On Recommending Meaningful Names in Source and UML

Adrian Kuhn

Software Composition Group
University of Bern, Switzerland

http://scg.unibe.ch/akuhn

ABSTRACT

Meaningful method names are crucial for the readability and
maintainability of software. Existing naming conventions
focus on syntactic details, leaving programmers with little or
no support in choosing meaningful (domain) names. In this
paper we propose to build a recommendation system that
supports software developers and software architects when
naming identifiers in source code as well as when naming
elements in UML diagrams. We discuss related work, outline
the design of such a recommendation system and discuss
possible evaluation strategies.

1. INTRODUCTION

Recommendations systems support software developers in
their work. For a survey of the current state of the art in rec-
ommendation systems, please refer to Happel and Maalej [3].
In the survey, they found that existing approaches focus on
“you might like what similar developers like” scenarios. How-
ever, they found that structured artifacts and semantically
well-defined development activities bear large potentials for
further recommendation scenarios.

In this paper we propose to build a recommendation sys-
tem that supports software developers and software archi-
tects when naming identifiers in source code as well as when
naming elements in UML diagrams. By the taxonomy of
Happel et al. this corresponds to proposing development
information about code and artifacts (i.e. UML diagrams
and other design documents that might require support for
naming). Sharing of the naming information happens proac-
tively as source code and design documents are published.
Suggesting names based on existing names would be useful
to increases the readability and comprehension of software
systems and thus their maintenance and reuse.

In fact we might consider the naming of elements in source
code as a folksonomy of user-generated content. In a folk-
sonomy elements are labeled by users with tags that do not
necessarily form a complete taxonomy, both formal and in-
formal description are mixed. For example, the set of names

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

RSSE’10, May 4, 2010, Cape Town, South Africa.

Copyright © 2010 ACM 978-1-60558-974-9 /10/05...$10.00.

50

of all variables with a given type can be considered as tags
that describe the type: instances of the Node class might be
called tree and node but also temp or reply.

In the remainder of this paper we present related work,
outline the design of a naming recommendation system and
discuss possible evaluation strategies.

2. RECOMMENDATIONS SYSTEM

In this section we discuss related work and outline the pos-
sible components of a recommendation system that suggests
names for source code as well as UML diagrams.

Hgst et al. present the “programmer’s phrase book”, a
recommendation system that is trained with the correlation
between method names and method bodies [5]. They train
a machine learning system with the gramatical structure of
method names plus 12 metrics that are extracted from the
byte code of the methods bodies. The gramatical structure
of method names is modeled by a tree that contains nodes,
such as e.g. get-noun or find-adjective-noun. The approach
is fully automatic and requires no human intervention.

They trained the programmer’s phrase book on 100 open
source projects (written in Java) and used it as a case study
to find methods that do not fit the trained system, to which
they refer as naming bugs. They found a rate of 0-3% nam-
ing bugs, depending on the project, i.e. their system recom-
mends the right name for 97% of all methods.

The programmer’s phrase book is limited in at least two
ways. First, it may only recommend the structure of method
names (including some common verbs and adjectives) but
not the right noun for specific domain terms. Second, it may
not recommend names when no method body is available,
as is e.g. the case when architects are about to design the
UML diagrams of a future software system.

Hummel et al. present a recommendation system for the
naming of UML elements [7]. The system is part of the
CodeConjurer tool which uses their Merobase code search
engine. Their system recommends the possibly missing meth-
ods and attributes during the design of UML diagrams.
Whenever the architect adds, removes or changes an element
of the UML diagram, an automatically composed search
query is sent proactively to the Merobase search engine and
the results are used to suggest the names for missing ele-
ments to the UML designer.

Their system thus goes beyond the second limitation of
Hgst’s phrase book, that is, it can recommend names in
the absence of source code and method bodies; it is however
limited to the recommendation of entire names since method
names are not broken up into their gramatical parts.

Both above systems are limited by their global reach, i.e.
they do not take into account the domain of the local soft-
ware system, and they do not consider the lexical context of
a method’s location in the source code.

Holmes presents Strathcona, a proactive recommendation
system for source code examples [6]. He uses the structural
context of the current source location to recommend exam-
ples. His prototype recommends full-text examples. How-
ever the same kind of context matching could be used to
improve the results of a naming recommendation system.

In previous work we proposed log likelihood-ratio as an ap-
proach to compare the naming of software components [8].
We applied log likelihood-ratio to retrieve labels that de-
scribe software components, but also to compare two or
more software components and to compare two versions of
the same component. The same approach could be used to
sort the results of a naming recommendation system by their
likelihood with regard to the local context.

Latent semantic indexing (LSI) is used in information re-
trieval to reduce synonymy and polysemy in large text cor-
pora [2]. Latent semantic indexing applies singular-value
decomposition, a kind of eigenvalue factorization, on the
term-document matrix of a text corpus. It has been applied
in software engineering to recover traceability links, detect
high-level clones, to measure coupling and cohesion, and to
cluster software for reverse engineering (see Poshyvanyk and
Marcus for a better coverage of related work [10]). Latent
semantic indexing could be used to improve the results of a
naming recommendation by offering the user to choose from
synonymous names, but also by suggesting to replace two or
more similar terms with one common name.

