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Abstract

Recently there has been a revival of interest in feature
analysis of software systems. Approaches to feature loca-
tion have used a wide range of techniques such as dynamic
analysis, static analysis, information retrieval and formal
concept analysis. In this paper we introduce a novel ap-
proach to analyze the execution traces of features using La-
tent Semantic Indexing (LSI). Our goal is twofold. On the
one hand we detect similarities between features based on
the content of their traces, and on the other hand we cate-
gorize classes based on the frequency of the outgoing invo-
cations involved in the traces. We apply our approach on
two case studies and we discuss its benefits and drawbacks.

Keywords: reverse engineering, dynamic analysis, se-
mantic analysis, features, feature-traces, scenarios, static
analysis.

1 Introduction

Many reverse engineering approaches to software analy-
sis focus on static source code entities of a system, such as
classes and methods [5, 16]. A static perspective considers
only the structure and implementation details of a system.
Using static analysis alone we are unable to easily deter-
mine the roles of software entities play in the features of a
system and how these features interact. Without explicit re-
lationships between features and the entities that implement
their functionality, it is difficult for software developers to
determine if their maintenance changes cause undesirable
side effects in other parts of the system.

Several works have shown that exercising the features of
a system is a reliable means of correlating features and code
[7, 24]. In previous works [9, 10], we described a feature-
driven approach based on dynamic analysis, in which we
extract execution traces to achieve an explicit mapping be-
tween features and software entities like classes and meth-
ods. Our definition of a feature is a unit of behavior of a

system.
Dynamic analysis implies a vast amount of informa-

tion, which makes interpretation difficult. We introduce a
novel approach that uses an information retrieval technique,
namely Latent Semantic Indexing (LSI) [4], to analyze the
traces and their relationship to the source code entities. LSI
takes as an input a set ofdocumentsand thetermsused, and
returns a similarity space from which similarities between
the documents are ascertained.

In a previous work, we built a reverse engineering ap-
proach to cluster the source code entities based on their
semantic similarities [13]. In this paper we apply our ap-
proach on dynamic information. In other words we use the
traces of features as thetext corpusand we sample this cor-
pus in two different ways to show the generality of our ap-
proach.

1. To identify similar features, we use as a document the
trace and the method calls involved in the trace as the
terms of the document.

2. To identify similarities between classes, we use the
classes that participate in feature execution as docu-
ments, and all method calls found in the traces outgo-
ing from a class as the terms of the document.

Structure of the paper. We start by introducing the ter-
minology we use to describe and interpret dynamic infor-
mation. In Section 3 we give an overview of LSI. In Sec-
tion 4 we describe the details of our approach. In Section 5
we report on the two case studies conducted. We summa-
rize related work in Section 7. Section 8 outlines our con-
clusions and future work.

2 Feature Terminology

In this section we briefly outline the feature terminology
we use. The terms here are based on our previous work [9].

We establish the relationship between the features and
software entites by exercising the features orusage sce-
narios and capturing their execution traces, which we re-
fer to asfeature-traces. A feature-traceis a sequence of



runtime events (e.g.,object creation/deletion, method invo-
cation) that describes the dynamic behavior of a feature.

We define the measurementsNOFRC to compute the
# feature-traces that reference a class andFC to compute
a characterization of a class in terms of how many features
reference it and how many features are currently modeled.

• Not Covered (NC) is a class that does not partici-
pate to any of the features-traces of our current feature
model.

(NOFC = 0)→ FC = 0

• Single-Feature (SF ) is a class that participates in only
one feature-trace.

(NOFC = 1)→ FC = 1

• Group-Feature (GF ) is a class that participates in less
than half of the features of a feature model. In other
words, group-feature classes/methods provide func-
tionality to a group of features, but not to all features.

(NOFC > 1) ∧ (NOFC < NOF/2)→ FC = 2

• Infrastructural (I) is a class that participates in more
than half of the features of a feature model.

(NOFC >= NOF/2)→ FC = 3

Feature characterizations of classes attach semantic sig-
nificance to a class in terms of its role in a feature. Our
feature characterization approach reduces the large feature-
traces to consider only the relationships between features
and software entities. Information about the frequency of
references to a method or class in a feature-trace is not taken
into consideration.

