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Abstract

The main challenge of dynamic analysis is the huge
volume of data, making it difficult to extract high level
views. Most techniques developed so far adopt a fine-
grained approach to address this issue. In this paper we
introduce a novel approach representing entire traces as
signals in time. Drawing this analogy between dynamic
analysis and signal processing, we are able to access a rich
toolkit of well-established and ready-to-use analysis tech-
niques. As an application of this analogy, we show how to
fit a visualization of the complete feature space of a system
on one page only: our approach visualizes feature traces
as time plots, summarizes the trace signals and uses Dy-
manic Time Warping to group them by similar features.
We apply the approach on a case study, and discuss both
common and unique patterns as observed on the visual-
ization.

Keywords: reverse engineering, dynamic analysis,
trace summarization, dynamic time warping, features,
feature-traces, visualization.

1. Introduction

Reverse engineering usually implies the abstraction
of high level views that represent different aspects of
a software system. Object-oriented systems are diffi-
cult to understand by browsing the source code due to
language features such as inheritance, dynamic bind-
ing and polymorphism. The behavior of the system can
only be completely determined at runtime. The dynam-
ics of the program in terms of object interactions, as-
sociations and collaborations enhance system compre-
hension [11]. Typically dynamic analysis involves in-
strumenting a program under investigation to record
its runtime events.

Interpretation of execution traces is difficult due to
their sheer size, thus filtering or compressing the data
is a crucial step in the construction of high level views.

The main challenge of trace summarization is to re-
duce the volume of data without loss of information
that is relevant for a particular analysis goal [9]. The
results of dynamic analysis are often presented as vi-
sualizations for better understanding of programs [6].
Dynamic analysis together with program visualization
may be used in debugging, evaluating and improv-
ing program performance and in understanding pro-
gram behavior. The context of our dynamic analysis
is feature-centric reverse engineering (i.e. we exercise
a systems’ features on an instrumented software sys-
tem and capture traces of their runtime behavior).

In this paper we propose a novel approach to tackle
the problems of dynamic analysis by treating execution
traces as signals in time. The domain of time series of-
fers a rich toolkit of well-established and ready-to-use
techniques, which become applicable on traces as we
draw such an analogy. We show evidence of the useful-
ness of applying signal processing analysis techniques
to traces, by providing a visualization that fits up to
two dozen feature traces on one single screen at once.
We show how this supports the reverse engineer to in-
terpret and reason about the dynamic information. In
particular, we address the following reverse engineer-
ing questions:

• How does a visualization with dozens of feature
traces fit on one screen?

• Which groups of features behave similarly at run-
time, that is which traces are similar?

• Which execution patterns are common to all fea-
tures, which are unique to a single feature?

• How does the architecture of a system (for example
layers) map to features traces?

In this paper, we use SmallWiki [4] as an exam-
ple case study. The same SmallWiki case study has
been analyzed in another work by Greevy et al. with a
metrics-based approach [8]. For this paper we traced 7
additional features, such that now the feature space in-
cludes a total of 18 feature traces.



Figure 1. An execution trace as signal, showing on the y-axis the nesting level and along the x-axis the se-
quence of execution; summarized with MonotoneSubsequenceSummarizationusinggap size 0.

Structure of the paper. In Section 2 we draw the anal-
ogy between traces and times series and in Section 3
we visualize trace signals as time plots. In Section 4
we presents a trace summarization based on splitting
the time series into monotone subsequences. In Sec-
tion 5 we employ Dymanic Time Warping to measure
the similarity between traces. In Section 6 we apply
feature characterization and concept location on time
plots. Section 7 dives into the details of a case study,
while Section 8 discusses pros and cons of the anal-
ogy. In Section 9 we provide a brief overview of related
work in the fields of dynamic analysis, visualization and
summarization of execution traces and time series re-
lated work. Finally we outline our conclusions in Sec-
tion 10.

