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Abstract

Understanding a software system by just analyzing the
structure of the system reveals only half of the picture, since
the structure tells us only how the code is working but not
what the code is about. What the code is about can be found
in the semantics of the source code: names of identifiers,
comments etc. In this paper, we analyze how these terms
are spread over the source artifacts using Latent Semantic
Indexing, an information retrieval technique. We use the
assumption that parts of the system that use similar terms
are related. We cluster artifacts that use similar terms, and
we reveal the most relevant terms for the computed clusters.
Our approach works at the level of the source code which
makes it language independent. Nevertheless, we corre-
lated the semantics with structural information and we ap-
plied it at different levels of abstraction (e.g. classes, meth-
ods). We applied our approach on three large case studies
and we report the results we obtained.

Keywords: semantic analysis, clustering, concept loca-
tion, reverse engineering

1 Introduction

Many reverse engineering approaches focus on structural
information and ignore semantic information like the nam-
ing of identifiers or comments. But developers put their do-
main knowledge into exactly these parts of the source code.
Without understanding the semantics of the code, one can-
not tell its meaning. For example, the class structures of
a text processor, a web server, a physical simulation or a
computer game might all look the same. But the identi-
fiers names and the comments will differ, since they use a
domain specific vocabulary that contains information about
its semantics.

Source code is a means of communication: communica-

tion between developer and machine, and communication
among developers1. Analyzing semantics relies on the lat-
ter, since the communication with the machine is formal
and only a matter of correct structure and syntax, e.g. the
naming of an identifier is irrelevant to the machine, not to
mention that comments get completely ignored. On the
other hand communication among developers is informal
and uses a rich vocabulary bearing semantic information.

Consider, for example, a short testing method telling
whether a time value is in the morning:

/** Return true if the given 24-hour time
is in the morning and false otherwise. */

public boolean isMorning(int hours,int minutes,int seconds)
if (!isDate(hours, minutes, seconds))

throw Exception(”Invalid input: not a time value.”)
return hours < 12 && minutes < 60 && seconds < 60;

Stripping away all identifiers and comments, the func-
tionality remains the same, but the meaning becomes obfus-
cated and hard to tell. In our example, removing informal
information yields:

public type 1 method 1(type 2 a, type 2 b, type 2 c)
if (!method˙2(a, b ,c)) throw Exception(literal˙1).
return (a op 1 A) op 2 (b op 1 B) op 1 (c op 2 C);

On the other hand, retaining only the informal informa-
tion yields:

is int hours minutes int < minutes input hours is
seconds && boolean morning false time minutes not
60 invalid && value seconds time < seconds hour
given hours 60 12 < morning date int is otherwise

Information retrieval techniques can be applied to soft-
ware to recover its semantics. Marcus et al. propose Latent

1Source code also contains communication between developer and
user: e.g. Text snippets in the source code that are displayed to the user.
But for the purpose this paper, this can be subsumed under developer com-
munication without loss of generality.
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Semantic Indexing (LSI), an information retrieval technique
that takes as an input an index of documents and terms [19],
as a means to locate such concepts [1]. Recently Kawaguchi
et al. used LSI to categorize software projects, based on
analysis at the file level [22].

In this paper we combine both approaches, and apply
them at different levels of abstraction to analyze object-
oriented systems. We use LSI as a technique and choose as
documents the entities in the software system (e.g. classes,
methods) and as terms the identifiers and comments.

We use LSI to retrieve the semantic similarity between
different entities (e.g. whole systems, classes and methods),
and then we cluster these entities according to their similar-
ity. We employ this technique to characterize entities by
clustering their sub entities. For example, we characterize a
system by clustering its classes, or a class by clustering its
methods. We further use LSI to recover the most relevant
terms for the obtained clusters, thus providing a documen-
tation to the groups of entities. Furthermore, we visualize
the clusters and their relation to each other.

We implemented this approach in a tool called Hapax2,
which is built on top of the Moose reengineering environ-
ment [5], and we applied it to several case studies.