3 Semantic Driven Software Analysis

Common software analysis approaches focus on struc-
tural information and ignore the semantics of the problem
and solution domain semantics. But this information is es-
sential in getting a full interpretation of a software system
and its meaning. As an example: the class structure of a
text processor, a physical simulation or a computer game
might all look the same; but the naming of the source code
will differ, since each project uses its own domain specific
vocabulary.Semantic driven software analysisgathers this
information from the comments, documentation, and iden-
tifier names associated with the source code using informa-
tion retrieval methods.

Our semantic analysis tool Hapax [13] useslatent se-
mantic indexing, a state of the art technique in information
retrieval to index, retrieve and analyze textual information
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[4]. LSI treats the software system as a set of text docu-
ments and analyzes how terms are spread over the docu-
ments. Principal components analysis is used to detect con-
ceptual correlations and provides a similarity measurement
between both documents and terms.

As most text categorization systems, LSI is based on the
Vector Space Model (VSM) approach. This approach mod-
els the text corpus as a term-document matrix, which is a
tabular listing of mere term frequencies. Originally LSI was
developed to overcome problems with synonymy and poly-
semy that occurred in prior vectorial approaches. It solves
this problem by replacing the full term-document matrix
with an approximation. The downsizing is achieved with
Singular Value Decomposition (SVD), a kind of Principal
Components Analysis originally used in Signal Processing
to reduce noise. The assumption is that the original term-
document matrix is noisy (the aforementioned synonymy
and polysemy) and the approximation is then interpreted as
a noise reduced – and thus better – model of the text corpus.

Even though search engines [2] are the most common
usage of LSI, there is a wide range of applications, such as:
automatic essay grading [8], automatic assignment of re-
viewers to submitted conference papers [6], cross-language
search engines [15], thesauri, spell checkers and many
more. As a model, LSI has been used to simulate language
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processing of the human brain, such as the language acqui-
sition of children [14] and high-level comprehension phe-
nomena like metaphor understanding, causal inferences and
judgments of similarity.

3.1 Semantic Clustering at Work

To get a semantic model of the software system, we im-
plemented these steps:

• First, we split the software system into text documents.
While static approaches work with the source code of
classes or methods, in this paper we use the textual
representation of feature-traces as documents.

• The second step counts the frequencies of term occur-
rences in the documents. A term is any word found in
the source code or comments, except keywords of the
programming language. Identifiers are separated based
on standard naming conventions (e.g.,camel-case).

• Then singular value decomposition, a principal com-
ponents analysis technique, is applied on the term oc-
currence data. This yields an index with conceptual
correlations and similarities between both documents
and terms. More in-depth information on using LSI is
given in [4, 2].

• To understand this semantic correlations, we group the
documents using a hierarchical clustering algorithm.
We visualization the clusters on a shaded correlation
matrix. A shaded correlation matrix is a square ma-
trix showing the similarity between documents in gray
colors. The color atmi,j shows the similarity between
thei-th and thej-th document: the darker the color, the
more similar these two documents. The visualization
algorithm itself is detailed in [13].

4 Our Approach

The novelty of our approach is the combination between
dynamic analysis and semantic analysis. Our paper has two
goals: to detect similarities between traces, and to detect
similarities between classes based on their involvement into
the traces.

We outline how we apply our technique to obtain a se-
mantical analysis on top of feature-traces from a software
system.

1. We instrument the code of the the application under
analysis and execute a set of its features as described
in Section 6. Our dynamic analysis toolTraceScraper
extracts execution traces and models them as a tree
of method invocation calls. We treat feature-traces as

first class entities and incorporate them into the static
model of the source code. By doing so we establish the
relationships between the methods calls of the feature
traces and the static model class and method entities.
We compute the feature characterizations of the classes
as described in Section 2.

2. Our semantic analysis toolHapax is applied on the
feature-traces. To use the feature-traces as text cor-
pus, we createad-hoctext documents with the method
names found in the feature traces. Hapax applies LSI
on the documents, clusters them and finally delivers a
visualization of document clusters and their similari-
ties. For more detail refer to Section 3.1.
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Figure 2. Example of how traces form docu-
ments and the method calls form the terms.

