
Understanding software evolution using
a combination of software visualization
and software metrics

Michele Lanza — Stéphane Ducasse

Software Composition Group
University of Berne, Switzerland
lanza@iam.unibe.ch, ducasse@iam.unibe.ch

ABSTRACT. Coping with huge amounts of data is one of the major problems in the context of
software evolution. Current approaches reduce this complexity by filtering out irrelevant infor-
mation. In this paper we propose an approach based on a combination of software visualization
and software metrics, as software visualization is apt for complexity reduction and metrics in-
troduce the possibility to qualify evolution. We discuss a simple and effective way to visualize
the evolution of software systems which helps to recover the evolution of object oriented soft-
ware systems. In addition we define a vocabulary that qualifies some specific situations that
occurs when considering system evolution.

RÉSUMÉ. Analyser un très grand volume de données est un des problèmes majeurs lors de la
compréhension de l’évolution de logiciels. Les approches existantes réduisent cette complexité
en filtrant les informations non pertinentes. Dans cet article nous proposons une approche ba-
sée sur la combinaison de métriques et de visualisation, la visualisation permettant une ré-
duction d’information et les métriques permettant une qualification de l’évolution. Ainsi nous
présentons une matrice d’évolution : une visualisation simple et efficace qui aide à comprendre
l’évolution des applications orientées objets. En plus, nous définissons un vocabulaire permet-
tant de qualifier les situations caractéristiques rencontrées.

KEYWORDS: Evolution, Software Visualization, Software Metrics, Patterns, Reverse Engineering.

MOTS-CLÉS : évolution, visualisation de programmes, métriques du logiciel, patterns, rétrocon-
ception.

L’objet – 8/2002. LMO’2002, pages 135 à 149



136 L’objet – 8/2002. LMO’2002

1. Introduction

Coping with huge amounts of data is one of the major problems of software evolu-
tion research, as several versions of the same software must be analyzed in parallel. A
technique which can be used to reduce this complexity is software visualization, as a
good visual display allows the human brain to study multiple aspects of complex prob-
lems in parallel. Another useful approach when dealing with large amounts of data
are software metrics. Metrics can help to assess the complexity of software and to dis-
cover software artifacts with unusual measurements. In this paper we present a visual
technique called evolution matrix [LAN 01] that combines software visualization and
software metrics. It allows for a quick understanding of the evolution of classes within
software systems. Moreover the evolution matrix acts as a revealer of certain specific
situations that occur during system evolution such as pulsating classes that grow and
shrink during the lifetime of the system. We define a simple vocabulary to describe
such specific behaviors. The intention is to build a vocabulary for software evolution.
Note that even if the results we present are obtained on software systems written in
Smalltalk, the approach presented here does not depend on a particular programming
language, as our underlying metamodel is language-independent [DUC 00, DEM 01].
The paper is structured as follows: in the next section we present our visualization
technique and, based on that, a categorization of classes. Afterwards we apply and
discuss our approach on some case studies. We then discuss shortly CodeCrawler and
Moose, the tools written by us. We conclude the paper by discussing the benefits and
limits of our approach, as well as related work. Finally, we give an outlook on our
future work in this area.

2. Combining metrics and software visualization

In this section we present our visualization technique called evolution matrix first
presented in [LAN 01]. We want to stress that we put a special emphasis on lightweight
techniques, in both fields of metrics and software visualization. We discuss the tech-
nique and then show an example matrix. At the end of this section we introduce a
categorization of classes based on their visualization within the evolution matrix.

2.1. A visualization technique for software evolution

The evolution matrix displays the evolution of the classes of a software system.
Each column of the matrix represents a version of the software, while each row rep-
resents the different versions of the same class. Two classes in two different versions
are considered the same if they have the same name. Within the columns the classes
are sorted alphabetically in case they appear for the first time in the system. Otherwise
they are placed at the same vertical position as their predecessors. This order is impor-
tant because it allows one to represent the continuous flow of development of existing
classes and stresses the development of new ones. Figure 1 presents a schematic evo-



The Evolution Matrix 137

lution matrix where the rows 5 and 6 represent new classes added in the system after
the first release.

Version1 Version 2 Version 3 Version 4

...