The contributions of the paper are:

• combining the structure of software systems with se-
mantical information,

• defining a visualization to visualize the clustering re-
sult,

• automatic labeling of the clusters,

• interpretation of the clusters at different level of ab-
straction.

Structure of the paper. We first describe the LSI tech-
nique. In Section 3 we show how we use LSI to analyze the
semantics of the system and how we can apply the analysis
at different levels of abstraction. In Section 4 we present
the results on three case studies and in Section 5 we show
the implementation. We discuss different variation points in
Section 6. Section 7 browses the related work and Section 8
concludes and presents the future work.

2 Latent Semantic Indexing in a Nutshell

Latent Semantic Indexing (LSI) is a standard technique
in information retrieval to index, retrieve and analyze tex-
tual information [3]. As input LSI takes a collection of text
documents, and yields as output an index with similarities
between these documents. Singular Value Decomposition
(SVD) is used to reduce the problem size [9].

2The name is derived from the term hapax legomenon, that refers to a
word occurring only once a given body of text.

Even though the most common usage of LSI are search
engines [2], there is a wide range of possible applications:
to grade essays automatically [8], to detect authorship in
literature [20], to automate the assignment of reviewers to
submitted conference papers [7], to build cross-language
search engines [13], to model the human brain and how chil-
dren acquire language [12], to build thesauri, to spell check
etc.

Figure 1 schematically represents the LSI process. The
document collection is modeled as a vector space. Each
document is represented by the vector of its term occur-
rences. Terms are words appearing in the document. Thus
the document vectors are the rows of a sparse matrix, the
term-document-matrix. This matrix A is of size n × m,
where m is the number of documents and n the total num-
ber of terms over all documents. Each entry ai,j is the fre-
quency of term ti in document dj . A geometric interpreta-
tion of the term-document-matrix is a set of document vec-
tors occupying a vector space spanned by terms. The simi-
larity between documents is typically defined as the cosine
or inner product between the corresponding vectors, thus
two documents are considered similar if their correspond-
ing vectors point in the same direction.

te
rm
s

documents

LSI

Figure 1. LSI takes as input a set of docu-
ments and the terms occurrences, and gives
as output one space with all the terms and all
the documents are represented. The similar-
ity between two items is given by the angle
between their corresponding vectors.

LSI starts with a raw term-document-matrix, weighted
by some weighting function to balance out very rare and
very common terms. Then SVD is used to break down the
vector-space-model into less dimensions. This algorithm
preserves as much information as possible about the relative
distances between the document vectors, while collapsing
them down into a much smaller set of dimensions.

SVD decomposes matrix A into its singular values and
its singular vectors, and yields – when truncated at the k
largest singular values – an approximation A′ of A with
rank k. Furthermore, not only the low-rank term-document
matrix A′ can be computed but also a term-term matrix and
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a document-document matrix, thus, LSI allows one to com-
pute term-document, term-term and document-document
similarities.

As the rank is the number of linear-independent rows
and columns of a matrix, the vector space spanned by A′

is of dimension k only and much less complex than the ini-
tial space. When used for information retrieval, k is typi-
cally about 200-500, while n and m may go into millions.
And since A′ is the best approximation of A under the least-
square-error criterion, the similarity between documents is
preserved, while – since A′ is of rank k – mapping seman-
tically related terms on the same axis of the vector space
and thus taking into account synonymy and polysemy. In-
tuitively explained, the initial term-document-matrix A is
a table with term occurrences and by breaking it down to
much less dimension the latent meaning must appear in A′

since there is now much less space to encode the same in-
formation. Meaningless occurrence data is transformed into
meaningful concept information.

3 Hapax Semantic Clustering

Figure 2 shows the overview of our approach. First, we
preprocess the source code to obtain the term-document ma-
trix. We apply the LSI to obtain the similarities between
documents. We cluster the similar entities, and in the end
we post-process and analyze the clusters. We present each
phase in details in the rest of this section.

3.1 Preprocessing: Building the Corpus

The input data is the source code, broken into pieces at an
arbitrary level of granularity (e.g. modules, classes, meth-
ods etc.) to define the documents used by LSI. The terms
are the words found in the source, except keywords of the
programming language. From content found in comments
we exclude a stop-list of common English words.

