certificates and configuration issues, the second
one is about programming issues concerning encryption and
decryption, and the third concerns passwords/hashes and basic
crypto-related algorithms. As an influential indicator of topic
relevancy, we realized that the frequencies of the candidate
tags used in the three topics are aligned with the general
themes of the topics.7 For instance, we observed that the
AES, DES, Encryption, and RSA tags are mostly used in

5https://github.com/bmabey/pyLDAvis
6http://185.94.98.132/~crypto/paper_data/lda.html
7http://185.94.98.132/~crypto/paper_data/tags-topics.csv

TABLE I
THE THREE TOPICS AND THEIR TOP KEYWORDS

Topic Top keywords

Digital certificate and
configuration problems

use, certif, file, server, key, openssl, client,
work, tri, need, sign, user, error,applic, creat,
code, secur, app, encrypt, ssl, store, instal,
like, connect, problem, want, way, run, request

Programming issues

key, encrypt, use, decrypt, code, data, file,
string, tri, public, work, ae, im, byte, need,
java, generat, messag, encod, privat, rsa,
cipher, algorithm, block, like, implement,
error, problem, function, text

Password/hashes and
basic crypto algorithms

hash, use, valu, password, function,like,
array, string, need, code, number, key, want,
way, store,data, tabl, im, salt, tri, differ,
time, algorithm, work, md5, user, make,
generat, object, implement

programming issues, the Hash, SHA, SHA256, MD5, XOR,
and Salt tags are more frequent in the password/hash topic,
and finally, the Digital-signature, Keystore, OpenSSL, Private-
key, Public-key, Smartcard, and X509certificate tags are more
common in the digital certificate topic.

With respect to stratified sampling, we considered the num-
ber of documents in each stratum (i.e., each topic) as 139,
124, and 119 documents from the first topic to the third one
respectively. The selected documents were created in the last 5
years on Stack Overflow. Extracting the themes, the reviewers
achieved 79% Kappa score, which demonstrates a substantial
agreement between the two reviewers.

1) Topic One: Digital certificate and configuration prob-
lems. The manual analysis for the first topic depicts that devel-
opers discussed two main areas, namely certificate/OpenSSL
(63%) and SSH (37%). For instance, the discussions were
related to OpenSSL configuration, signing and verifying a
signature, and generating PEM files using OpenSSL. There
were also questions concerning how to generate self-signed
certificates, access a certificate store, create a Certificate Sign-
ing Request (CSR), establish https and secure connections, and
configure certificate-based authentication in ASP.NET. In the
SSH-related questions, the majority of the users had difficulty
setting SSH with no password, checking the right permission
for SSH keys, using SSH programmatically, and connecting
to SSH servers of other platforms (e.g., Amazon).

2) Topic Two: Programming issues. As for the program-
ming issues topic, we observed that the three most frequently
discussed programming languages were Java (i.e., 44), C/C++
(i.e., 31), and C# (i.e., 19). In 31% of the posts developers
discussed issues related to the AES algorithm such as different
encryption modes (e.g., CBC and ECB) and key sizes (e.g.,
128, 192, and 256-bit). In addition to symmetric encryption,
47% of the posts were related to working with asymmetric
encryption (i.e., RSA). The challenges were mostly concerned
with different padding modes (e.g., OAEP), how to calculate
or understand the raw modulus and exponent numbers, and
how to generate and work with different key file encodings in
RSA (e.g., DER-encoded format, PEM, or XML). Moreover,
another evident problem was dealing with different RSA key
formats, i.e., Public Key Cryptography Standards (PKCS). The

http://185.94.98.132/~crypto/paper_data/lda.html
http://185.94.98.132/~crypto/paper_data/tags-topics.csv

Manual Analysis

Topic 1:
Digital certificate and

configuration problems

OpenSSL / CertificateSSH

No password

Keys
management

Programming
languages

Configuration

HTTPs / SSL

Sign and verify
a signature

RSA keys
generation

format

Certificate
storage

Authentication

RSAAES

Topic 2:
Programming issues

Microsoft CryptoAPISample implementation

Modes / key size /
other parameters

Bad length
error

Key
management

 Exponent
and modulus

Padding mode

OpenSSL
compatibility

Language
interoperability

issues

A concept or
an API

Different
language/libs

Topic 3:
Password/hashes and

basic crypto algorithms

Passwords Algorithms

 Bcrypt
 PBKDF2 - scrypt

MD5 - SHA1 -
...

