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Abstract. To quickly localize defects, we want our attention to be focussed on
relevant failing tests. We propose to improve defect localization by exploiting
dependencies between tests, using a JUNIT extension called JEXAMPLE. In a
case study, a monolithic white-box test suite for a complex algorithm is refac-
tored into two traditional JUNIT style tests and to JEXAMPLE. Of the three refac-
torings, JEXAMPLE reports five times fewer defect locations and slightly better
performance (-8-12%), while having similar maintenance characteristics. Com-
pared to the original implementation, JEXAMPLE greatly improves maintainabil-
ity due the improved factorization following the accepted test quality guidelines.
As such, JEXAMPLE combines the benefits of test chains with test quality aspects
of JUNIT style testing.

1 Introduction

A well-designed test suite should exhibit high coverage to improve our chances of iden-
tifying any defects. When tests fail, we want to quickly localize defects, so we want our
attention to be focussed on the relevant failing tests to identify the root cause of the de-
fect. However, when some part of the base-code gets changed, a small defect can cause
a domino effect of multiple failing unit tests. This is a problem, because the person
changing the code has no other option than to browse all failing unit tests to try and
deduce a single root cause. This task can prove to be quite difficult when that person is
unfamiliar with the test code that fails.

Dependencies between unit tests, the cause of this domino effect, have generated
considerable controversy [6,12,4]. Common wisdom states that defect localization is
improved by avoiding dependencies between tests, yet empirical evidence shows that
latent dependencies exist anyway even in well-designed test suites [9]. This suggests
that, despite the guidelines, dependencies between tests are inevitable.

In this paper we propose to improve defect localization by making dependencies
between tests explicit. For example, a developer can declare that a testRemove test
depends on the successful outcome of a testAdd test. Based on these depedencies,
a testing framework can automatically determine a suitable order to run the tests, and
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to skip tests that depend on other failed tests. This setup prevents the domino effect of
failing tests. We test this hypothesis by means of a case study in which we compare four
implementations of the same test suite: a JEXAMPLE-based implementation and three
alternative JUNIT-based implementations.

The contributions of this paper can be summarized as:

– We propose explicit test dependencies as solution for the domino effect in defect
localization (e.g. in Chained tests),

– We introduce JEXAMPLE, an extension of JUNIT that uses annotations to declare
explicit dependencies between test methods,

– We present empirical evidence that JEXAMPLE provides five times better defect
localization than traditional JUNIT, without considerable degradation in perfor-
mance, code size or duplication.

The remainder of the paper is structured as follows: after related work in Section 2,
Section 3 introduces JEXAMPLE, illustrating the difference between chained test meth-
ods and conventional JUNIT test methods. Section 4 covers the case study, with
Section 5 discussing the results and stating some concluding remarks.

2 Related Work

Many authors have been studying techniques to prioritize test cases, selectively execute
regression tests or reduce test suites.

Kung et al. discuss a cost-effective selective regression testing approach after
changes in an object-oriented program, by (i) determining the set of affected classes
and (ii) prioritizing the testing of classes to minimize test stub construction [10]. A sim-
ilar approach is followed by Wong et al., first applying a modification-based selection
technique followed by test set minimization (minimal selection preserving a coverage
criterion) and prioritization (increasing cost per additional coverage) [19].

Rothermel et al. propose several techniques for prioritizing test cases with the goal
of improving the rate of fault detection. Coverage and fault-detection ability, in various
forms, are used to determine the test cases execution order [14]. Results show that
all techniques improve the rate of fault detection compared to the standard, randomly
ordered suite.

Stoerzer et al. automatically classify changes depending on the likelihood that they
contribute to a test’s failure [16], by monitoring test execution and addressing the local
change history in Eclipse.

Gaelli et al. infer a partial order of unit tests corresponding to the coverage hierarchy
of their sets of covered method signatures [8]. Their work shows that most tests either
cover a superset of another test method’s coverage or cover themselves a subset of
another test, concluding that most tests implicitly depend on other tests. In case of test
case failures, the developer is guided to tests which were found to be smallest in a
previously stored hierarchy of a successful test run. In our a priori approach, letting
developers explicitly link tests, we do not need a green running suite in the first place.

