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Abstract—Understanding API usage is important for upstream
and downstream developers. However, compiling a dataset of API
clients is often a tedious task, especially since one needs many
clients to draw a representative picture of the API usage.

In this paper, we present KOWALSKI, a tool that takes the
name of an API, then finds and downloads client binaries by
exploiting the Maven dependency management system. As a case
study, we collect clients of Apache Lucene, the de facto standard
for full-text search, analyze the binaries, and create a typed call
graph that allows developers to identify hotspots in the API.

A video demonstrating how KOWALSKI is used for this
experiment can be found at https://youtu.be/zdx28GnoSRQ.

Index Terms—API client collection; API usage analysis; repos-
itory mining; dependency management systems;

I. INTRODUCTION

Understanding API usage is important for upstream and
downstream developers. For upstream developers it is impor-
tant to know how their APIs are used, so that they can estimate
the impact of changes. Downstream developers require a self-
explanatory API in the best case or at least documentation [1].
With the lack of documentation, usage examples of an API
serve as a good entry point to learn and explore the API [2], but
finding the clients of a specific API to extract usage patterns
is a non-trivial task. Many studies therefore analyze a few
hand-selected projects to mine the API usage [3][4]. Others
collect usage patterns by analyzing a large corpus of projects
and select those patterns with the highest support [5][6]. Few
studies mine unit test cases to synthesize API usage examples
when other sources of client code are rare [7]. Nevertheless,
high diversity exists in API usage [8] since an API can provide
many callable methods, while different clients make use of
different subsets of them. Therefore, to find different possible
usages of an API, one should find enough client code to cover
as many usage scenarios as possible.

In this paper we present KOWALSKI, a tool to collect
clients of specific Java APIs. KOWALSKI exploits the wide-
spread use of Maven as a dependency management system.
KOWALSKI takes the name of an API as an input, crawls
Maven repositories, and outputs JAR (Java ARchive) artifacts
of the API clients, including their dependencies. While most
existing large-scale miners operate on sources with limited
type-awareness only [9], KOWALSKI enables type-aware anal-
ysis of API clients as it collects them in bytecode format.
The classes referenced in the client bytecode can be resolved,
so that typed call graphs can be constructed. The call graphs
could be used to extract protocols, i.e., methods that need to be
called in a certain order [10][11][12]. Moreover, KOWALSKI

facilitates tracking of the evolution of clients and APIs, as
collected artifacts are tagged with their version numbers. The
source code of KOWALSKI is available on GitHub.1

We use KOWALSKI to collect clients of Apache Lucene, the
de facto standard for full-text search, available in the Maven
Central repository.2 Within one hour KOWALSKI collects 7 755
client artifacts of Lucene, for which we extract call graphs in
six hours. From the call graphs we determine in how many
clients a Lucene method is used and how often a method is
used in those clients. API developers can use this information
to distinguish between API hotspots, which affect many clients
if changed, and cold spots, which can be changed with little
impact. We find hotspots in the high-level API methods to
create queries and documents, and to read from and write to
the full-text index. Cold spots are API methods that deal with
file format of the index. The dataset, KOWALSKI binaries, and
setup scripts for this experiment can be fetched from Figshare.3

We also use KOWALSKI to collect clients of Apache Lucene
to infer the nullness of API methods [13], i.e., whether a
method may return a null value or not.

The rest of the paper is structured as follows: In section II
we describe how we collect clients of specific APIs with
KOWALSKI, and we discuss the tool’s architecture and imple-
mentation in section III. The hotspot identification in Apache
Lucene, for which we use KOWALSKI to collect the client
binaries, is presented in section IV. In section V we discuss
limitations of our approach that could affect its applicability.
A comparison with other API usage tools and datasets can be
found in section VI. We conclude this paper and discuss future
directions in section VII.

II. API CLIENT COLLECTION

We want to find clients of a specific API, so that our
downstream analysis finds many API calls. We also require the
called methods to be precisely identifiable. For that we need
type information about the called methods, namely method
signatures and declaring types. As APIs evolve over time,
methods may be added, removed, or change the contract.
Different versions of an API may co-exist. For example, the
method org.apache.lucene.search.Weight.scorer()

never returns null in an early version of Lucene, but does so in
later versions.4 Hence a method invocation must be traceable

1https://github.com/maenu/kowalski
2http://search.maven.org/
3https://figshare.com/projects/KOWALSKI ICSME Tools 2017/22756
4https://issues.apache.org/jira/browse/JCR-3481

https://youtu.be/zdx28GnoSRQ
https://github.com/maenu/kowalski
http://search.maven.org/
https://figshare.com/projects/KOWALSKI_ICSME_Tools_2017/22756
https://issues.apache.org/jira/browse/JCR-3481
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Fig. 1. Dependency subgraph extraction steps with project nodes marked as
API, API client and artifacts.

to the method signature, the declaring class, the declaring
API, and the API’s version. This information constructs a
universally unique method identifier. We need a way to find
the API clients and the universally unique identifier of the
called API methods.

Collecting clients of a specific API means that we need to
extract a subgraph of the dependency graph spanned by all
projects, as shown in Figure 1. First, we need to match the
APIs for which we want to collect clients (a). Second, we need
to identify clients of the matched APIs (b). Third, we need to
extract the API client artifacts we want to analyze (c). These
artifacts can be sources, binaries, or documentation.

