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Abstract

One of the key challenges of dynamic analysis ap-
proaches is that they imply a huge volume of data, thus
making it difficult to extract high level views. In this pa-
per we describe a novel approach to trace summarization
by visually representing entire traces as signals in time.
Our technique produces a visualization of the complete
feature space of a system that fits on one page. The fo-
cus of our work is to visually represent individual traces
feature behavior. We assume a one-to-one mapping be-
tween features and traces. We apply the approach on a
case study, and discuss how our visualization supports
the reverse engineer to identify patterns in traces of fea-
tures. Moreover, we show how the visual analysis of our
trace signals reveals that assumed one-to-one mappings
between features and traces may be flawed.

Keywords: reverse engineering, dynamic analysis,
trace summarization, features, visualization.

1. Introduction

Reverse engineering usually implies the abstraction
of high level views that represent different aspects of
a software system. Object-oriented systems are diffi-
cult to understand by browsing the source code due to
language features such as inheritance, dynamic bind-
ing and polymorphism. The behavior of the system can
only be completely determined at runtime. The dynam-
ics of the program in terms of object interactions, as-
sociations and collaborations enhance system compre-
hension [11]. Typically dynamic analysis involves in-
strumenting a program under investigation to record
its runtime events. The context of our dynamic anal-
ysis is feature-centric reverse engineering (i.e. we ex-
ercise a system’s features on an instrumented software
system and capture traces of their runtime behavior).

Interpretation of execution traces is difficult due to
their sheer size, thus filtering or compressing the data

is a crucial step in the construction of high level views.
The main challenge of trace summarization is to re-
duce the volume of data without loss of information
that is relevant for a particular analysis goal [9]. The
results of dynamic analysis are often presented as vi-
sualizations for better understanding of programs [7].
Dynamic analysis together with program visualization
may be used in debugging, evaluating and improving
program performance and in understanding program
behavior.

Because of the accuracy and speed with which the
human visual system works, graphic representations
make it possible for large amounts of information to
be displayed in a small space. By making a visual rep-
resentation for the millions of events that make up the
feature traces of an application, quickly discernible re-
lationships and patterns can be obtained.

In this paper, we describe a novel visualization ap-
proach for dynamic analysis that draws an analogy be-
tween execution traces and signals in time. We use the
nesting level to visualize traces as time plots, and pro-
vide a visualization that allows up to two a dozen fea-
ture traces to be displayed simultaneously on a single
screen. We show evidence of the visualization’s useful-
ness and how it supports the reverse engineer to in-
terpret and reason about the dynamic information. In
particular, we address the following reverse engineer-
ing questions:

• How do we fit a visualization of many traces on one
screen?

• Can we detect patterns of activity in the traces?

• Do our traces reveal flaws in our definition of fea-
tures?

We use SmallWiki [5] as an example case study. The
same SmallWiki case study has been analyzed in a pre-
vious work by Greevy et al. with a metrics-based ap-
proach [8]. For this paper we traced a total of 18 fea-
ture traces.



Figure 1. An execution trace as signal, showing on the y-axis the nesting level and along the x-axis the se-
quence of execution; summarized with MonotoneSubsequenceSummarizationusinggap size 0.

Structure of the paper. In Section 2 we draw the analogy
between traces and times series, and visualize trace sig-
nals as time plots. Based on that in Section 3 we intro-
duce a new trace summarization technique. Section 4
dives into the details of a case study, while Section 5
discusses the pros and cons of the time series analogy
and the findings of our analysis. In Section 6 we pro-
vide a brief overview of related work in the fields of dy-
namic analysis, visualization and summarization of ex-
ecution traces and time series related work. Finally we
outline our conclusions in Section 7.

2. Traces are Signals in Time

As any chronological sequence of partially ordered
data points qualifies as a signal, we can draw analogy
between traces and signal processing. This done, we
treat traces as if they were signals in time, which in turn
provides us with a rich toolkit of well-established and
ready-to-use algorithms from the field of signal process-
ing and time series.

A key benefit of treating traces as signals is that
we get time plots for free, as shown in Figure 1. Time
plots are well-known from a broad range of applica-
tions, such as from the field of meteorology or stock
markets. They show the change of a signal over time.