There exists a consensus about the following quality aspects of test code. When sup-
porting fast and frequent code-test cycles, not only should a test run take minimal time
[15,5], but detected defects should be communicated to the developer in an informative
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manner [6]. This implies that the link between the test error and the responsible unit
under test is made explicit. In an evolving system, test code needs to be understood,
reviewed and extended by team members. Moreover, knowing that (refactoring) op-
erations to the production system potentially invalidate the corresponding tests, a test
suite’s code should be easy to understand and change [17]. As test code is typically not
verified beyond reviewing (at 150 to 200 lines of code per hour [2]), tests are advised to
be short and simple. Test smells are described as maintenance prone constructs that are
specific for software test code [4,12], in addition to regular deficiencies such as code
duplication. As such, they are to be avoided.

Dependencies between unit tests have generated considerable controversy [4,6,12].
As a motivating example to illustrate a test dependency, consider the test code in List-
ing 1: the unit under test is a simple Stack class, for which two test methods are
given, testPush and testPop, both implemented to run independently of each
other. However, as each of the two test methods must cover Stack’s push method
(there is no pop without push), an implicit dependency between testPop and
testPush is introduced: whenever testPush fails, testPop is likely to fail as
well.

Listing 1. Implicit dependency between test methods

public class StackTest {
private Stack stack;

@Before
public void setup() {

stack = new Stack();
}

@Test
public void testPush() {

stack.push("Foo");
assertEquals(false, stack.isEmpty());
assertEquals("Foo", stack.top());

}

@Test
public void testPop() {

stack.push("Foo");
Object top = stack.pop();
assertEquals(true, stack.isEmpty());
assertEquals("Foo", top);

}
}

On one side of the controversy, detractors consider dependencies to be a form of
“bad smell” in testing code. Van Deursen et al. use the term Eager Test to refer to a test
method checking several methods of the object to be tested [4]. They say that depen-
dencies between the enclosed tests make such tests harder to understand and maintain.
Van Rompaey et al. provide empirical evidence to support this claim [18]. Fewster and
Graham state that the efficiency benefit of long tests (where setup and tear-down is
only performed once) is far outweighed by the inefficiency of identifying the single
point of failure [6]. The xUnit family of testing frameworks, as exemplified by JUNIT,
advises its users to avoid dependencies between tests. Test methods are supposed to be
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independent artifacts, sharing at most a (re-initialized) fixture constituting the unit under
test. Meszaros uses the term ChainedTests to point to this test design [12], motivating
that it may be a valid strategy for overly long, incremental tests. On the down side, the
implicit fixture initialized by previous tests may impede the understandability of a sin-
gle test. On the supporting side of test dependencies, we find testing frameworks such
as TESTNG that provide support to define explicit dependencies between test methods
and or test cases [3].

3 JExample in a Nutshell

In order to facilitate chained tests, JEXAMPLE extends JUNIT as follows: (i) test meth-
ods may return values; (ii) test methods may take arguments; and (iii) test methods may
declare dependencies.

When using JEXAMPLE there is no need for fixtures or setup methods. Any test
method M0 may be used as a setup method, using its return value x as the fixture for
its dependents. That is, JEXAMPLE takes the return value x of M0 and passes it on as
an argument to all methods that depend on M0. Chained tests are related to the idea
of example-driven testing, which states that fixture instances are valuable objects, and
hence, to be reused and treated first-order first order by a testing framework [7].

When executing a standard JUnit test case (e.g., Listing 1), the JUNIT framework
executes setup before each test method, using a field to pass the fixture instance from
setup to test methods. Considering this, we may say that setup creates an example
instance, and that all other tests depend on this instance. Hence, we promote setup to
become a test method with return value:

Listing 2. Promote fixture to test with return value

@Test
public Stack testEmpty() {

Stack empty = new Stack();
assertTrue(empty.isEmpty());
assertEquals(null, empty.top()));
return empty;

}

Note the assertions in the method body. As setup is now a proper test method we
may even test the fixture before passing it on. Next, we rewrite testPush to depend
on the result of setup using a @Depends annotation as follows:

Listing 3. Take another test’s result as input value

@Test
@Depends("testEmpty")
public Stack testPush(Stack stack) {

stack.push("Foo");
assertFalse(empty.isEmpty());
assert("Foo", empty.top());
return stack;

}
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When executing the test in Listing 3, the JEXAMPLE framework will first call setup
in order to fetch its return value and then pass the return value as an argument to
testPush. As this method might possible modify its argument, we must either clone
the example instance before passing it on or call setup twice. The current implemen-
tation of JEXAMPLE does the former (of course only if setup succeeds, otherwise all
dependents of setup are skipped anyway).