2. Traces are Signals in Time

A feature trace is a record of the steps a program
takes during the execution of a feature. We adopt the
definition of a feature as a user-triggerable function-
ality of a software system [5]. In the case of object-
oriented applications, a trace records method calls,
whereas for systems implemented in procedural pro-
gramming languages it records function calls . In this
paper we adopt the object-oriented terminology: we
consider each execution step as a message sent from
the sender to the receiver, whereupon the receiver ex-
ecutes the method selected by the message.

We provide a formal definition a trace as a chrono-
logical sequence T of one or more execution events,
such that the call hierarchy imposes a tree structure
on the sequence: each event en has zero or more child
events, with en+1 as its first child, if any. With this def-
inition, the execution sequence is equivalent to a depth-
first traversal of the call hierarchy.

Further, to equip the events with a partial order
based on their depth in the call hierarchy, we define
the nesting level recursivley as

Level(em) = Level(en) + 1

for all em ∈ Children(en) and Level(e1) = 1. Now
we can order the execution events in two ways, either
by time or by nesting level.

3. Visualization as Time plot

As any chronological sequence of partially ordered
data points qualifies as a signal, we can draw analogy
between traces and signal processing. This done, we
treat traces as if they were signals in time, which in turn
provides us with a rich toolkit of well-established and
ready-to-use algorithms from the field of signal process-
ing and time series.

A key benefit of treating traces as signals is that we
get time plots for free, see Figure 1. Time plots are
well-known from a broad range of applications, such as
from the field of meteorology or stock markets. They
show the change of a signal over time.

Typically an execution event includes information
about execution time. However, in this paper we omit
execution times and retain the order of events only.
As the rise and fall of the signal is preserved even if
all events are spaced equally apart in time, we can ig-
nore execution time of events without loss of general-
ity. The outline of the signal remains the same indepen-
dent of the interval between its data points. Therefore
both the summarization technique we present in Sec-
tion 4 and the Dymanic Time Warping retain their re-
sults.

4. How to Summarize Traces

As the size of a trace may range from some ten thou-
sand to millions of method calls, we have to summarize
the time plot somehow in order to fit it onto one screen.
In this section we introduce a technique called Mono-
tone Subsequence Summarization, which makes use of
the fact that a trace signal is composed of monotone
subsequences separated by pointwise discontinuities.

The structure of a trace signal as defined in the pre-
vious section is plain simple: beginning at the starting
node the nesting level it either

• increases step by step as each event calls its first
child or

• stays constant as subsequent children of the same
event are called, until

• we reach an event without children, in which
case the nesting level suddenly drops as execu-
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Figure 2. From top to bottom: 1)The outline of a
trace, rotated by one quadrant such that time is
on the X-axis. 2) We remove method names and
retain the nesting level only, each discontinuity
is marked with a dotted line. 3) Each monotone
subsequence iscompressed intoonemethod-call-
chain, saving a considerable amountof space.

tion continues with the latest sibling of the pre-
vious events.

The first two cases are monotonnally increasing subse-
quences, whereas the latter a pointwise continuity.

To summarize a trace signal, we cut the signal at its
pointwise discontinuities into monotone subsequences,
and compress each such subsequence into one event
of the summarization. Thus the summarization is con-
siderably shorter than the raw trace signal, see Fig-
ure 2, and consists of method-call-chains instead of sin-
gle method calls.

The Monotone Subsequence Summarization cuts a
trace signal between each two consecutive events where
the nesting level does not increase

Level(en) 6 Level(en+1)

into pieces c1 . . . cm and these pieces become the
events of the summarized trace. Further, we define
Level(cn) as the minimal nesting level within the chain
cn.

Using this technique, it is possible to reduce the
length of a trace signal by about 50%. However, we
can further improve this by taking into account that
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Figure 3. Example of exact matching versus Dy-
manic Time Warping, the comparisons are high-
lighted in bold. The exact matching distance is 5
while theDTWdistance is 2.

not each discontinuity has the same gap size: often the
signal drops only by one or two nesting levels, that is
the execution stays close to the current chain of method
calls, whereas other discontinuities span dozens of nest-
ing levels and thus mark a real break in the execu-
tion. Therefore, we allow small gaps within a chain of
method calls and refine the above expression as

Level(en)− Level(en+1) 6 gap size

Using gap size = 3 it is possible to save up to 90%
of the length of a trace signal, that is even a trace with
ten thousand events fits on one screen.