A feature trace is a record of the steps a program
takes during the execution of a feature. We adopt the
definition of a feature as a user-triggerable function-
ality of a software system [6]. In the case of object-
oriented applications, a trace records method calls,
whereas for systems implemented in procedural pro-
gramming languages, it records function calls. In this
paper we adopt the object-oriented terminology: we
consider each execution step as a message sent from
the sender to the receiver, whereupon the receiver ex-
ecutes the method selected by the message.

As a formal definition of a trace, we use a chronolog-
ical sequence T of one or more execution events. The
call hierarchy imposes a tree structure on the sequence,
each event en has zero or more child events, with en+1

as its first child, if any. With this definition, the exe-
cution sequence is equivalent to a depth-first traversal
of the call hierarchy. Further, to equip the events with
a partial order, we define the nesting level Level(en) of
an event en as its depth in the call hierarchy.

Typically, an execution event includes information
about execution time. However, in this paper we omit
execution times and retain only the order of events.
As the rise and fall of the signal is preserved even if
all events are spaced equally apart in time, we can ig-
nore execution time of events without loss of general-
ity. The outline of the signal remains the same inde-
pendent of the interval between its data points. There-
fore the summarization technique we present in Sec-
tion 3 retains its results.

3. How to Summarize Traces

In this section we introduce a trace summariza-
tion technique, which is based on the representation of
traces as time signals. We introduce a technique called
Monotone Subsequence Summarization, which makes
use of the fact that a trace signal is composed of mono-
tone subsequences separated by pointwise discontinu-
ities.

The structure of a trace signal as defined in the pre-
vious section is plain simple: beginning at the starting
node the nesting level either

• increases step by step as each event calls its first
child or

• stays constant as subsequent children of the same
event are called, until

• we reach an event without children, in which
case the nesting level suddenly drops as execu-
tion continues with the latest sibling of the pre-
vious events.

The first two cases are monotonally increasing subse-
quences, whereas the latter is a pointwise continuity.

To summarize a trace signal, we cut the signal at its
pointwise discontinuities into monotone subsequences,
and compress each such subsequence into a summa-
rized event chain. Thus the summarization is consider-
ably shorter than the raw trace signal, see Figure 2, and
consists of method-call-chains instead of single method
calls.

The Monotone Subsequence Summarization cuts a
trace signal between each two consecutive events where
the nesting level does not increase

Level(en) 6 Level(en+1)
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Figure 2. From top to bottom: 1)The outline of a
trace, rotated by one quadrant such that time is
on the X-axis. 2) We remove method names and
retain the nesting level only, each discontinuity
is marked with a dotted line. 3) Each monotone
subsequence iscompressed intoonemethod-call-
chain, saving a considerable amountof space.

into pieces c1 . . . cm and these pieces become the
events of the summarized trace. Furthermore, we de-
fine Level(cn) as the minimal nesting level within the
chain cn.

Using this technique, it is possible to reduce the
length of a trace signal by about 50%. However, we
can further improve this by taking into account that
not each discontinuity has the same gap size: often the
signal drops only by one or two nesting levels, that is
the execution stays close to the current chain of method
calls, whereas other discontinuities span dozens of nest-
ing levels and thus mark a real break in the execu-
tion. Therefore, we allow small gaps within a chain of
method calls and refine the above expression as

Level(en)− Level(en+1) 6 gap size

Using gap size = 3 it is possible to save up to 90%
of the length of a trace signal. In other words even a
trace with ten thousand events will fit on one screen.

4. Case study: SmallWiki

For our experiments with the techniques described
in the previous sections, we chose SmallWiki [13], an
open-source, fully object-oriented and extensible Wiki
framework. A Wiki is a collaborative web application

that allows users to add content, but also allows any-
one to edit content. Thus SmallWiki provides features
to create, edit and manage hypertext pages on the web.

We identify features of SmalWiki by associating fea-
tures with the links and entry forms of the SmallWiki
pages. We make the assumption that each link or but-
ton on a page triggers a distinct feature. We selected
18 distinct user interactions with the SmallWiki ap-
plication and exercised them on an instrumented sys-
tem to capture 18 distinct execution traces. The fea-
tures we chose represent typical user interactions with
the application such as login, editing a page or search-
ing a web site. Then we apply trace summarization as
described in Section 3, and we represent each feature
trace visually as a time plot on one screen.

4.1. Analyzing the time plots of feature
traces

In the following paragraphs we describe how we an-
alyzed the time plots of the SmallWiki feature traces
and reasoned about these views of feature behavior. As
we have access to the developers of SmallWiki, we are
able to check the findings of our signal processing anal-
ysis techniques with them.