Next, we readdress Listing 1 to find deeper levels of dependencies, turning the test
case into a graph of chained test methods. And indeed, there is a test method that im-
plicitly depends upon testPush’s outcome: testPop cannot be exercised without
pushing some element first. Hence we implement testPop as follows, avoiding the
duplicate call to push by depending on testPush’s return value:

Listing 4. Avoid code duplication using dependencies

@Test
@Depends("testPush")
public Stack testPop(Stack stack) {

Object top = stack.pop();
assertEquals(true, empty.isEmpty());
assertEquals("Foo", top);
return stack;

}

Given a defect in Stack’s push method, the pop test is ignored by JEXAMPLE,
thereby pointing precisely to the defect location.

4 Case Study

In this section we report on a case study that compares four different implementations
of the same unit test suite. The goal is to check how Chained tests improve defect
localization, and how JEXAMPLE promotes quality criteria related to performance, size
and code duplication.

The (pre-existing) JUnit test suite under study exercises an implementation of the
Ullmann subgraph isomorphism algorithm — i.e., an algorithm to compare the struc-
ture of graphs. This set of rigorous, white box tests was written to verify the core of a
research tool as well as the interaction with a third party graph library.

Ullman Original is the original implementation of the case-study. Figure 1 illustrates
how the test suite is implemented as a single test case consisting of six very long test
methods. The test methods concentrate on a growing unit under test and are hence
implemented as an alternating series of initialization and assertion code, entangling
fixture and test code.

We refactored this original test suite implementation to three alternatives (i) best
practice JUNIT tests; (ii) JUNIT using test case inheritance; and (iii) Chained tests using
JEXAMPLE. The goal of this refactoring was to obtain equivalent implementations of
the same test suite using different test design styles.

The Ullmann JUnit-style (UJ) implementation follows the original JUnit test guide-
lines as described by Beck and Gamma [1]. Tests on the same unit under test are
grouped together, by sharing fixture objects and a setup method. To apply this style
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UO = original tests

UJ = traditional JUnit implementation UR = testcase reuse, ie subclassing

UC = chained JExample implementation

Fig. 1. Polymetric view of the four alternative test suite implementations: The innermost boxes
represent test methods (including setup methods); the height of the boxes shows the method’s
LOC (lines of code) metric; edges show test dependencies. The enclosing boxes represent test
cases; edges show test case inheritance.

to the Ullmann case-study, the original test suite is split into eight test cases that each
focuses on a different snapshot of the growing unit under test.

The Ullman test case Reuse (UR) implementation relies on test case subclassing to
build a set of chained yet isolated test cases. This implementation uses a specific sub-
classing pattern, turning each iterative initialization step of the original test into a sub-
class that calls super.setUp() in its setup method to reuse previous initialization
code. As such, test dependencies are specified by the test case inheritance hierarchy.

Ullmann Chained JExample-Style (UC), finally, introduces explicit dependencies us-
ing JEXAMPLE. Mirroring the iterative initialization code of the original test methods,
and using the dependency mechanism presented in Section 3, a root test method creates
an example instance of an empty graph object, and passes the instance on to dependent
methods. The dependent methods extend the example instance a bit, check some asser-
tions, and eventually pass the instance on to another level of dependent instances, and
so on. Dependencies between methods are declared by the developer using @Depend
annotations, whereas passing on a method’s return values to its dependents is done by
the framework while running the test suite.

Figure 1 presents the test design of the four implementations using polymetric views
[11]. The innermost boxes represent test methods (including setup methods). The height
of these boxes show the method’s SLOC (source lines of code) metric, while edges
show test dependencies. The enclosing boxes represent test cases; edges show test case
inheritance.