5. How to Compare Traces

Our motivation to compare traces is to identify sim-
ilar features. We assume that if two traces show a high
degree of similarity, then their corresponding features
are similar as well. The technique we use to measure the



similarity between traces is known as Dymanic Time
Warping.

Dymanic Time Warping has been applied in many
fields such as manufacturing [7], medicine [2], and orig-
inally in automatic speech recognition [22], where it is
often used in the context of hidden Markov models to
cope with different speaking speeds. In the case of ex-
ecution traces, it is often the case that the time plots
of two traces have approximately the same shape, but
due to additional branches or loops, do not line up on
the X-axis. In order to measure similarity between two
traces, we must warp the time axis of one (or both)
of their corresponding time plot sequences to achieve a
better alignment.

As illustrated in Figure 3, Dymanic Time Warping
compares each data point in one signal with each data
point in the other signal and uses dynamic program-
ming to find the minimal distance between the two sig-
nals. This allows one signal to fall back behind the
other signal and catch up later on. In other words the
signals are warped non-linearly to match each other.

To apply Dymanic Time Warping, we have to pro-
vide a distance metric on execution events. As a first
experiment, we used the difference between the nest-
ing level as distance metric—which failed. It is much
wiser to use the nesting level’s derivation as base of
the distance metric. A small gedanken experiment il-
lustrates why: consider for example that we add some
additional nested calls in the beginning of a trace sig-
nal: the nesting level would increase for all events by a
fixed number, and therewith increase the distance be-
tween two otherwise similar signals, whereas the deriva-
tion of the level is preserved.

Therefore, let us define the distance distance be-
tween en and em as:

dist(en, em) =
(
∆en −∆em

)2 + p(en, em)

with ∆en = Level(en) − Level(en+1) as the deriva-
tion of the nesting level. Plus a penalty if en and em

are not sharing some common trait, such as not call-
ing the same method, not being performed on the same
class or within the same package.

For the case study used in this paper, we applied
Semantic Clustering to locate concepts [16] and use the
semantic similarity (which is a value between 0 and 1)
as the base of the penalty:

p(en, em) = p0 ∗
(
1− (en ∼ em)

)
with en ∼ em as the semantic similarity between the

receiver class of the compared events, and p0 as a pa-
rameterizable threshold. A choice of p0 = 100 has been
shown to yield good results.

6. Mining Feature Traces

A key issue when analyzing feature traces, is to de-
tect subsequences in the trace signal that are relevant,
specific or even unique to a feature [8, 5, 27]. We com-
bine the presented signal processing techniques to sup-
port visual data mining in the complete feature space
of an application:

• First we take the time plots of all feature traces,
and summarize them with a gap size that is large
enough to make all traces fit onto one screen only.

• Then we arrange them, one below the other, such
that the most similar traces are placed near each
other. We use Dymanic Time Warping to compute
the similarity, and dendrogram seriation to deter-
mine such an ordering.

• Next, we decorate the time plots with information
such as feature characterization [8] or concept lo-
cation [16].

• And finally, we search for both recurring and
unique patterns in the traces.

Figure 7 shows the complete feature space of the
SmallWiki case study, it is discussed in Section 7.

6.1. Decorating Time Plots with Color

A plain time plot displays the nesting level only,
other information about the called method and the
classes of sender and receiver is missing. Therefore, we
decorate the time plots with colors to show additional
information. We use two kind of decorations: either col-
oring the time plot itself, or highlighting selected sub-
sequences with color marks.

Coloring the time plot on the one hand is best suited
to illustrate a partition of the trace signal into differ-
ent phases, each phase of the signal is colored with a
different color. Highlighting selected subsequences on
the other hand, is best suited to illustrate properties
that are focus to hot-spots, and it is possible to dis-
play quantitative information by varying the diameter
of the circles used as color marks.