Hill et al. proposed to extract natural language phrases
from source code [4]. They categorize these phrases into
a hierarchy and use them to provide users with context-
specific search results, however the same approach might
be to improve naming recommendations with the current
context. In fact, any code search approach might possibly
be turned into a proactive background search that can be
used to recommend names during development.

3. EVALUATION

In this section we discuss possible evaluation strategies
of recommendations systems that recommend names. The
evaluation of naming recommendations is limited by the
subjective nature of naming. Naming conventions typically
cover syntactic details only (which can be checked and mea-
sured mechanically) but do not provide an objective mea-
sured for the correct choice of domain terms.

It has been suggested to evaluate recommendations sys-
tems by replaying recorded IDE sessions [11], or by querying
the code base for pairs of questions and answers [1]. For ex-
ample, for each name in the source code we could extract a
query with its type and context (but not its name) and then
expect the name as correct answer. This evaluation can be
fully automated and is useful to compare different recom-
mendation algorithms, however it does not tell us about the
user experience of the recommendation tool and thus not
about its possible acceptance by industry and developers.

Similar limitations apply to qualitative approaches that
manually evaluate the result of applying the tool to some
selected tasks, see Bruch et al. [1] for a discussion.

In recent years, controlled experiments have become pop-
ular in computer science. Controlled experiments have been

51

developed in social science as a formal tool to study the be-
havior of humans in a controlled setting. Their usefulness
in computer science has been questioned as an “academic
exercise” [12] for good reason. Software development is a
complex activity and it is hard to identify and control all
parameters that are not to be studied. Even if the study is
performed with all scientific rigor, the obtained results are
often not generalizable to an industry setting. Please refer
to Segal for a full discussion [12].

User studies, on the other hand, are “informal” studies of
the user experience that are run to learn about the reactions
of users [9]. They are typically used as feedback for further
iteration of the tool and to assess the usefulness of its ap-
plication in industry. Hence, user studies seem like a good
start to evaluate a naming recommendation systems. Unfor-
tunately, it is not the type of study that is typically valued in
academic software engineering research. According to An-
drew Ko, the field still believes, for the most part, that the
only study you can trust is a controlled experiments. In a
recent interview', he thus called for more acceptance of user
studies in software engineering research.

Acknowledgments.

We thank Nikolaus Schwarz for his corrections and feedback on
this paper. We gratefully acknowledge the financial support of
the Swiss National Science Foundation for the project “Bringing
Models Closer to Code” (SNF Project No. 200020-121594, Oct.
2008 — Sept. 2010).

4['1] &%EEBTEg}ggr,Sand M. Mezini. On evaluating

recommender systems for api usages. In RSSE’08, pages
1620, 2008. ACM.

[2] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W.
Furnas, and R. A. Harshman. Indexing by latent semantic
analysis. Journal of the American Society of Information
Science, 41(6):391-407, 1990.

[3] H. J. Happel and W. Maalej. Potentials and challenges of
recommendation systems for software development. In
RSSE 08, pages 11-15, 2008. ACM.

[4] E. Hill, L. Pollock, and K. V. Shanker. Automatically
capturing source code context of nl-queries for software
maintenance and reuse. In ICSE 09, pages 232—242, 2009.
IEEE.

[5] E. W. Hoest and B. M. OEstvold. Debugging method
names. In ECOOP’09, LNCS, page 0-0. Springer, 2009.

[6] R. Holmes. Approximate structural context matching: An
approach to recommend relevant examples. IEEE
Transaction Software Engineering, 32(12):952-970, 2006.

[7] O. Hummel, W. Janjic, and C. Atkinson. Code conjurer:
Pulling reusable software out of thin air. IEE Software,
25(5):45-52, 2008.

[8] A. Kuhn. Automatic labeling of software components and
their evolution using log-likelihood ratio of word frequencies
in source code. In MSR 09, pages 175-178. IEEE, 2009.

[9] F. Nielson and H. R. Nielsen. From CML to process

algebra. In CONCUR ’93, volume 715 of LNCS, pages

493-508. Springer-Verlag, 1993.

D. Poshyvanyk and A. Marcus. Combining formal concept

analysis with information retrieval for concept location in

source code. In ICPC ’07, pages 37-48, 2007. IEEE.

R. Robbes. On the evaluation of recommender systems with

recorded interactions. In SUITE ’09, pages 45—48, 2009.

J. Segal. The nature of evidence in empirical software

engineering. In STEP 0, pages 40-47, Washington, DC,

USA, 2003. IEEE.

"http://andyjko.com/2009/09/29/
emerson-murphy-hll-interviews-me-part-1

(10]

(11]

(12]