Identifiers written in camel-case are split into their com-
ponents. For example, FooBar becomes foo and bar. All
terms get normalized with the Porter stemming algorithm
[21]. For example, entity and entities both become entiti.

We build the term-document matrix, with all documents
and all terms. Terms appearing only once are discarded as
they are useless for finding the similarity between different
documents. The initial term-document matrix is weighted
with ltf-idf ; meaning log-term-frequency as local weight-
ing, and inverse-document-frequency as global weighting.
The weighting’s purpose is to balance out the influence of
very rare and very common term3.

3For more details concerning weighting functions please refer to [6,
15].

3.2 LSI: Building the Similarity Index

LSI is applied to the term-document matrix to build an
index with similarities. Based on it, we can determine the
semantic similarity between software artifacts as well as the
similarity between terms and software artifacts. The simi-
larity is defined as the cosine, or inner product between the
document or term vectors4.

The similarities can be visualized in a correlation matrix,
as in Figure 2. As the similarities are cosine values between
1,0 and -1,0, it is easy to map them to gray values: The
darker a dot is in the matrix, the more similar are the two
entries corresponding to its row and column. The main di-
agonal of a correlation matrix is black, since each entry is
semantically equal to itself, the off-diagonal dots show the
correlation between different entries.

3.3 Clustering: Ordering Correlation Matrix

Without proper ordering the correlation matrix looks like
television tuned to a dead channel. By ordering the entries
of the correlation matrix according to the result of a cluster-
ing algorithm, we get a visualization of the semantic corre-
lations. One can, at a glance, see the number and size of all
clusters, their inner structure and the correlation in-between
the clusters. Thus, the software reengineer can detect hot-
spots with either high or low semantic correlation. And, by
comparing the correlation matrixes of different artifacts, he
can classify them.

We use a hierarchical clustering algorithm to cluster the
entries of the correlation matrix. This algorithm creates a
dendrogram (i.e. a hierarchical tree) with clusters as its
nodes and the documents as its leaves [11]. A super node
in the tree is a cluster containing its leaves. Traversing this
tree and collecting its leaves yields an ordering that sorts the
entries by their similarity, putting similar entries and simi-
lar clusters near each other, and dissimilar ones far apart
of each other. The correlation matrices in this paper are or-
dered by using average linkage clustering, and by traversing
the tree larger-clusters-first. Documents which are not sim-
ilar enough to any cluster usually end up as single-document
clusters in the bottom right of the correlation matrix.

3.4 Post-processing: Semantic Hot-Spots

The goal of the post-processing step is to highlight in-
teresting patterns on the correlation matrix and to filter out
all other noise. Our experiments showed that the most in-
teresting patterns are one-to-many relationships between a
single software artifact and a cluster of software artifact. We
name a semantic hot-spot a single artifact in one cluster that
shares semantics with another cluster.

4More in-depth information on using LSI is given in [3].
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Figure 2. Semantic clustering of software artifacts (e.g. classes, methods). The source code gets
processed into an index table. LSI is used to identify the similarities between entities and the result
is displayed in a correlation matrix. Furthermore, the entities get clustered and for each cluster we
compute the most relevant terms.

To highlight these semantic hot-spots on the correla-
tion matrix, we first paint both each cluster and each off-
diagonal rectangle with its average color given by the av-
erage of all similarities inside its box. Afterwards, we
compute the average similarity between single entities and
whole clusters. If the difference between this one-to-many
averages and the above overall averages exceeds a certain
threshold, we have found a semantic hot-spot and paint the
corresponding line in the color of its average. The correla-
tion matrices in this paper use a hot-spot threshold of 0.2.