Figure 4 illustrates the different decorations as used
in the case study, these are from top to bottom:

1. The plain signal, summarized with Monotone Sub-
sequence Summarization (see Section 4).

2. The signal is decorated with colors, for each dot
the colors shows the concept of its corresponding
event. The Semantic Clustering detected four con-



Figure4.The sametrace signalwith fourdecorations: a)plain signal summarizedwithgap size1, b) coloredby
concept, c) highlighting theusageof concept cyanandd)highlighting theusageof single feature classes.

cepts (represented by four distinct colors)1 and
each event is colored with the concept imple-
mented by its receiver class.

3. As the concepts Red and Green dominate the fea-
ture space, we decided to highlight all locations of
concept Cyan with a decoration of its own.

4. And finally, to support the detection of unique fea-
ture behavior, we highlight all receiver classes that
are unique to one feature of the set of features we
traced. In other words we highlight all classes with
feature characterization “single feature class” [8].

7. Case study: SmallWiki

For our experiments with the technqiues described
in the previous sections, we chose SmallWiki [24], an
open-source, fully object-oriented and extensible Wiki
framework. A Wiki is a collaborative web application
that allows users to add content, but also allows any-
one to edit content. Thus SmallWiki provides features
to create, edit and manage hypertext pages on the web.

We identify features of SmalWiki by associating fea-
tures with the links and entry forms of the SmallWiki
pages. We assume that each link or button on a page
triggers a distinct feature of the application. We se-
lected 18 distinct user interactions with the SmallWiki
application and exercised them on an instrumented sys-
tem to capture 18 distinct execution traces. The fea-
tures we chose represent typical user interactions with
the application such as login, editing a page or search-
ing a web site. Then we apply trace summarization as
described in Section 4, and we represent each feature
trace visually as a time plot on one screen.

1 Each of these concepts is a layer of the application, and we use
the terms concept and layer synonymously in this paper. More
in-depth information on detecting semantic concepts and re-
lating them to layers is out of the scope of this paper, we refer
the reader to a previous work [16].

7.1. Detecting Concepts in SmallWiki

By applying semantic analysis approach [16] to
SmallWiki, we detect 4 distinct concepts, which we
represent with four colors (ordered by the num-
ber of the classes in the concept):

The Red Concept consists of 42 classes. This is the
largest concept. It groups classes that repre-
sent functionality that corresponds to classes that
are characterized as single-feature by our fea-
ture characterization measurement[8]. For exam-
ple this concept groups the class RSSChangeFeed,
which is only present in the rss and the class
PageHistory which is only present in the ShowHis-

tory.

The Blue Concept consists of 27 classes. The classes of
this concept represent the elements of the Small-
Wiki pages such as the class that defines if a page
can be modified (EditableProperty) or models
the page title ( TitleProperty).

The Green Concept consists of 6 classes. This con-
cept groups classes such as HtmlWriteStream and
Response. These classes are responsible for pro-
viding the general http dialog functionality of the
web application.

The Cyan Concept consists of 4 classes. This concept
groups the classes User, BasicRole, AdminRole
and Permission. The developers confirm are con-
cerned with modeling the user of SmallWiki and
authentication concerns.

7.2. Analyzing the time plots of feature
traces

In the following paragraphs we describe how we an-
alyzed the time plots of the SmallWiki feature traces
and reasoned about these views of feature behavior. As
we have access to the developers of SmallWiki, we are
able to check the findings of our signal processing anal-
ysis techniques with them.



Considering Figure 4 and Figure 7, we observe a cou-
ple of phenomena exhibited by most or all trace sig-
nals of this feature spaces. We recognize that further
research in the form of more case studies is required be-
fore we can conclude that these phenomena are com-
mon to any feature space, but we assume that at least
the first three observations on layers hold true for any
trace signal.
The layers appear as phases. The hypothesis that lay-
ers partition the signal by nesting levels does not hold,
rather we observe that the layers partition the signal
into consecutive subsequences. Thus the nesting level
of an event does not correlate with the nesting of the
called method within the systems static architecture.
Each of the layers has its own signal. We observe that
each layer has in its phases a distinct signal of its own.
For example on Figure 7, the signal of layer Green has
a large amplitude and oscillates with low frequencies in
long loops of more than hundred method calls. Whereas
the signal of layer Red and Blue has a small ampli-
tude and oscillates with high frequency in short loops
of less then a dozen method calls (in fact the frequency
is that high, that in a summarized trace, it shows up
as a steady signal).