4.1 Evaluation Procedure

To evaluate defect localization, we measure the number of reported test case failures
after randomly introducing defects in the system’s code with a mutation testing tool
(Jester [13]). Using the explicit dependencies between tests, JEXAMPLE ignores tests
that depend on a failed test. As such, we expect the UC implementation to report fewer
failures than the other three implementations.
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Besides defect localization, we select test suite run-time performance, test size and
code duplication from the set of common test quality criteria. To quantify the adherence
to these criteria, we use the following set of metrics:

– Performance. We measure the execution time of each implementation. To measure
execution of test suites with failures, we use the created mutations.

– Size. We calculate the overall size (source lines of code) of the test suite as well as
the number and size of test methods. While the former tells us something about the
code base as a whole that needs to be maintained, the latter identifies how well the
test suite is factorized.

– Duplication. We measure the amount of duplication1 in each implementation as a
result of the presence or absence of reuse possibilitities.

For comparison reasons, we control a couple of test suite equality factors. First, we
ensured that all four implementations exhibit the same coverage, being 96.9% (Java)
instruction coverage (measured using Emma2). Secondly, we aimed to keep the same
number of assertions. Ultimately, slight differences appeared (between 81 and 85 as-
serts) due to varying reuse opportunities.

4.2 Results

Defect localization. In order to quantify the traceability quality of the four implemen-
tations, we created eight scenarios, named MUT1-MUT8, where a single mutation in
the Ullmann code causes the tests to fail. Jester changes constants in the code and adds
clauses in boolean conditions to test the defect detection strength of a test suite. For
each mutation scenario, we then measure the number of failures JUnit reports. Know-
ing that only one mutation has been introduced at a single location, ideally only a single
failure should be reported.

Table 1. Number of failures: absolute number/ig-
nored tests (relative number)

UO UJ UR UC
MUT1 4 (66%) 12 (46%) 14 (52%) 2/12 (6%)
MUT2 2 (33%) 2 (8%) 2 (7%) 2/0 (4%)
MUT3 1 (17%) 10 (38%) 9 (37%) 1/12 (3%)
MUT4 1 (17%) 1 (4%) 1 (4%) 1/0 (3%)
MUT5 1 (17%) 10 (38%) 9 (37%) 1/12 (3%)
MUT6 1 (17%) 1 (4%) 1 (4%) 1/1 (3%)
MUT7 1 (17%) 10 (38%) 9 (37%) 1/12 (3%)
MUT8 4 (66%) 11 (42%) 9 (37%) 2/14 (4%)

Table 2. Average execution time (in
seconds) of 30 test runs

UO UJ UR UC
SUCC 0.512 0.600 0.747 0.554
MUT1 0.506 0.603 0.753 0.539
MUT2 0.516 0.609 0.753 0.554
MUT3 0.500 0.597 0.748 0.534
MUT4 0.516 0.600 0.751 0.556
MUT5 0.499 0.594 0.752 0.533
MUT6 0.513 0.610 0.747 0.547
MUT7 0.502 0.600 0.755 0.537
MUT8 0.515 0.613 0.754 0.546

Table 1 presents the failures reported during test runs on the mutated Ullmann code
in absolute numbers as well as a percentage of the number of tests. For UC, we add
the number of tests ignored by JEXAMPLE. The results show that for a single mutation,

1 Using CCFinderX — http://www.ccfinder.net
2 http://emma.sourceforge.net
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typically multiple tests fail. In the case of the original implementation, the number of
failures varies between 1 and 4 (out of 6 test methods). For UJ and UR however, up
to 14 tests fail as a result of the factorization of test methods. Due to the ordered test
execution of the UC implementation, at most 2 tests fail during a test run, while up to
14 are skipped. Overall, test runs on the UJ and UR implementations report five times
more defect locations than the JEXAMPLE tests. The original implementation, however,
only reports about 36% more defect locations.