Considering Figure 4, we observe a couple of phe-
nomena exhibited by most or all trace signals of this
feature spaces. We recognize that further research in
the form of more case studies is required before we can
conclude that these phenomena are common to any fea-
ture space, but we assume that these observations hold
true for most trace signals.

All features share a common introduction. We observe
that all features start with the same introduction, see
Figure 3 annotation 1. This introduction corresponds
to the time plot of the resolveURL feature. This makes
sense due to the nature of SmallWiki as a web-based
application. Resolving a given URL is the first step to
be performed in order to execute a user-initiated fea-
ture. This phenomenon is most probably common to
any feature space, as most architecture includes some
top layer which does some preprocessing before execut-
ing the actual feature. This observation reveals that the
traces could be further summarized by removing or fac-
toring out the common introduction part of the trace.

Shared parts may include variations. Although the
same introduction is shared by all trace signals, our
analysis reveals variation points. In Figure 4 we see
that the introduction sequences of the features copy-

child, addfolderchild, addpagechild and removechild include
a variation point, that is they contain a distinct se-
quence which is not present in the other traces, see
Figure 3 annotation 2.
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Figure 3. Trace patterns of Figure 4, there is
a shared introduction (1) with slight variations
(2); recurring patterns (3,6) as well as unique se-
quences (4,5,7).

Specific behavior is restricted to small hot-spots. Our
analysis reveals that only a small amount of the over-
all behavior of a feature is specific to one sole fea-
ture (that is characterized as single-feature[8]). This
might be due to the generic nature of the SmallWiki
application. However we expect to observe this in other
case studies as well, since most applications include se-
quences of common set-up and common tear-down en-
closing the actual functionality of a feature. For exam-
ple, as we exercised user-triggerable actions of Small-
Wiki, all involve exercising common functionality to
handle the http request-response dialog of a web ap-
plication. Recent work of de Pauw et al. in detection
in patterns in traces reveals that the actual number of
distinct patterns in execution traces was small. The re-
sults of their work revealed only 10 distinct patterns in
a 40MB trace [3].

Some features are very similar. Our time series repre-
sentation of feature traces as shown in Figure 4 re-
veals which features are closely related (that is they ex-
hibit common patterns of behavior). The features copy-

child, addfolderchild, addpagechild and removechild are all
invoked from the same page in SmallWiki, see Figure 3
annotation 6. We verified our findings with the devel-
opers and they confirmed that these features actually
exercise the same code.

The features comps, props, stylesheets and edittemplate

reveal similar time plots on Figure 4. Once again the
developers confirmed our findings, as all these features
are concerned with look-and-feel aspects of the system.

Not all features are equally similar. Figure 4 reveals that
the features addFolder, addPage are similar. The feature
editPage appears to be similar to the previous two fea-
tures but then exhibits a strong variation, see Figure 3
annotation 7. The similar parts of these features in-

dicate to the reverse engineer that these features may
be conceptually related. The developers confirmed our
findings.

5. Discussion

In this section we discuss some open issues and lim-
itations of the applied techniques and the signal anal-
ogy itself.

On the choice of the nesting level as Y-axis. To repre-
sent traces as signal in time, we plot the nesting level
of the execution events on the Y-axis. Even though this
yields natural looking time plots, such as those famil-
iar from meteorology or stock markets, we have not
yet investigated if the nesting level is the most useful
property to discriminate the differences between fea-
ture traces. Other information such as method names
or arguments may prove to be more useful or better dis-
criminators.

On the one-to-one mapping between features and traces.
For this analysis, we assume a one-to-one mapping be-
tween feature-traces and features. However, the visu-
alization of the feature space revealed that there is no
a one-to-one mapping between features and traces. We
need to consider a feature, not an execution trace, as
the smallest unit of behavior: traces such as, for exam-
ple the set of copychild, addfolderchild, addpagechild and
removechild seem to implement variations of the same
feature, while traces such as for example editpage seem
to implement multiple features in sequence. It is an
open question, how to best model this graph of rela-
tions between and among features and traces. It is by
performing feature analysis in the first place that we
discover such relationships. Thus, obtaining the best
feature definition for an analysis is based on the analy-
sis itself. This clearly suggests an iterative approach to
feature definition based on the findings of feature anal-
ysis. We plan to investigate this more in the future.