Figure 5. Layers partition call-chains by nesting
level: the method-call-chains in the middle starts
within layerRedandend in layerCyan.

Call-chains are layered by level. Contrary to the trace as
a whole, the layering indeed partitions the call-chains
by nesting levels. Consider for example Figure 5, each
of these call-chains starts within layer Red and end in
layer Cyan. The same is true for most call-chains at
the end of a longer red phase, within the whole fea-
ture space as the right bottom subfigure in Figure 7
shows.
All features share a common introduction. We observe
that all features start with the same introduction. This
introduction corresponds to the time plot of the re-

solveURL feature. This makes sense due to the nature
of SmallWiki as is a web based application. Resolving
a given URL is the first step to be performed in order
to execute a user-initiated feature. This phenomenon is
most probably common to any feature space, as most
architecture includes some top layer which does some

preprocessing before executing the actual feature. This
observation reveals that the traces could be summa-
rized by removing or factoring out the common intro-
duction part of the trace.

Shared parts may include variations. Even thought the
same introduction is shared by all trace signals, our
analysis reveals variation points. On Figure 7 the in-
troductions of the features copychild, addfolderchild, ad-

dpagechild and removechild for example include a varia-
tion point, they contain a sequence of calls from layer
Red to layer Blue which are not present in the other
traces. Whereas the introductions of history and edit-

page, even though they look like all other introduc-
tions, make use of a “single feature class”: most prob-
ably these are dedicated subclasses of the common in-
troduction implementation.

Specific behavior is restricted to small hot-spots. Our
analysis reveals that only a small amount of the over-
all behavior of a feature is specific to that feature (that
is characterized as single-feature). This is due to the
generic nature of the SmallWiki application. Moreover,
as the features we exercised are user-triggerable ac-
tions, they all involve exercising common functional-
ity to handle the http request-response dialog of a web
application.

comps, props, stylesheet, template.

rss, resolveURL, search.

copychild, addfolderchild, addpage-

child, contents, removechild.

addfolder, addpage, editpage.

history, changes, login.

Figure 6. Correlation matrix of all feature traces,
and how they fall apart into clusters of similar
traces (ordering is the sameasonFigure 7).

Some features are very similar. Our time series repre-
sentation of feature traces as shown in Figure 7 re-
veals which features are closely related (that is they re-
veal common patterns of behavior). The features copy-

child, addfolderchild, addpagechild and removechild are all
invoked from the same page in SmallWiki. We verify
our findings with the developers and they confirm that
these features are actually exercising the same code.
The variations of functionality is determined by pa-
rameters passed in the methods.



The features comps, props, stylesheets and edittemplate

are clustered into one group on Figure 6, these four fea-
tures also reveal similar time plots on Figure 7. Again
the developers confirm our findings, as these features
are concerned with look-and-feel aspects of the system.

Not all features are equally similar. Figure 7 shows the
features addFolder, addPage are grouped as similar fea-
tures. The feature editPage appears to be similar to the
previous two features but then exhibits a strong vari-
ation. The similar parts of these features indicate that
the features are conceptually related.

8. Discussion

IIn this section we discuss some open issues and lim-
itations of the applied techniques and the signal anal-
ogy itself.

On the choice of the nesting level as Y-axis. To repre-
sent traces as signal in time, we plot the nesting level
of the execution events on the Y-axis. Even though this
yields natural looking time plots, such as those famil-
iar from meteorology or stock markets, it is not per
se guaranteed that the nesting level is the most useful
property to discriminate the differences between fea-
ture traces. Other information such as method names
or arguments may prove to be more useful or better dis-
criminators.