Salt - hash Reversing
a hash

Rainbow
bruteforce

Prime number

Modular
exponentiation

Traditional
algorithms

Authentication in
different libraries

Fig. 1. The results of manual analysis for the three topics

users commonly asked how to convert PKCS#8 to PKCS#1
or other standards, and how to programmatically generate or
use different key standards in various crypto libraries (e.g.,
Bouncy Castle). There were users who had problems with
illegal block size errors, often misunderstanding the suitable
usage of RSA, e.g., encrypting a long text. Nevertheless, the
discussions were resolved by proper responses that suggested
incorporating AES and RSA into the encryption/decryption
scenario. Another type of question was about the issues
in Microsoft CryptoAPI (12%). Developers reported issues
on working with OpenSSL or using RSA keys from other
sources, e.g., importing keys from OpenSSL into Crypto API,
converting RSA keys to be used by Bouncy Castle, verifying
an OpenSSL DSA signature using CryptoAPI, having extra
fields in generated keys by PHP OpenSSL, and signing a
message with pyOpenSSL in Python and verifying it with
CryptoAPI. Moreover, there were questions (10%) associated
with how to either implement a scenario, e.g., encryption of a
string with RSA public key with Swift on iOS, or deal with
problems while working with more than one crypto library or
programming language, e.g., encryption of a string with RSA
in JavaScript and decryption in Java, or decryption of a string
in Java which is already encrypted using AES-256 in iOS.

3) Topic Three: Password/hashes and basic crypto al-
gorithms. Our findings for the password/hash topic suggest
that users primarily discussed problems associated with either
passwords (86%) or basic crypto algorithms (14%). Different
facets of producing secured passwords were the topic of most
discussions. First and foremost, users were uncertain which
hashing algorithms (e.g., MD5, SHA-1) can provide a higher
level of reliability and how password length contributes to
the strength of the resulting hash. Users lacked the required
knowledge as to what salt is and how salt can maximize the
security of a hash. In addition to pointing out the pros and
cons of static salt vs random salt, respondents encouraged
users to use salted passwords in order to render the brute-

force or the rainbow table attack prohibitively expensive.
Developers were doubtful about which crypto functions, i.e.,
bcrypt(), PBKDF2(), or Scrypt(), are more secure and faster,
and what key differences distinguish the three functions from
other hashing algorithms, e.g., MD5, SHA-256. As regards
the basic crypto algorithms, users contributed to responses
concerning how to produce or find prime numbers, how to
use the BigInteger class for RSA modular exponentiation, how
to produce unique URL safe hash or IDs, and how to solve
a Caesar Cipher or substitution ciphers. Lastly, a few users
discussed how to program an authentication module in web
programming frameworks such as Laravel, or CakePHP.

4) Topic difficulty and popularity: We checked the popular-
ity and difficulty level of each topic so as to determine which
questions attracted more attention or received acceptable an-
swers with a longer time span, which the same approach was
used in the previous study [7]. We used four factors to measure
the popularity of a topic, namely the average number of views
of documents, the average number of comments, the average
number of favorites, and the average score of documents.
The four factors can be found in the CSV files,8 namely
CommentCount, FavouriteCount, Score, and ViewCount. We
considered the average number of ViewCount as the foremost
factor to judge the popularity of a topic, the question’s
score and the number of FavouriteCount as the second most
important factors, and the average number of comments as the
last factor. To find the most difficult topic, we used two factors,
namely the average time it takes for a document to obtain
an accepted answer, and the ratio of the average number of
answers in documents to the average number of the views. We
avoided recently posted questions from affecting the analysis
by only including those that are older than six months.

We infer that questions related to the usage of digital certifi-
cates, and configuration problems are the most popular (high-
est average ViewCount and FavouriteCount), and questions

8http://185.94.98.132/~crypto/paper_data/

http://185.94.98.132/~crypto/paper_data/

related to hashing and passwords are also viewed as popular
based on the other two factors (i.e., average CommentCount
and Score). From the difficulty standpoint, we notice that the
programming issues topic is the most difficult topic as it had
a greater average response time, and its proportion of average
answers to average views is the lowest.

5) Summary: The challenges in each theme were studied
in detail to demonstrate how developers struggle to use or
comprehend various areas of cryptography. According to our
findings, we believe that there are two foremost reasons with
which developers mainly encounter problems in cryptography.
The first leading cause is a distinct lack of knowledge to
discern why or what they need to use to accomplish a crypto
task. We observed ample evidence where developers lacked
the confidence to choose the best algorithm or parameter,
for instance, the right and safest padding option in AES.
Consequently, developers may use boilerplate code snippets
from the provided answers, in spite of the answers’ reliability
and security. In the second factor, although the fundamental
concepts are the same, the implementation approach of a
crypto concept in various crypto libraries is influential to
developer performance. Compelling evidence in findings urges
that working with more than a crypto library due to using vari-
ous architectures or platforms in a project creates confusion for
developers regarding how a particular problem can be resolved.
They commonly have trouble in creating keys with one library
and import them into another library or verifying a signature in
a different crypto library. Furthermore, adequate explanations
and the existence of useful examples in documentations can
alleviate the difficulty of using cryptography.

V. THREATS TO VALIDITY

In this study, we concentrate on one major platform where
developers discuss crypto topics. This may not be sufficient
as there are many other platforms, such as crypto Stack Ex-
change, which can provide more data to analyze. We measured
topic difficulty and popularity based on metrics used in the
previous study. Nevertheless, these observations may not be
sufficient to determine what type of crypto questions are more
challenging than others. Users may not always feel responsible
for selecting a reasonable answer as an acceptable answer.
Therefore, not having an accepted answer does not necessarily
determine if the question is challenging for others.