TIME

Class 

Class A

Class B

D

Class F

Class C

Figure 1. A schematic display of the Evolution Matrix. Classes A,D and F are alpha-
betically ordered and stay since version 1. Classes B and C appeared after version 2

The evolution matrix allows us to make statements on the evolution of an object
oriented system at the system level. However, as the granularity at system level is too
coarse, the evolution matrix is enhanced with additional information using metrics as
shown in Section 3.

2.1.1. Characteristics at system level

As we see schematically in Figure 2 at system level we are able to recover the
following information regarding the evolution of a system:

– Size of the system

The number of present classes within one column is the number of classes of that
particular version of the software. Thus the height of the column is an indicator of the
system’s size in terms of classes.

– Addition and removal of classes

The classes which have been added to the system at a certain point in time can
easily be detected, as they added at the bottom of the column of that version.



138 L’objet – 8/2002. LMO’2002

Removed classes can easily be detected as well, as their absence will leave empty
spaces on the matrix from that version on.

– Growth and stabilization phases in the evolution

The overall shape of the evolution matrix is an indicator for the evolution of the
whole system. A growth phase is indicated by an increase in the height of the matrix,
while during a stabilization phase (no classes are being added) the height of the matrix
will stay the same. When a certain number of new classes are added they create a leap
phase.

Besides characterizing the evolution at system level, the evolution matrix provides
some information about the classes themselves. Two specific situations are worth
being mentioned:

– Dayfly classes

A dayfly class has a very short lifetime, i.e., it often exists only during one version
of the system. Such classes may have been created to try out an idea which was then
dropped.

– Persistent classes

A persistent class has the same lifespan as the whole system. It has been there from
the beginning and is therefore part of the original design. Persistent classes should be
examined, as they may represent cases of dead code that no developer dares to remove
as there is no one being able to explain the purpose of that class.

FIRST VERSION
OF THE SYSTEM

REMOVED CLASSES

LAST VERSION

MAJOR LEAP
IN THE 

EVOLUTION

TIME (VERSIONS)

GROWTH PHASE STABILIZATION PHASE

DAYFLY

PERSISTENT

Figure 2. System level evolution aspects using the Evolution Matrix



The Evolution Matrix 139

Remarks. The system level view provided by the evolution matrix is not precise
enough. Hence, a stabilization only describes the fact that classes stayed over mul-
tiple versions of the system. Nothing is said about the quality of the changes if any
occurred. Such information is crucial for understanding a system, that’s why the evo-
lution matrix is enhanced using software metrics, as we see in Section 3.

3. Qualifying evolution: the metrics in play

While the evolution matrix shape provides some information regarding the system
evolution, the granularity is too coarse. We now present how software metrics can
improve the quality of the presented information. We distinguish two kinds of metrics:
absolute ones, i.e., reflecting the values of the entity they measure and differential
ones, i.e., measuring the difference of the values between two subsequent versions.

3.1. Visualizing classes using metrics

As we have previously seen we use two-dimensional boxes to represent classes.
We can enrich this representation using metrics: the width and height of the boxes
reflect metric measurements of the classes, as we see in Figure 3. This approach has
been presented in [LAN 99] and [DEM 99a].

In the visualization presented in this paper we visualize classes and use the met-
rics number of methods (NOM) for the width and number of attributes (NOA) for the
height, although in our tool we can choose other metrics. In the case of the differential
metrics we just subtract the metric measurements of the predecessor of a class from
its own measurements, i.e., if class A has 20 methods in the first version and 30 in the
second, its differential metric value will be 30-20=10.

We chose deliberately to focus on metrics which can be easily extracted from the
source code, as our intention is not to investigate new kinds of metrics.

We visualize each class using two different metrics. We have decided upon the
number of methods and the number of variables. Since we visualize different versions
of the same class, we can effectively see if the class grows, shrinks or stays the same
from one version to another. In the figures in the paper we use colors to denote the
changes from version to version: We use black for growing classes, light gray for
shrinking classes and white for classes which stay the same.