However, our experiments showed evidence that the
nesting level is indeed a good discriminator. Even ap-
plying the Dymanic Time Warping similarity with a
null penalty of p(en, em) = 0 yielded a reasonably good
clustering of feature traces. Furthermore, it was exactly
for these reasons that we included the penalty in the
formula of the distance metric as a means to include
additional properties in the computation of the simi-
larity.

In the same way, the decoration of the time plots en-
rich the signal with additional properties. It is in fact
possible to decorate the time plot with any property
the execution events may have: if the property is mu-
tually exclusive, coloring the trace itself is the decora-
tion of choice, if the property quantified and is concen-
trated in hot-spots, the color marks are the decoration
of choice.

On themeaning of amplitude and frequency. Our experi-
ments disproved the assumption, that the nesting level
if an execution event correlates with the layer of the
called method. So the question remains as to what
the meaning of the nesting level is. We will discuss
this in terms of amplitude and frequency, both taken
from the domain of signal processing. A high ampli-
tude may indicate heavy use of delegation, recursion

or any other source of nested method calls. A low am-
plitude, on the other hand, is a good indicator for local-
ity of an algorithm, as only very few methods are used
repeatedly. Similarly when considering the frequency:
a high frequency is an indicator for a tight loop struc-
ture that locally performs one task, while a low fre-
quency might span over hundreds of execution events
and reveals high level repetitions such as subsequently
executed, but similar tasks.

On the one-to-one mapping between features and traces.
The visualization of the feature space revealed that
there is no a one-to-one mapping between features and
traces. We need to consider a feature, not an execu-
tion trace, as the smallest unit of behavior: traces such
as for example the set of copychild, addfolderchild, ad-

dpagechild and removechild seem to implement variations
of the same feature, while traces such as for example ed-

itpage seem to implement multiple feature in a row. It
is an open question, how to best model this rhizome of
relations between and among features and traces. We
plan to investigate further studies on this issue.

9. Related Work

The basis of our work is directly related to the field
of dynamic analysis [1], in particular in the context of
reverse engineering[28], visualization of runtime infor-
mation [20] and trace summarization techniques [10, 9].
Furthermore we apply techniques from the research do-
main of signal processing, in particular Dymanic Time
Warping [13, 12].

Keogh et al. have applied Dymanic Time Warping
to Data Mining to detect similar patterns in large data
sets [13, 12]. We exploit this technique in the context of
reverse engineering of dynamic feature behavior to de-
tect similarities between feature traces. This technique
is ideally suited to handling large amounts of data.

Many approaches to dynamic analysis focus on the
problem of tackling the large volume of data. Many
compression and summarization approaches have been
proposed to support the extraction of high level views
to support system comprehension [8, 9, 28]. This re-
search is directly related to our work.

In the context of reverse engineering and system
comprehension, Zaidman and Demeyer [28] propose an
approach to managing trace volume through a heuris-
tical clustering process based on event execution fre-
quency. They use a heuristic that divides a trace into
recurring event clusters. They argue that these recur-
ring event clusters represent interesting starting points
for understanding the dynamic behavior of a system.
Their goal is to obtain an architectural insight into
a program using dynamic analysis. The context of our



Figure 7. The complete feature space of the SmallWiki case study: (left) colored by concept, (bottom right)
highlighting theusageof concept cyanand (top right) highlighting theusageof single feature classes.



work is reverse engineering and system comprehension.
We extend this work by exploiting a range of analysis
techniques from the domain of signal processing.

Among the various approaches to support reverse
engineering that have been proposed in the literature,
graphical representations of software have long been
accepted as comprehension aids [21, 25]. Among the
various approaches to support reverse engineering that
have been proposed in the literature, graphical repre-
sentations of software have long been accepted as com-
prehension aids [21, 18].