The result of the post-processing is a checkered board
of boxes, and inside these boxes we might obtain horizon-
tal or vertical lines. The rectangles along the main diago-
nal are the clusters, colored with the density of this clus-
ter i.e. the average similarity between all its entities. The
off-diagonal rectangles are the relationship between clus-
ters, colored with the average similarity between each two
clusters i.e. between all entities in one cluster and all enti-
ties in the other one. The vertical and horizontal lines are
the semantic hot-spots, each painted in the color of the av-
erage similarity between its single entity and the entities in
the corresponding cluster.

hot-spot 
highlighting

Cluster A

Cluster B Cluster B

Cluster A

hot-spots

Figure 3. The step of highlighting the seman-
tic hot-spots.

In Figure 3 we show a correlation matrix before and after

the post-processing. On the later matrix we see two clus-
ters A and B and in the off-diagonal three semantic hot-
spots. The two vertical lines are entities in cluster B that
are more related to cluster A than all other entities in clus-
ter B, while the horizontal line is an entity in cluster A more
related cluster B than all other entities in cluster A. Fur-
thermore there is a light cross in cluster B, which is a single
entity in this cluster that is less related to the cluster than
all its other entities. The same goes for the entities in the
bottom right of cluster A.

3.5 Labeling the Clusters

Any semantic analysis is not complete without interpre-
tation. Just visualizing clusters is not enough, we want to
have an interpretation of their of semantic concepts. We
need a written description of the concept covered by a clus-
ter, that is we need labels that describe the cluster. Often just
enumerating the names of the software artifacts in a cluster
(e.g. displaying the class names) gives a sufficient inter-
pretation. But, if the names are badly chosen or in case of
analyzing unnamed software artifacts, we use an automatic
way to identify labels.

The labeling works as follows: As we already have –
from the previous steps – an LSI index at hand, we use this
index as search engine5. We reverse the usual search pro-
cess, where a search query of terms is used to find docu-
ment. Instead we use the documents in a cluster as search
query, to find the most relevant terms. We label the clusters
with the top-ten search results.

5For technical details on how to run search queries using LSI please
consult [2].
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4 Hapax Semantic Clustering At Work

To show the generic nature of the approach, we apply it
at different levels of abstraction on case-studies written in
different languages.

1. In the first case-study we analyze the core and the plug-
ins of a large framework, the Moose reengineering en-
vironment [5]. This experiment focuses on the relation
between architecture and semantics. It reveals, among
other findings, four cases of duplicated code and a core
functionality misplaced in one of the plug-ins.

2. The second case-study is the class MSEModel, which
is one of the largest classes in Moose. This experiment
applies our approach on a different level of abstraction
to focus on more in-detail findings. It visualizes the re-
lationship among methods of a large class, and reveals
that the class should be split as it servers at least two
different purposes.

3. The third case-study, the JEdit open-source Java editor,
focuses the relationships among classes and proves the
strength of our approach in identifying and labeling se-
mantic concepts.

The following table summarizes the problem size of each
case study. It lists the number of documents and terms in the
vector-space-model, and the rank to which the vector space
has been broken down with LSI, see Section 2. Moose and
JEdit use classes as input documents, and MSEModel uses
methods.

Case-study Language Type Documents Terms Rank
Moose Smalltalk Classes 726 11785 27
MSEModel Smalltalk Methods 4324 2600 32
JEdit Java Classes 806 2316 28

4.1 The Moose Environment and its Plug-ins

This case-study shows the application of our approach
to analyze how modules are semantically related to each
other. The granularity of the correlation matrix are classes,
grouped by modules and ordered inside modules by seman-
tic similarity. The goal here is to detect relationships be-
tween the plug-ins and the framework. One would expect to
find for each plug-in a large part of classes that are not sim-
ilar to the framework or other plug-ins, since each plug-in
extends the framework with new functionality. One would
also expect to find some classes that share semantic content
with the framework, since each plug-in hooks into the core.

Figure 4 shows the correlation matrix. There are five
blocks on the main diagonal, one for each module. They

are, from top-left to bottom-right: Hapax, Van, Moose, Co-
nAn and CodeCrawler. Moose is the core framework, all
other module are plug-ins built on top of Moose [5]; Code-
Crawler extends Moose with visualization capabilities [14].