Both tools are built on top of our reverse engineering
framework Moose [19], that provides a generic mechanism
which allows for an easy composition of different tools. Be-
cause of that, we could easily integrate the two tools to per-
form the semantic analysis on the traces.

5 Validation: Ejp-Presenter and Smallwiki

In this section we present the results of applying our ap-
proach to theEjp-presenterand theSmallWikicase studies.

Ejp-presenter[22] is an open source tool written in java
which provides a graphical user interface for viewing exe-
cution traces of java programs. It consists of 166 classes. To
obtain feature traces we instrumented 13 unit tests provided
with the application. Our assumption was that each unit test
exercised a distinct feature.

SmallWiki [20] is a collaborative content management
system used to create, edit and manage hypertext pages on
the web. It is implemented in Smaltalk and consists of 464
classes. To identify features ofSmalWikiwe associate fea-
tures with the links and entry forms of theSmallWikipages.

3



Figure 3. Correlation matrix with the features
of Ejp-Presenter, showing well distributed
concepts.

We assume that each link or button on a page triggers a
distinct feature of the application. For this experiment we
executed 6 features.

As mentioned in the introduction we tackle the case stud-
ies at two levels of abstraction, once using features and once
using classes as granularity.

5.1 Identifying Similar Features

To identify similar features, we use the feature-traces as
documents and the method calls involved in a trace as terms.
Similar features are clustered together, and the clusters vi-
sualized on a shaded correlation matrix. The visualization
reveals the semantic similarity between the features, show-
ing how they are related to each other.

Figure 3 shows theEjp-presentercase study. Its features
are well distributed: there are 6 clusters of different sizes,
and – as indicated by the gray blocks in the off-diagonal –
different correlations among them.

This is a list with the features in each cluster, starting
from top left to bottom right:

1. boolean parameter, string list parameter, radio param-
eter, and remove non significant.

2. loaded method and loaded class.

3. configuration and mainframe.

4. dom.

5. highlight hotspot and color parameter.

Figure 4. Correlation matrix with the features
of Smallwiki, showing one concept only.

6. file chooser dialog and color chooser.

The names shown in the above listing are of a descriptive
nature, and not part of the vocabulary used by the Informa-
tion Retrieval engine itself. Thus we can judge, based on
them, that the analysis revealed meaningful correlations.

Figure 4 shows theSmallWikicase study. Because its
features use similar methods, they belong to the same se-
mantical concept. A closer look at the feature-traces reveals
that SmallWikihas a very generic structure, and the traces
are not discriminated by their method usage but by the pa-
rameters passed to their methods. Taking only the method
names into account, our approach fails discriminating these
features.

5.2 Identifying Similar Classes

In Section 2 we give a characterization of classes based
on their structural relationship to features. In Section 3.1 we
show how we retrieve a characterization of classes based on
their semantic correlation.

To identify the semantic correlation between classes, we
use the classes as documents, and all method invocations
originating from a class as terms. Thus classes with similar
outgoing method invocations are clustered together, that is
classes that are based on the same functionality belong to
the same cluster. We expect these clusters to match with the
‘feature terminology’ characterization, sincesingle feature
classes are based ongroup featureclasses with in turn are
based oninfrastructureclasses.

Figure 5 reveals seven semantical clusters of different
shape. In Table 1 we compare theses clusters – numbered
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Figure 5. Correlation matrix with Ejp-
Presenter classes, based on their usage in
features-traces.

from top left to bottom right – with the ‘feature terminol-
ogy’ characterization.

cluster #1 #2 #3 #4 #5 #6 #7
single 19 4 – – 1 3 1
group 4 6 2 – – – –
infra. – – – 1 – – –
size 23 10 2 1 1 3 1

Table 1. The clusters from Figure 5 and the
types of classes contained.

And in fact, the two characterizations – once based on se-
mantical analysis, once based on structural analysis – match
pretty well.

6 Discussion

The large volume of information and complexity of dy-
namic information makes it hard to infer higher level of in-
formation about the system.