6. Related Work

The basis of our work is directly related to the field
of dynamic analysis [1], in particular in the context of
reverse engineering[14], visualization of runtime infor-
mation [2] and trace summarization techniques [10, 9].

Many approaches to dynamic analysis focus on the
problem of tackling the large volume of data. Many
compression and summarization approaches have been
proposed to support the extraction of high level views
to support system comprehension [8, 9, 14]. This re-
search is directly related to our work.

In the context of reverse engineering and system
comprehension, Zaidman and Demeyer [14] propose an



Figure 4.The complete feature spaceof theSmallWiki case studyononepage.

approach to managing trace volume through a heuris-
tical clustering process based on event execution fre-
quency. They use a heuristic that divides a trace into
recurring event clusters. They argue that these recur-
ring event clusters represent interesting starting points
for understanding the dynamic behavior of a system.
Their goal is to obtain an architectural insight into
a program using dynamic analysis. The context of our
work is reverse engineering and system comprehension.
We extend this work by exploiting a range of analysis
techniques from the domain of signal processing.

The trace summarization techniques such as that
proposed by Hamou-Lhadj are directly related to our
summarization approach [9]. He describes a trace sum-
marization based on the ideas of text summarization
and proposes that the trace summarization take an en-
tire trace as input and return a summary of the main
executed events as output. Summarization is based on
selection and generalization techniques of text summa-
rization.

A primary contribution of our approach is the abil-
ity to represent entire traces on one screen. Other re-
searchers have addressed this. Jerding et al. propose an
approach to visualizing execution traces as Information
Murals [11]. They define a Execution Mural as a graph-
ical depiction an entire execution trace of the messages
sent during a program’s execution. These murals pro-
vide a global overview of the behavior, They also de-
fine a Pattern Mural which visually represents a sum-
mary of a trace in terms of recurring execution pat-

terns. Both views are interdependent. Our signal views
have the advantage that they reflect the time and se-
quence of dynamic data.

Pattern detection in dynamic behavior is a research
question that has been addressed by many researchers.
Hamou-Lhadj and Lethbridge describe an algorithm
that extracts patterns in execution traces. They present
a set of matching criteria that the use to decide when
two patterns are considered equivalent [10]. De Pauw
et al. apply pattern extraction algorithms to detect re-
curring exection behavior in traces [3]. Recent work
of Nagkpurkar and Krintz [12] describe a technique
whereby they characterize the behavior of programs as
phases. These phases represent repeating patterns in
the trace. They decompose a program into fixed-sized
intervals of events and combine these according to how
similar the intervals are.

7. Conclusions and Future Work

In this paper we drew an analogy between dynamic
analysis and signal processing and we described how to
transform traces into time series. We visualized traces
as time plots, and presented a summarization technique
that reduces the length of the trace signal by 50% to
90%, while preserving information relevant to our re-
search goals.

We implemented our signal visualization in Dy-
naMoose, a dynamic analysis tool integrated with the
Moose reengineering framework [4]. Using time plot vi-



sualization and Monotone Subsequence Summarization
we have been able to fit the complete visualization of
18 traces containing over 200’000 events on one sin-
gle screen. Furthermore, due to the capacity of the hu-
man visual system in detecting pattern, this visualiza-
tion made possible to discern patterns both within and
between the traces that would other have been obfus-
cated by the vast amount of raw data. We plan to fur-
ther investigate on these promising results, using pat-
tern matching and data mining algorithms.

Analysis of our SmallWiki case study reveals pat-
terns in traces. We recognize that further research in
the form of more case studies is required before we
can conclude that all phenomena observed in this pa-
per are common to any feature space. However we as-
sume that at least some of the observed patterns are
generalizable on most case studies. In our case study,
we observed that all traces share a common introduc-
tion sequence, which however shows slight variations in
some traces. Also we observed that there are large se-
quences shared by multiple traces, and that there are
very few patterns which occur in one sole trace only.

This leads us to our initial question whether our
definition of features is flawed, and in fact, a many-to-
many relationship between traces and features is much
more probable than a simple one-to-one relationship.
For example in our case study, traces such as copychild,
addfolderchild, addpagechild and removechild seem to im-
plement variations of the same feature, while traces
such as for example editpage seem to implement multi-
ple features in sequence. It is an open question, how to
best model this graph of relations between and among
features and traces. We plan to investigate this more
in the future.
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