3.2. A categorization of classes based on the Evolution Matrix

We present here a categorization of classes based on the visualization of different
versions of a class. The categorization stems from the experiences we obtained while
applying our approach on several case studies. A large part, but not all, of the vocab-
ulary used here is taken out of the domain of astronomy. We do so because we have



140 L’objet – 8/2002. LMO’2002

Width Metric

Height
Metric

CLASS

Figure 3. A graphical representation of classes using metrics

found that some of the names from this domain convey extremely well the described
types of evolution. This vocabulary is of utmost importance because a complex con-
text and situation, like the evolution of software, can be communicated to another
person in an efficient way. This idea comes from the domain of patterns [GAM 95].
During our case studies we have encountered several ways in which a class can evolve
over its lifetime. We list here the most prominent types. Note that the categories in-
troduced here are not mutually exclusive, i.e., a class can behave like a pulsar for a
certain part of its life and then become a white dwarf for the rest of its life.

– Pulsar

A pulsar class grows and shrinks repeatedly during its lifetime, as we see in Fig-
ure 4. The growth phases are due to additions of functionality, while the shrinking
phases are most probably due to refactorings and restructurings of the class. Note
that a refactoring may also make a class grow, for example when a long method is
broken down into many shorter methods. Pulsar classes can be seen as hot places in
the system: for every new version of the system changes on a pulsar class must be
performed.

TIME

Figure 4. The visualization of a Pulsar class. Note that the shape may change de-
pending on the metrics associated with the representation

– Supernova

A supernova is a class which suddenly explodes in size. The reasons for such an
explosive growth may vary, although we have already made out some common cases:

- Major refactorings of the system which have caused a massive shift of func-
tionality towards a class.

- Data holder classes which mainly define attributes whose values can be ac-
cessed. Due to the simple structure of such classes it is easy to make such a class grow
rapidly.



The Evolution Matrix 141

- So-called sleeper classes. A class which has been defined a long time ago but
is waiting to be filled with functionality. Once the moment comes the developers may
already be certain about the functionality to be introduced and do so in a short time.

Supernova classes should be examined closer as their accelerated growth rate may
be a sign of unclean design or introduce new bugs into the system.

TIME

Figure 5. The visualization of a Supernova class

– White Dwarf

A white dwarf is a class who used to be of a certain size, but due to varying reasons
lost the functionality it defined to other classes. We can see a schematic display of a
white dwarf class in Figure 6. White dwarf classes should be examined for signs of
dead code, i.e., they may be obsolete and therefore be removed. Other possibilities
could include a redistribution of responsibilities.

TIME

Figure 6. The visualization of a White Dwarf class

– Red Giant

A red giant class can be seen as a permanent god class [RIE 96], which over sev-
eral versions keeps on being very large. God classes tend to implement too much
functionality and are quite difficult to refactor, for example using a split class refac-
toring [FOW 99].

– Idle

An idle class is one which does not change over several versions of the software
system it belongs to. We list here a few reasons which may lead to an idle class:

- Dead code. The class may have become obsolete at a certain point in time,
but was not removed for varying reasons.

- Good design. Idle classes can have a good implementation or a simple struc-
ture which makes them resistant to changes affecting the system.

- The class belongs to a subsystem on which no work is being performed.



142 L’objet – 8/2002. LMO’2002

4. Illustration of the approach

In this section we present two case studies whose evolution we have visualized
using the approach described above. We shortly introduce each case study, and then
show and discuss them.

4.1. MooseFinder

MooseFinder [STE 01] is a small to medium sized application written in Visual-
Works Smalltalk by one developer in little more than one year as part of a diploma
thesis. We have taken 38 versions of the software as a case study.

Figure 7. The Evolution Matrix of MooseFinder

Discussion. In Figure 7 we can see the evolution matrix of MooseFinder. We see
that the first version on the left has a small number of classes and that of those only
few survived until the last version, i.e., are persistent classes. We can also see there
have been two major leaps and one long phase of stabilization. Note that the second
leap is in fact a case of massive class renaming: many classes have been removed in
the previous version and appear as added classes in the next version. There is also a
version with a few dayfly classes. The classes themselves rarely change in size except
the class annotated as a renamed pulsar class, which at first sight seems to be one of
the central classes in the system.