Substantial research has been conducted on run-
time information visualization. Various tools and ap-
proaches make use of dynamic (trace-based) informa-
tion such as Program Explorer [17], Jinsight and its
ancestors [20], and Graphtrace [14]. Vion and Drury
[26] use 3D to represent the runtime of objects in
distributed and concurrent systems. De Pauw et al.
present two visualization techniques. In their tool Jin-
sight, they focused on interaction diagrams [20]. Thus
all interactions between objects are visualized. The aim
of Jinsight is to support user to understand, tune and
debug a program. It is useful for performance analy-
sis, memory leak diagnostics and program comprehen-
sion. Reiss [23] developed Jive to visualize the runtime
activity of Java programs. The focus of this tool was
to visually represent runtime activity in real time. The
goal of this work is to support software development ac-
tivities such as debugging and performance optimiza-
tions.

The trace summarization techniques such as that
proposed by Hamou-Lhadj are directly related to our
summarization approach [9]. He describes a trace sum-
marization based on the ideas of text summarization.
He proposes that the trace summarization take an en-
tire trace as input and return a summary of the main
executed events as output. Summarization is based on
selection and generalization techniques of text summa-
rization. We explore the hypotheses outlined in this
work in the context of our SmallWiki case study and
reveal that in this case the nesting levels do not corre-
spond to architectural layers.

A primary contribution of our approach is the abil-
ity to represent entire traces on one screen. Other re-
searchers have addressed this. Jerding et al. propose an
approach to visualizing execution traces as Information
Murals [11]. They define a Execution Mural as a graph-
ical depiction an entire execution trace of the messages
sent during a program’s execution. These murals pro-
vide a global overview of the behavior, They also de-
fine a Pattern Mural which visually represents a sum-
mary of a trace in terms of recurring execution pat-
terns. Both views are interdependent. Our signal views

have the advantage that they reflect the time and se-
quence of dynamic data. Also this metaphor enables us
to to exploit the ready-to-use techniques of signal pro-
cessing.

Pattern detection in dynamic behavior is a research
question that has been addressed by many researchers.
Hamou-Lhadj and Lethbridge describe an algorithm
that extracts patterns in execution traces. They present
a set of matching criteria that the use to decide when
two patterns are considered equivalent [10]. Recent
work of Nagkpurkar and Krintz [19] describe a tech-
nique whereby they characterize the behavior of pro-
grams as phases. These phases represent repeating pat-
terns in the trace. They decompose a program into
fixed-sized intervals of events and combine these ac-
cording to how similar the intervals are.

10. Conclusions and Future Work

We proposed to draw an analogy between dynamic
analysis and signal processing, to make technique from
the field of signal processing available for dynamic anal-
ysis. We described how to transform traces into time
series, and how to apply time plots and Dymanic Time
Warping on execution traces. We showed evidence of
the usefulness of our analogy by visualizing up to two
dozen of feature traces on one screen only, using these
two techniques.

We visualized traces as time plots, and presented
a summarization technique that reduces the length of
the trace signal by 50% to 90% while preserving rel-
evant information. And we employed Dymanic Time
Warping to measure the similarity between trace sig-
nals, and arranged them accordingly on the screen. In
that way, we successfully managed to visualize the com-
plete information about the feature space of an appli-
cation within the bounds of one single screen.

We implemented this visualization in a tool on top of
the Moose reengineering framework [3], using the Ha-
pax tool [15] to perform the Semantic Clustering and
the TraceScraper tool [8] for the dynamic analysis.

Considering SmallWiki as a case study, we made
a set of observations which answered out initial ques-
tions. We recognize that further research in the form
of more case studies is required before we can conclude
that all phenomena observed in this paper are com-
mon to any feature space, but we assume that at least
those presented below hold true for any feature space.

• Using Dymanic Time Warping to measure the sim-
ilarity between trace signals, confirmed that re-
lated features have similar execution traces.



• Decorating the time plots with colors related to
concepts, revealed that architectural layers split
traces into phases.

• Decorating the time plots with both rare concepts
and the usage of “single feature classes”, revealed
that relevant information which might help to dis-
criminate feature traces is restricted to limited
hot-spots.

• On the other hand, over 90% of the a trace’s signal
contain generic content, in particular we observed
a common setup shared by all feature traces.

We plan to further investigate on these promising re-
sults, in particular we plan to automate the detection
of relevant hot-spots in the feature space using pat-
tern matching and data mining algorithms.
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