Performance. Table 2 lists the average execution time for the four test suite implementa-
tions, and for 5 scenarios. In the first scenario called SUCC(ESS), we execute the tests
on the original Ullmann implementation. In the four cases we reuse the mutations of
Ullmann created earlier. The results are collected as the average execution time of 30
test runs, measured with the UNIX time command on an Intel Pentium 4, 3 Ghz, 1 Gb
Ram, Sun JDK 1.6.0, JUnit 4.3.1.

For the successful test run on the original implementation of the Ullmann algorithm,
we observe that the original test suite implementation has the fastest average, followed
by UC, UJ and UR. We apply Student’s t-test to verify whether there exists a signifi-
cant difference between the test execution time sample sets. As a result, we can indeed
conclude — with a confidence of 95% — that UC is 7-8% slower than UO, yet 8-12%
faster than UJ and 35-41% faster than the UR approach. The results do only indicate sig-
nificant performance increases – compared to the SUCCESS scenario – for mutations
where 12 to 14 tests are skipped in the UC implementation.

Size. The original Ullmann test implementation, lacking any form of encapsulation for
individual tests or set-up, is the most concise one. As a consequence, the UJ and UC
implementations are 77% and 87% larger. UR is even 2.4 times as large.

Due to explicit set-ups and fixtures for the multiple test cases the original Ullmann
test case (NOTC — number of test cases) has been refactored into, and the method
header code for many test commands, the alternative implementations are better fac-
tored, as Table 3 shows. The average test method length has dropped from close to 40 to
around 10, while the number of assertions per test method decreased from 14 to below 4.

Duplication. To evaluate the level of code duplication, we used CCFinderX to calculate
and report code clones. Table 4 summarizes the results. The original implementation
contains the least duplication, with 266 tokens (out of 3446) involved in any code clone.
The alternative implementations contain between 4200 and 4500 tokens, 13 to 22% of

Table 3. Size of the four implementations ex-
pressed in Source Lines Of Code (SLOC),
Number Of Test Cases (NOTC), Number Of
Test Setups (NOTS) and Number Of Test
Methods (NOTM)

UO UJ UR UC
SLOC 311 551 735 582
NOTC 1 8 26 4
NOTS 1 8 25 0
NOTM 6 52 54 34

Table 4. Code clone results, configured with a
minimum clone token size of 50, soft shaper
and p-match in CCFinderX

#tokens % tokens
UO 266 7.7%
UJ 597 13%
UR 938 22%
UC 780 18%
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which is listed in code clones. UC contains about 5% more code covered by clones
than UJ.

5 Discussion and Conclusion

In this paper we introduced the idea of making dependencies between tests explicit
to improve defect localization. We proposed JEXAMPLE, an extension of JUNIT that
allows the tester to annotate test methods with its dependencies. In a case study, JEX-
AMPLE is compared to more traditional JUNIT-style tests.

The case study showed that compared to alternative test suite implementations, JEX-
AMPLE tests indeed exhibit an improved defect localization. Moreover, such test suites
execute faster and contain less code than traditional JUNIT tests. Compared to a test
design style consisting of monolithic test methods entailing long chains of tests, JEX-
AMPLE tests run somewhat slower and contain some more source code, but rely upon
good unit testing practices of encapsulated, concise test methods to ensure maintain-
ability. JEXAMPLE thus combines the best of both worlds: it exhibits the benefits of test
chains with the test quality aspects of JUNIT style testing.

There exist a couple of open challenges to consider regarding maintenance of chained
tests. First, the dependencies between tests have to be indicated by the developers. For-
getting to do so, or introducing wrong dependencies leads to potentially more failures
for a single defect. In the future, automated support to track such dependencies might
alleviate this effort. Secondly, with JEXAMPLE, the concepts of a fixture and a set-up
become implicit, rendering their identification harder.

Being an extension of JUNIT, JEXAMPLE tests can co-exist with regular tests.
Moreover, the migration process merely consists in adding dependency and parameter-
passing annotations, as well as cloning the passed-on objects. Our evaluation showed
that JEXAMPLE-style tests are especially useful for expressing long test chains as well
as for unit tests with obvious dependencies in test suites.

Reproducible Results Statement: A prototype of JEXAMPLE, as well as all four sce-
narios of the case-study are available for download at: http://scg.unibe.ch/
Resources/JExample
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