Figure 8 presents the same system where the difference between metrics are rep-
resented. It reveals even more the sudden increases in size of certain classes. The



The Evolution Matrix 143

Figure 8. The Difference Evolution Matrix of MooseFinder

interesting property of this view is that emphasizes changes. For example, having two
flat boxes following each others shows that the class grows over the two versions. Due
to the graphical screen constraints, we nearly cannot see on the picture but this view
allows also to see where attributes have been added.

For displaying boxes in the other view we have to have a default size for the nodes
else as soon as one metrics values is zero we would end up to lose the other one. Such
a choice has as consequence that metric with small values like the number of attributes
added cannot easily be identifiable. The differential view solves this problem.



144 L’objet – 8/2002. LMO’2002

4.2. Supremo

Supremo [KON 01] is also written in VisualWorks Smalltalk. We have taken 21
versions of this application as a case study.

Figure 9. The Evolution Matrix of Supremo

Discussion. In Figure 9 we see the evolution matrix of Supremo. We can see that
there is apart from a stabilization phase a constant growth of the system with three
major growth phases. Note that the last growth phase is due to a massive renaming
of classes. There are several pulsar classes which strike the eye, some of which have
considerable size. We can also see that from the original classes only two are persis-
tent, i.e., the whole system renewed itself nearly completely. In Figure 10 presents the
same system using the differential view which emphasizes the changes made.

5. Implementation: CodeCrawler and Moose

CodeCrawler is the tool used to generate the views presented in this paper. Code-
Crawler supports reverse engineering through the combination of metrics and soft-



The Evolution Matrix 145

Figure 10. The Difference Evolution Matrix of Supremo

ware visualization [LAN 99, DEM 99a, DUC 01]. Its power and flexibility, based
on simplicity and scalability, has been repeatedly proven in several large scale in-
dustrial case studies. CodeCrawler is implemented on top of Moose. Moose is a
language independent reengineering environment written in Smalltalk. It is based on
the FAMIX metamodel [DEM 01], which provides for a language independent rep-
resentation of object-oriented sources and contains the required information for the
reengineering tasks performed by our tools. It is language independent, because we
need to work with legacy systems written in different implementation languages. It
is extensible, since we cannot know in advance all information that is needed in fu-
ture tools, and since for some reengineering problems tools might need to work with
language-specific information, we allow for language plug-ins that extend the model
with language-specific features. Next to that, we allow tool plug-ins to extend as well
the model with tool-specific information.

A simplified view of the FAMIX metamodel comprises the main object-oriented
concepts - namely class, method, attribute and inheritance - plus the necessary associ-



146 L’objet – 8/2002. LMO’2002

Figure 11. A simplified view of the FAMIX metamodel

ations between them - namely method invocation and attribute access (see Figure 11).
We did not use the UML metamodel, as it is specifically targeted towards object-
oriented analysis and design and not at representing source code as such. In stricto
sensu we can say that UML is not sufficient for modelling source code for the purpose
of reengineering [DEM 99b]. For an in-depth discussion of this question see [TIC 01].
Moose allows several models to be loaded at the same time. If we load models of dif-
ferent versions of the same software we get a sequence of snapshots of the evolution
of the software. In this paper we use this technique as a base for the evolution matrix
visualization.

5.1. Related work

Among the various approaches to understand software evolution that have been
proposed in the literature, graphical representations of software have long been ac-
cepted as comprehension aids. Holt and Pak [HOL 96] present a visualization tool
called GASE to elucidate the architectural changes between different versions of a
system.

Rayside et al. [RAY 98] have built a tool called JPort for exploring evolution be-
tween successive versions of the JDK. Their intent was to provide a tool for detecting
possible problem areas when developers wish to port their Java tools across versions
of the JDK. They provide evolution analysis at the level of Reuse Contracts [STE 96].

In [JAZ 99, RIV 98] Claudio Riva presents work which has similarities with ours,
i.e., he also visualizes several versions of software (at subsystem level) using colors.
Through the obtained colored displays they can make conclusions about the evolu-
tion of a system. Their approach differs as they do not have actual software artifacts
but only information about software releases. This implies that they cannot verify the
correctness of their informations. Our approach allows us to enrich the display us-
ing metrics information as well as being able to access every version of the software
artifacts.