The background color of a cluster shows its density given
by the average similarity between all its classes. The back-
ground colors of the off-diagonal rectangles show the re-
lationships in-between clusters (i.e. the average similarity
between all classes of one cluster to all classes of the other
cluster). If the background color is white two clusters are
not related, if it is gray they are related – the darker the gray
the stronger the relationship.

The lines indicate semantic hot-spots which are single
classes in one cluster that stand out as its similarity to all
classes in another cluster is significantly above or below the
average similarity.

Moose

Van

CodeCrawler

Hapax

Conan

Figure 4. The correlation matrix of the Moose
environment and four plug-ins.

Hapax. The background color shows that Hapax is
slightly related to the core, but not related to the other plug-
ins. A noteworthy hot-spot is the line parallel to the core
which indicates a class in Hapax strongly related to the core
as a whole. Another hot-spot is shown by the line orthogo-
nal to Van indicates a class in Van strongly related to Hapax.
Closer inspection reveals that:

• the first is a generic visitor class missing in the core
that got implemented in Hapax, and

• the second is an implementation of a matrix data struc-
ture in Van duplicating code in Hapax.

Although Hapax provides visualizations (e.g. the one
in this article) it does not share any semantics with Code-
Crawler which is a visualization tool. This is an indicator
that its visualizations are not based on that CodeCrawler.
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This could become a source of potential functional duplica-
tion.

Van. The broad white margin, at the bottom right in-
side its box, is an indicator that Van contains many utility
classes not related to the main concepts implemented in it.
The background colors of the off-diagonal rectangles show
that Van is related to both the Moose core and CodeCrawler.
Noteworthy hot-spots are – beside the line shared with Ha-
pax mentioned above – the fat group of lines parallel to
CodeCrawler; and the lines parallel to ConAn, since Van is
otherwise not related to ConAn. Closer inspection reveals
that:

• the first as subclasses extending the CodeCrawler
framework, thus Van makes heavy use of that plug-in,
and

• the second hot-spot is an implementation of a tree data
structure duplicating code in ConAn.

Moose. As we discuss the relationship of Moose to its
plug-in in the other paragraphs, we examine here its inner
structure. The light background color shows that Moose is
less semanticaly dense than the plug-ins. While all plug-ins
deal with one concept, ConAn being the most dense, Moose
contains two broad concepts separated by the white lines in
its center. Closer inspection reveals that the first concept is
the meta-model, including the FAMIX model [4]; and the
second concept are metrics and operators common to these
metrics.

ConAn. The background colors show that ConAn is, as
Van, related to both the core and CodeCrawler. Noteworthy
hot-spots are – beside the code duplication mentioned above
at Van – the group of lines parallel to CodeCrawler; and the
white cross inside the box, standing out from the otherwise
very dense content. Closer inspection reveals:

• the first, again as in the case of Van, as extensions by
subclassing of the CodeCrawler framework, and

• the second as user-interface classes.

CodeCrawler. The background colors show that Code-
Crawler is more related to other plug-ins than to the core,
thus revealing it as being more an extension of the core
than a real plug-in. Which is the case, since CodeCrawler
extends Moose with visualization capabilities. Some note-
worthy hot-spot have already been mention above, the two
remaining are the long line parallel to the the core stretch-
ing over all other plug-ins; and the dark cross inside its box.
Closer inspection reveals that:

• the first as CCItemPlugin the root class of the hierarchy
extended by both Van and ConAn, and

• the second as 2D-geometry classes, forming the core
of CodeCrawler rendering engine.

Figure 5. The correlation matrix of the meth-
ods inside the MSEModel class.

Our findings in this case study show that the correla-
tion matrix reveals valuable information about the relation-
ship between the different modules: it has revealed about
a dozen strong relations by inspecting the semantical hot-
spots. Among them, we found four cases of potential code
duplication [18], and one case of functionality missing in
the core.

4.2 Method Correlation in a Class

We also applied our approach to understand the internals
of one class. The lines and columns in the correlation ma-
trix are methods, ordered by their semantic similarity. The
goal is to detect different concepts in a large class with 164
methods. The class is MSEModel, the core of the Moose
model. The purpose of this class is similar to the Document
class in the XML DOM model [23].