Coverage.We limit the scope of our investigation to fo-
cus on a set of features. Our feature model does not achieve
100% coverage of the system. For the purpose of feature
location, complete coverage is not necessary. However, LSI
analysis yields better results on a large text corpus. There-
fore to improve our results, we need to increase the coverage
the application by exercising more of its features.

Trace as Text Corpus. In this paper, we build the text
corpus from the names of the methods that get called from

the studied traces. When applying the approach toSmall-
Wiki, the result was not very relevant becauseSmallWikihas
a generic structure and the difference between traces is not
given by the method names, but by the parameters passed to
the methods. Hence, a variation of the approach would be to
take the parameter names into consideration when building
the text corpus.

Language Independence. Obtaining the traces from
the running application requires code instrumentation. The
means of instrumenting the application is language depen-
dent.Ejp-presenteris implemented in java. To instrument it
we used theEjp (Extensible Java Profiler)[22] based on the
Java Virtual Machine Profiler Interface (JVMPI).SmallWiki
is implemented in Smalltalk. Our Smalltalk instrumentation
is based on method wrappers [3].

We abstract a feature model from the traces we obtain
by exercising the features of the instrumented system. Our
analysis is performed on the feature model and is therefore
language independent.

7 Related Work

Many researchers have identified the potential of feature-
centric approaches in software engineering and in particular
as a basis for reverse-engineering [7, 23, 24]. Our work is
directly related to the field of dynamic analysis [1, 11, 25]
and user-driven approaches [12].

Feature location techniques such asSoftware Recon-
naissencedescribed by Wilde and Scully [23] , and that of
Eisenbarth et al. [7] are closely related to our feature lo-
cation approach. In contrast, our main focus is applying
feature-driven analysis to object-oriented applications.

LSI has been recently proposed in static software anal-
ysis for various tasks, such as: identification of high-level
conceptual clones [17], recovering links between external
documentation and source code [18], automatic categoriza-
tion of software projects in open-source repositories [21]
and visualization of conceptual correlations among soft-
ware artifacts [13].

8 Conclusions and Future Work

Reverse engineering approaches that focus only on the
implementation details and static structure of a system over-
look the dynamic relationships between the different parts
that only appear at runtime. Our approach is to comple-
ment the static and dynamic analysis by building a model in
which features are related to the structural entities.

Dynamic analysis offers a wealth of information, but it
is exactly the wealth of information that poses the problem
in the analysis. To deal with it, we employed Latent Seman-
tic Indexing, an information retrieval technique that works
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with documents and terms . Our goals were to identify re-
lated features and to identify related classes that participate
in features. We use the method calls from the traces as the
text corpus and then we use two mappings to documents:
(1) traces as documents, and (2) classes as documents. We
clustered the documents based on the terms used to find re-
lationships between them.

The results obtained on two case studies are promising,
yet we did encounter problems with only considering the
method names as text corpus. From our findings we con-
clude that more work is needed to assess the different vari-
ations of the approach. Furthermore, LSI yields better re-
sults on large text corpus, hence we also need to apply our
approach on larger case studies or to achieve a higher cov-
erage of the system by our feature-traces.

Acknowledgments: We gratefully acknowledge the financial
support of the Swiss National Science Foundation for the project
“RECAST: Evolution of Object-Oriented Applications” (SNF
Project No. 620-066077).

References

[1] T. Ball. The Concept of Dynamic Analysis. InProceedings
of ESEC/FSE ’99 (7th European Software Engineering Con-
ference and 7th ACM SIGSOFT International Symposium on
the Foundations of Software Engineering, number 1687 in
LNCS, pages 216–234, sep 1999.

[2] M. W. Berry, S. T. Dumais, and G. W. O’Brien. Using lin-
ear algebra for intelligent information retrieval. Technical
Report UT-CS-94-270, 1994.

[3] J. Brant, B. Foote, R. Johnson, and D. Roberts. Wrappers
to the Rescue. InProceedings ECOOP ’98, volume 1445 of
LNCS, pages 396–417. Springer-Verlag, 1998.

[4] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Fur-
nas, and R. A. Harshman. Indexing by latent semantic analy-
sis. Journal of the American Society of Information Science,
41(6):391–407, 1990.

[5] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refac-
torings via change metrics. InProceedings of OOPSLA
’2000 (International Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications), pages
166–178, 2000.