The Evolution Matrix 147

Burd and Munro have been analyzing the calling structure of source code [BUR 99].
They transformed calling structures into a graph using dominance relations to indi-
cate call dependencies between functions. Dominance trees were derived from call-
directed-acyclic- graphs [BUR 99]. The dominance trees show the complexity of the
relationships between functions and potential ripple effects through change propaga-
tion.

Gall and Jazayeri examined the structure of a large telecommunication switching
system with a size of about 10 MLOC over several releases [GAL 97]. The analysis
was based on information stored in a database of product releases, the underlying code
was neither available nor considered. They investigated first in measuring the size of
components, their growth and change rates. The aim was to find conspicuous changes
in the gathered size metrics and to identify candidate subsystems for restructuring and
reengineering. A second effort on the same system focused on identifying logical
coupling among subsystems in a way that potential structural shortcomings could be
identified and examined [GAL 98].

Sahraroui et al. [SAH 00, LOU 98] present another aspect of the research on soft-
ware evolution which is the prediction of the evolution. Our current focus is to under-
stand the evolution even if our long term goal is to gain a better prediction on which
parts of the system will cause problems.

6. Conclusion and future work

We presented a lightweight approach for helping the understanding of system evo-
lution which is based on the definition of a graphical matrix displaying classes that are
enriched with metrics information. The approach has the following properties:

– it reduces complexity and provides system wide views that help to understand
essential changes during the evolution of an application.

– it provides a finer understanding of the evolution of classes.

– it builds a vocabulary to describe system and class evolution.

– it scales well. However, we have some screen limitation problems with huge
systems. Working at another level of abstraction will be required.

The presented approach has some limitations: it is fragile regarding the renaming
of the classes. Right now we consider a class similar to the subsequent versions if it
has the same name. This assumption is too limitating and we plan to remove it by
applying some simple heuristics to identify renamed classes such as a percentage of
common methods and attributes.

We would like to apply the evolution matrix at another levels of granularity. In par-
ticular, we want to be able to reason in terms of subsystems, packages or applications
because these concepts represent conceptually linked classes in large applications. In
such a context we would like to understand the evolution of subsystems, inside them



148 L’objet – 8/2002. LMO’2002

and between them when for example a class has been moved from one subsytem to
another.

Applying other metrics such the number of lines of code in combination with the
number of methods or statements in the class should be investigated to see if we can
qualify the actual changes, i.e., new methods can be added as the results of code
refactoring while at the same time the number of lines can decrease. Other metrics,
like the number of subclasses, the hierarchy nesting level of classes or the number of
inherited methods, may help to detect hierarchy refactorings.

The choice of the case studies is also another factor that we would like to analyze.
Indeed, the rates of change may be quite different with longer periods between re-
leases. In our experiences we have access to all the versions made by the developers
and could not really assess major versions. In the future we plan to apply the same
approach to several versions of large systems like Squeak, Java Swing, VisualWorks
Smalltalk and the Microsoft Foundation Classes (MFC) where the time spent between
two versions can be months or years.

7. References

[BUR 99] BURD E., MUNRO" M., “An Initial Approach towards Measuring and Characteriz-
ing Software Evolution”, Proceedings of the Working Conference on Reverse Engineering,
WCRE’99, 1999, p. 168-174.

[DEM 99a] DEMEYER S., DUCASSE S., LANZA M., “A Hybrid Reverse Engineering Plat-
form Combining Metrics and Program Visualization”, BALMAS F., BLAHA M., RUGABER

S., Eds., Proceedings WCRE’99 (6th Working Conference on Reverse Engineering), IEEE,
Oct. 1999.

[DEM 99b] DEMEYER S., DUCASSE S., TICHELAAR S., “Why Unified is not Universal.
UML Shortcomings for Coping with Round-trip Engineering”, RUMPE B., Ed., Proceed-
ings UML’99 (The Second International Conference on The Unified Modeling Language),
LNCS 1723, Kaiserslautern, Germany, Oct. 1999, Springer-Verlag.

[DEM 01] DEMEYER S., TICHELAAR S., DUCASSE S., “FAMIX 2.1 - The FAMOOS Infor-
mation Exchange Model”, report , 2001, University of Berne, to appear.