The most evident patterns are: the large cluster in the
top left, and the smaller but dense cluster not related to
any other clusters. As the background colors show all other
blocks are related to the large cluster, but not to the dense
one.

A look at the method names reveals the large cluster as
the accessing protocol of the class, providing access to the
nodes in the model’s graph. The dense cluster is the meta-
information protocol, providing access to author, date and
creation data, which is a piece of information used only by
import-export classes.

The method names of the medium-sized cluster in the
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Figure 6. The correlation matrix of the classes
inside the JEdit case study.

middle show that this is the modification protocol, contain-
ing methods to manipulate the model (e.g. addEntity and re-
moveEntity). While the third cluster deals with structural re-
lationships, as its top five labels are: inheritance, subclass,
superclass, hierarchy, override. Both clusters are related to
the accessing protocol but not to each other, as the back-
ground colors approve. The fifth cluster is related to the
modification protocol and the labels reveal that it is deal-
ing with unique IDs of the model’s node. Its top labels are:
uuid, MSEUUID, id.

Next are three clusters not related to any other, their top
labels are log, stream, cr and import, context, facade and
space, term, vocabulary. They are the logging facility, the
import facility, and an extension of the Moose model spe-
cific to LSI and semantic clustering.

In this case study, we looked at the clusters and their la-
bels and got a full overview of the concepts covered by this
class. Furthermore we identified four concepts not related
to the core functionality of the class, that might be good
candidates to factor out into classes of their own.

4.3 Class Correlation and Labels

This case-study applies our approach at the level of a
module analyzing the semantical clustering of the classes.
Our goal is to detect different concepts in a large appli-
cation, JEdit, composed of 806 classes. JEdit is an open-
source text editor written in Java. We focus in this case

study on the labeling of semantic concepts, see section Sec-
tion 3.5

Figure 6 displays the correlation matrix. Fro each of the
clusters we identified the top-five most relevant labels. The
following list shows the top five labels for each cluster, by
traversing the matrix from top-left to bottom-right:

1. cell, renderer, pane, scroller, frame – 175 classes.

2. menu, VFSBROWSER, popup, show, adapter – 100 classes.

3. key, stroke, traversal, bindings, event – 16 classes

4. directory, dir, file, interrupted, install – 86 classes

5. run, request, runnable, later, thread– 73 classes

6. plugin, unload, dependencies, deactivate, jar– 65 classes

7. area, display, manager, range, text – 46 classes

8. dirty, redo, position, undo, bh – 11 classes

9. font, hints, paint, opaque, metrics – 48 classes

10. mymatch, substitute, RE, sub, expr – 39 classes

11. keyword, standard, terminate, rule, km – 19 classes

12. window, docking, dockable, factory, panel – 13 classes

13. BSH, VOID, callstack, interpreter, defined – 56 classes

14. CLASSSTATIC, CLASSCLASSES, gen, sk, cm – 21 classes

15. tree, mutable, RESULTS, href, toc – 3 classes

16. advance, exit, xe, NOTICE, server – 5 classes

17. interface, ACC, meth, var, super – 12 classes

18. hit, tar, sz, RCDSIZE, BLKSIZE – 9 classes

19. stream, output, input, pout, urlcon – 5 classes

20. token, sequences, trymatch, newbufcolumn, newbuffer – 1
class

The semantic clustering captured all relevant concepts of
the JEdit text editor and even brought them in a meaningful
order. The list starts with user interface concepts e.g. menu
and key handling. Then IO and plug-in facilities, followed
by the rendering engine and the undo facility. The next two
clusters are the search functionality, and then dockable win-
dows. And finally, starting with cluster 13, the BSH script-
ing feature, including a tokenizer and a parser with syntax
tree.

5 Implementation: Hapax and Moose

We implemented our approach in Hapax, a tool built on
top of the Moose reengineering environment [5]. Figure 7
emphasizes the interactive nature of our tool.