[6] S. T. Dumais and J. Nielsen. Automating the assignment of
submitted manuscripts to reviewers. InResearch and Devel-
opment in Information Retrieval, pages 233–244, 1992.

[7] T. Eisenbarth, R. Koschke, and D. Simon. Locating Features
in Source Code.IEEE Computer, 29(3):210–224, Mar. 2003.

[8] P. W. Foltz, D. Laham, and T. K. Landauer. Automated essay
scoring: Applications to educational technology. InProceed-
ings of EdMedia ’99, 1999.

[9] O. Greevy and S. Ducasse. Correlating features and code
using a compact two-sided trace analysis approach. InPro-
ceedings of CSMR 2005 (9th European Conference on Soft-
ware Maintenance and Reengineering, pages 314–323. IEEE
Computer Society Press, 2005.

[10] O. Greevy, S. Ducasse, and T. Gı̂rba. Analyzing feature
traces to incorporate the semantics of change in software

evolution analysis. InProceedings of ICSM 2005 (21th Inter-
national Conference on Software Maintenance), pages 347–
356. IEEE Computer Society Press, Sept. 2005.

[11] A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge.
Recovering behavioral design models from execution traces.
In Proceedings of CSMR 2005 (9th European Conference on
Software Maintenance and Reengineering. IEEE Computer
Society Press, 2005.

[12] I. Jacobson. Use cases and aspects—working seamlessly to-
gether.Journal of Object Technology, 2(4):7–28, July 2003.

[13] A. Kuhn, S. Ducasse, and T. Gı̂rba. Enriching reverse engi-
neering with semantic clustering. InProceedings of Working
Conference On Reverse Engineering (WCRE 2005), pages
??–??, Nov. 2005. to appear.

[14] T. Landauer and S. Dumais. The latent semantic analysis the-
ory of acquisition, induction, and representation of knowl-
edge. InPsychological Review, volume 104/2, pages 211–
240, 1991.

[15] T. Landauer and M. Littmann. Fully automatic cross-
language document retrieval using latent semantic indexing.
In In Proceedings of the 6th Conference of the UW Centre
for the New Oxford English Dictionary and Text Research,
pages 31–38, 1990.

[16] M. Lanza and S. Ducasse. A Categorization of Classes
based on the Visualization of their Internal Structure: the
Class Blueprint. InProceedings of OOPSLA ’01 (Inter-
national Conference on Object-Oriented Programming Sys-
tems, Languages and Applications), pages 300–311. ACM
Press, 2001.

[17] J. I. Maletic and A. Marcus. Supporting program compre-
hension using semantic and structural information. InPro-
ceedings of the International Conference on Software Engi-
neering (ICSE 2001), pages 103–112, 2001.

[18] A. Marcus and J. Maletic. Recovering documentation-to-
source-code traceability links using latent semantic indexing,
2003.

[19] O. Nierstrasz, S. Ducasse, and T. Girba. The story of
Moose: an agile reengineering environment. InProceedings
of ESEC/FSE 2005, pages 1–10. ACM, 2005. Invited paper.

[20] L. Renggli. Smallwiki: Collaborative content management.
Informatikprojekt, University of Bern, 2003.

[21] M. M. Shinji Kawaguchi, Pankaj K. Garg and K. Inoue.
Mudablue: An automatic categorization system for open
source repositories. InProceedings of the 11th Asia-Pacific
Software Engineering Conference (APSEC.04), 2004.

[22] S. Vauclair. Extensible java profiler. Masters thesis, EPF
Lausanne, 2003.

[23] N. Wilde and M. C. Scully. Software reconnaisance: Map-
ping program features to code.Software Maintenance: Re-
search and Practice, 7(1):49–62, 1995.

[24] W. E. Wong, S. S. Gokhale, and J. R. Horgan. Quantifying
the closeness between program components and features.J.
Syst. Softw., 54(2):87–98, 2000.

[25] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Ap-
plying webmining techniques to execution traces to sup-
port the program comprehension process. InProceedings of
CSMR 2005 (9th European Conference on Software Main-
tenance and Reengineering. IEEE Computer Society Press,
2005.

6