[DUC 00] DUCASSE S., LANZA M., TICHELAAR S., “Moose: an Extensible Language-
Independent Environment for Reengineering Object-Oriented Systems”, Proceedings of
the Second International Symposium on Constructing Software Engineering Tools (CoSET
2000), June 2000.

[DUC 01] DUCASSE S., LANZA M., “Towards a Methodology for the Understanding of
Object-Oriented Systems”, Technique et science informatiques, vol. 20, num. 4, 2001,
p. 539-566.

[FOW 99] FOWLER M., BECK K., BRANT J., OPDYKE W., ROBERTS D., Refactoring: Im-
proving the Design of Existing Code, Addison-Wesley, 1999.

[GAL 97] GALL H., JAZAYERI M., KLÖSCH R. R., TRAUSMUTH G., “Software Evolution
Observations Based on Product Release History”, Proceedings of the International Con-
ference on Software Maintenance 1997 (ICSM’97), 1997, p. 160-166.



The Evolution Matrix 149

[GAL 98] GALL H., HAJEK K., JAZAYERI M., “Detection of Logical Coupling Based on
Product Release History”, Proceedings of the International Conference on Software Main-
tenance 1998 (ICSM’98), 1998, p. 190-198.

[GAM 95] GAMMA E., HELM R., JOHNSON R., VLISSIDES J., Design Patterns, Addison
Wesley, Reading, MA, 1995.

[HOL 96] HOLT R. C., PAK J., “GASE: Visualizing Software Evolution-in-the-Large”, Pro-
ceedings of WCRE’96, 1996, p. 163-167.

[JAZ 99] JAZAYERI M., GALL H., RIVA C., “Visualizing Software Release Histories: The
Use of Color and Third Dimension”, ICSM’99 Proceedings (International Conference on
Software Maintenance), IEEE Computer Society, 1999.

[KON 01] KONI-N’SAPU G. G., “A Scenario Based Approach for Refactoring Duplicated
Code in Object Oriented Systems”, Diploma thesis, University of Berne, June 2001.

[LAN 99] LANZA M., “Combining Metrics and Graphs for Object Oriented Reverse Engi-
neering”, Diploma thesis, University of Bern, Oct. 1999.

[LAN 01] LANZA M., “The Evolution Matrix: Recovering Software Evolution using Soft-
ware Visualization Techniques”, Proceedings of IWPSE 2001 (International Workshop on
Principles of Software Evolution), 2001, Page to be published.

[LOU 98] LOUNIS H., SAHRAOUI H. A., MELO W. L., “Vers un modèle de prédiction de
la qualité du logiciel pour les systèmes à objets”, L’Objet, Numéro spécial Métrologie et
Objets, vol. 4, num. 4, 1998.

[RAY 98] RAYSIDE D., KERR S., KONTOGIANNIS K., “Change and Adaptive Maintenance
Detection in Java Software Systems”, Proceedings of WCRE’98, IEEE Computer Society,
1998, p. 10–19, ISBN: 0-8186-89-67-6.

[RIE 96] RIEL A. J., Object-Oriented Design Heuristics, Addison-Wesley, 1996.

[RIV 98] RIVA C., “Visualizing Software Release Histories: The Use of Color and Third Di-
mension”, Master’s thesis, Politecnico di Milano, Milan, 1998.

[SAH 00] SAHRAOUI H. A., BOUKADOUM M., LOUNIS H., ETHÈVE F., “Predicting Class
Libraries Interface Evolution: an investigation into machine learning approaches”, Pro-
ceedings of 7th Asia-Pacific Software Engineering Conference, 2000.

[STE 96] STEYAERT P., LUCAS C., MENS K., D’HONDT T., “Reuse Contracts: Managing
the Evolution of Reusable Assets”, Proceedings of OOPSLA ’96 Conference, ACM Press,
1996, p. 268-285.

[STE 01] STEIGER L., “Recovering the Evolution of Object Oriented Software Systems Using
a Flexible Query Engine”, Diploma thesis, University of Bern, June 2001.

[TIC 01] TICHELAAR S., “Modeling Object-Oriented Software for Reverse Engineering and
Refactoring”, PhD thesis, University of Bern, 2001.