On the left we see the main window of Hapax. On left
part of the window is the correlation matrix visualization.
On the right side of the window, there are three panels that
are updated as the mouse moves over the matrix. The top
two panels show the entity on the current row and the entity
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Labels of the current clusterCorrelation Matrix

The entities on the row and on the column in the current point

Search
query

Search resultCurrent point

Slider for setting the clustering threshold

Figure 7. Hapax and Moose. To the left we show the main Hapax window. To the right we show how
we can search for the entities relevant to a query string.

on the current column. The bottom panel shows the labels
attached to the current cluster.

On the right side of the window there is a slider for set-
ting the clustering threshold. When the slider is moved, the
picture is redrawn with the new clusters. This feature allows
one to explore different clustering configurations.

On the right side of the figure we show how we use LSI
to also search over the entities in the system. The top win-
dow contains the search query and the result is shown in
the below window with the group of the entities ordered by
their relevancy to the query.

6 Discussion

In this section we discuss different variation points, as
well as the benefits and limitations of the approach.

On the granularity of software artifacts. As mentioned,
the source code can be broken into documents at any level
of abstraction. Straightforward approaches are breaking it
into classes, methods or functions. But any other slicing
one might think of is possible.

On the parameters used. Our approach depends on sev-
eral parameters, which are hard too choose for someone not
familiar with the underlying technologies. First, LSI de-
pends on the weighting functions and the choice of the rank,
see Section 2. Furthermore, we use two parameters in the
postprocessing step. We used as weighting function we use

ltf-idf [6], and as hot-spot threshold we use 0.2, see Sec-
tion 3.4. Both values haven been shown to yield good re-
sults in our experiments. To choose values for the rank and
the clustering threshold is more art than science [10, 3]. We
use a rank of r = sqrt(min(m,n)) and clustering thresh-
old of 0.75 as defaults, and provides sliders our tool Hapax
to manually adjust them during analysis.

On the noise on the correlation matrix. Navok uses cor-
relations matrices in the same way as we do to visualize
correlation in german literature to detect authorship [20].
But due to the different nature of source code, our correla-
tion matrices contain much more noise. Our experiments
showed that the most interesting patterns are the one-to-
many relations ships between classes, thus we decided to
highlight them in the way explained in Section 3.4. We call
these patterns semantic hot-spots.

On badly named identifiers. Not unlike structural anal-
ysis which depends on correct syntax, semantic analysis is
sensitive to the quality of identifiers and comments. Soft-
ware systems with a good naming convention and well cho-
sen identifiers yield best results. Our approach recovers the
developer knowledge put into the identifiers and comments,
but if the developers did not name the identifiers with care,
our approach fails since valuable developer knowledge is
missing. For example if all local variables are just named
temp, foo or x, y and z. Due to LSIs strength in detecting
synonymy and polysemy, our approach can deal with a cer-
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tain amount of such ambiguous or even complectly wrong
named identifiers – but if most of the identifiers in system
are badly chosen, the approach fails.

On the abbreviated identifiers. This is similar to badly
named identifiers, but in this case only the labeling fails and
not the clustering itself. LSI analyzes the statistical distribu-
tion of terms across the documents, thus for the clustering
task it does not matter whether identifiers are consistently
written out or abbreviated. But if the labeling task comes up
with terms like for example pma, tcm, IPFWDIF or sccpsn
this does not tell a human reader much about the system 6.

On the dimension of the vocabulary. The vocabulary of
source code is very small: in average only about 5-10 dis-
tinct terms per method body, and 20-50 distinct terms per
class. In a well commented software system, these numbers
are much higher since comments are human-readable text,
and thus, use a much larger vocabulary than plain source
code. In general LSI does not perform as good in software
analysis as in textual analysis. Intuitively explained: LSI
mimics the way children acquire language [12], and a hu-
man with a vocabulary of 2000 terms is less eloquent and
knowledgeable than a human with a vocabulary of 20’000
term. The smaller the vocabulary, the stronger the effect of
missing or incorrect terms.