VI. CONCLUSION

We conducted a large-scale study on crypto issues discussed
on Stack Overflow to find out what crypto challenges users
commonly face in various areas of cryptography. Findings
suggest that developers still have a distinct lack of knowledge
of fundamental concepts, such as OpenSSL, asymmetric and
password hashing, and the complexity of crypto libraries
weakened developer performance to correctly realize a crypto
scenario. We call for dedicated studies to investigate the
usability of crypto APIs. We are conducting a survey with
users who actively helped the Stack Overflow community in
this domain to understand the potential remedies.

Acknowledgments

We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile
Software Assistance” (SNSF project No. 200020-181973, Feb.
1, 2019 - April 30, 2022).

REFERENCES

[1] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “Jumping through hoops:
Why do java developers struggle with cryptography apis?” in Proceed-
ings of the 38th International Conference on Software Engineering.

[2] M. Hazhirpasand, M. Ghafari, and O. Nierstrasz, “Java cryptography
uses in the wild,” in Proceedings of the 14th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM), 2020, pp. 1–6.

[3] Y. Tymchuk, M. Ghafari, and O. Nierstrasz, “Jit feedback - what
experienced developers like about static analysis,” in 2018 IEEE/ACM
26th International Conference on Program Comprehension (ICPC),
2018, pp. 64–6409.

[4] C. Corrodi, T. Spring, M. Ghafari, and O. Nierstrasz, “Idea: Benchmark-
ing android data leak detection tools,” in Engineering Secure Software
and Systems, M. Payer, A. Rashid, and J. M. Such, Eds. Cham: Springer
International Publishing, 2018, pp. 116–123.

[5] S. Kafader and M. Ghafari, “Fluentcrypto: Cryptography in easy mode,”
in 37th International Conference on Software Maintenance and Evolu-
tion (ICSME), 2021.

[6] S. E. Jahan, M. Rahman, A. Iqbal, and T. Sabrina, “An exploratory anal-
ysis of security on data transmission on relevant software engineering
discussion sites,” in 2017 4th International Conference on Networking,
Systems and Security (NSysS). IEEE, 2017.

[7] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What security
questions do developers ask? a large-scale study of stack overflow posts,”
Journal of Computer Science and Technology, vol. 31, no. 5, 2016.

[8] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. A. Argoty, “Secure coding
practices in java: Challenges and vulnerabilities,” in Proceedings of the
40th International Conference on Software Engineering, 2018.

[9] F. Fischer, H. Xiao, C.-Y. Kao, Y. Stachelscheid, B. Johnson, D. Razar,
P. Fawkesley, N. Buckley, K. Böttinger, P. Muntean et al., “Stack
overflow considered helpful! deep learning security nudges towards
stronger cryptography,” in 28th {USENIX} Security Symposium, 2019.

[10] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, “Stack overflow considered harmful? the impact of copy&paste
on android application security,” in 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 2017.

[11] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
the Journal of machine Learning research, vol. 3, 2003.

[12] A. A. Bangash, H. Sahar, S. Chowdhury, A. W. Wong, A. Hindle, and
K. Ali, “What do developers know about machine learning: a study of
ml discussions on stackoverflow,” in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, 2019.

[13] C. Rosen and E. Shihab, “What are mobile developers asking about? a
large scale study using stack overflow,” Empirical Software Engineering,
vol. 21, no. 3, 2016.

[14] H. Osman, M. Ghafari, and O. Nierstrasz, “Hyperparameter optimization
to improve bug prediction accuracy,” in 2017 IEEE Workshop on
Machine Learning Techniques for Software Quality Evaluation, 2017.

[15] W. Zhao, J. J. Chen, R. Perkins, Z. Liu, W. Ge, Y. Ding, and W. Zou,
“A heuristic approach to determine an appropriate number of topics in
topic modeling,” in BMC bioinformatics, vol. 16, no. 13, 2015.

[16] G. Luo, “A review of automatic selection methods for machine learning
algorithms and hyper-parameter values,” Network Modeling Analysis in
Health Informatics and Bioinformatics, vol. 5, no. 1, 2016.

[17] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proceedings
of the National academy of Sciences, vol. 101, no. suppl 1, 2004.

[18] J. Chang, S. Gerrish, C. Wang, J. L. Boyd-Graber, and D. M. Blei,
“Reading tea leaves: How humans interpret topic models,” in Advances
in neural information processing systems, 2009.

[19] V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative research in psychology, vol. 3, no. 2, 2006.

[20] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, 1960.

	I introduction
	II Related work
	III Methodology
	III-A Data Extraction
	III-B Data clustering via Topic Modeling
	III-C Data analysis

	IV Results and Discussion
	IV-1 Topic One
	IV-2 Topic Two
	IV-3 Topic Three
	IV-4 Topic difficulty and popularity
	IV-5 Summary

	V Threats to validity
	VI conclusion
	References