On the use of ontology. As LSI is not based on an on-
tological database, its vocabulary is limited to the terms
found in source code. In case of missing terms, our ap-
proach will not find accurate labels. Take for example a
package about linear algebra in which the term linear al-
gebra is never used, just matrix and vector. In this case
our approach will label the package with these terms, as the
correct term is missing. Thus, using an ontology might im-
prove the results.

7 Related Work

Maletic and Marcus were the first to apply LSI for soft-
ware reverse engineering [16]. They used LSI to analyze the
semantic clusters of the files of Mosaic. Even if they only
considered as documents files, they showed the usefulness
of information retrieval techniques in reverse engineering.

The relation between the structure of the system and the
semantical information was explored in a follow up work by
the same authors when they analyzed the same case study,
only at the level of procedures [17].

6These terms are examples taken from a real case study not included
in this paper, where about a third of all identifiers where abbreviations. In
this case the labeling was completely useless.

As opposed to their work, we analyze object-oriented
systems at different levels of abstraction and we provide vi-
sualization and interpretation of the clusters.

LSI was also used in other related areas. Marcus and
Maletic used LSI to detect high-level conceptual clones
[18], that is they go beyond just string based clone detec-
tion using the LSI capability to spot similar terms.

The same authors also used LSI to recover links between
external documentation and source code [19] by querying
the source code with queries from documentation.

Marcus et al. employed LSI to detect concepts in the
code [1]. They used the LSI as a search engine and searched
in the code the concepts formulated as queries. The article
also gives a good overview of the related work.

Kawaguchi et al. used LSI to categorize software sys-
tems in open-source software repositories [22]. They pro-
vide a tool that categorizes the projects and labels the cate-
gories. Their approach is restricted to one level of abstrac-
tion (i.e. applications), and it only uses the files as input
documents.

8 Conclusions

Source code holds the semantic information in the names
of identifiers or in the comments. Many reverse engineering
approaches focus only on structural information, yet, the
structure of the software cannot answer the question: What
is the code about?

This paper proposes an approach to analyze the seman-
tic information from the perspective of reverse engineer-
ing. We use Latent Semantic Indexing (LSI), a robust infor-
mation retrieval technique that works with documents and
terms. We consider as documents the entities in the software
system (e.g. classes, methods), and as terms the identifiers
and comments.

We use LSI to retrieve the semantic similarity between
different entities and we cluster these entities according to
their similarity. We employ this technique to characterize
entities by clustering their sub entities (e.g. characterize the
system by clustering its classes, or a class by clustering its
methods). We further use LSI to recover the most similar
terms to the obtained clusters, thus providing a documenta-
tion to the groups of entities.

We implemented our approach in a tool called Hapax.
Hapax is built on top of the Moose reengineering environ-
ment [5], We used the tool to analyze several case studies
written in Java and Smalltalk.

We plan to investigate how semantic clustering can be
useful for recovering the architecture. For example, in a
layered architecture, each layer uses a specific vocabulary.
Hence if we cluster classes based on semantic similarities
and compare this with the structural packages we can detect
classes that are placed in the wrong package. Furthermore,
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semantic clustering is able to detect the business domains
which are orthogonal to the layers in the same way, as also
each domain uses its own vocabulary.

On the other hand we would like to integrate an LSI en-
gine in an IDE to support:

• Documentation. The labeling, or more simply just a
search with a single software artifact as query, can pro-
pose possible keywords to be used in the documenta-
tion or comment of a software artifact. Furthermore,
when building an index with both the source code and
its documentation as a separated document, we can de-
tect bad or out-of-date comments. Hence our approach
can be used to grade Javadoc like comments; this is
similar to the essay grading [8] mentioned in Section 2.

• Search. Since semantic clustering makes use of an
index created based on LSI, we can simply use it to
provide a search functionality that goes beyond mere
keyword matching, because LSI takes synonymy and
polysemy into account. This is most useful in large
projects where a single developer can not know the
whole project and its exact vocabulary. This prevents
high-level concept clones before they get written, since
a search query finds the desired implementation even
if the query terms itself do not match exactly.
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