Many Java projects use Maven as a dependency manage-
ment system, which we can exploit for our purpose. Maven
projects declare their dependencies in a meta-data file. For
example, one version of Neo4j declares the artifact descriptor
org.neo4j:neo4j-lucene-index, version 3.1.1, and a
dependency to Lucene version 5.5.0. Neo4j developers use
Maven to automatically collect the required Lucene depen-
dency from a package repository. Just as Lucene, Neo4j itself
is published to this package repository. Therefore, both the
API and its client are stored in the same repository and linked
through the declared dependency.

III. IMPLEMENTATION

We implement the aforementioned dependency subgraph
extraction in KOWALSKI. KOWALSKI is designed for high
concurrency and collects artifacts rapidly. In Figure 2 we
show how the extraction is implemented using the three tasks
(a, b, c) as introduced in Figure 1. Each task is run in a job
that pipes the input and output of the tasks between streams
of cached intermediate results.

A. Tasks

The three tasks are decoupled from each other, so that
multiple instances of the same task run in parallel. The output
of one task is the input of another task, which enables piping
different tasks in sequence.

The API matching task (a) finds projects that match a
query for Maven Central Search.5 For example, to find
all Apache Lucene versions, the task takes a query in the
form g:org.apache.lucene as input. The task then col-
lects all matching artifacts and outputs their descriptors,
e.g.,org.apache.lucene:lucene-core:5.5.0 for Lucene
5.5.0.

The client identification task (b) accepts an arti-
fact descriptor and collects their clients. Clients of
an artifact are found by scraping the mvnrepository
website.6 The task outputs artifact descriptors again,
e.g.,org.neo4j:neo4j-lucene-index:3.1.1 for Neo4j
3.1.1, as it is a client of Lucene.

The artifact extraction task (c) takes an artifact descriptor
and collects the corresponding JAR binaries, including de-
pendencies. This task can be configured using a traditional
Maven setting.xml to declare the repositories the JARs should
be fetched from. It is also possible to configure the dependency
scopes that should be used to resolve the necessary dependen-
cies. For instance, a dependency to a unit testing framework

5See http://search.maven.org/#api REST API
6For example https://mvnrepository.com/artifact/org.apache.lucene/

lucene-core/5.5.0/usages

http://search.maven.org/#api
https://mvnrepository.com/artifact/org.apache.lucene/lucene-core/5.5.0/usages
https://mvnrepository.com/artifact/org.apache.lucene/lucene-core/5.5.0/usages
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Fig. 3. Neo4j database schema for the analysis call graph.

is declared in the test scope. If we were to analyze tests, we
could configure the artifact extraction task to include the test
dependencies.

B. Jobs

The tasks are executed in jobs, denoted by the dashed arrows
in Figure 2. Jobs are responsible for providing input for the
wrapped tasks and deciding what to do with the task’s output.
The output stream of one job is the input stream of another job.
The chaining of jobs through streams acts as the composition
mechanism to build the pipeline required to collect the dataset.
A job reads the task’s input from an input stream, delegates
the input to the task to process, and writes the task’s output
to an output stream. Since tasks are independent, and the
access to input and output streams is synchronized, jobs can
be executed concurrently. Streams are named, so that a job
can be configured by the type of the task it executes together
with the names of the input and output streams.

C. Collector

The collector runs multiple workers that are responsible for
carrying out the jobs. A worker is merely a thread running a
job. All workers are executed in parallel by the collector. The
collector can be configured by specifying how many workers
for each job are instantiated. At startup, all jobs are created
based on this configuration and executed with the number of
workers desired.

IV. EXPERIMENT

For our experiment we extract call graphs of Apache Lucene
clients and identify hotspots in the API. We deploy KOWALSKI
to a multi-core Ubuntu server to collect the clients. The
collection and analysis runs on a 64 bit Ubuntu machine
with 32 cores at 1.4 GHz and 128 GB of RAM. We use
Apache Artemis as a JMS server to persist the streams of
intermediate results and we deploy Neo4j as the database to
store the extracted call graphs. The artifact extraction task
from KOWALSKI writes downloaded JAR and POM artifacts
to the local Maven repository, so that they can be read by the
downstream analysis. We run 16 worker threads to collect the
dependencies of multiple API clients in parallel. The collected
clients are analyzed in 4 concurrent processes.

The analysis applied to the API clients processes all meth-
ods that are defined in classes of the client artifact. All invoca-
tions of Lucene methods are extracted. The invoked methods

TABLE I
CLIENT MAJOR VERSIONS PER LUCENE MAJOR VERSION, INVOKED

LUCENE METHODS, AND THEIR INVOCATIONS.

Lucene version clients methods invocations
1 1 23 37
2 48 999 8 819
3 87 1 141 11 619
4 109 1 446 12 830
5 45 1 794 24 773
6 35 1 299 6 720
7 3 4 7

are tracked to the defining classes and Lucene version, so that
for each analyzed artifact, a typed call graph is stored in the
database. The schema of the database is shown in Figure 3. As
each artifact is stored exactly once in the database, different
clients calling the same API method in the same API artifact
are reflected by multiple incoming invocations of the same
method. Therefore, it is not just that we have a call graph for
each analyzed client, but we have an aggregated call graph
over the whole dataset.

It takes one hour to collect the 7 755 identified clients and
six hours to analyze them. The analysis of a single client takes
eleven seconds on average. As the analysis starts as soon as
the binary artifacts of the first client are extracted, the whole
process terminates within six hours. 1 685 binaries are part
of Lucene itself, as it is a multi-module project. In 3 009 of
non-Lucene binaries we find invocations to Lucene. In the
remaining 3 061 binaries we cannot find Lucene usage, as
Lucene is a transitive dependency and not directly used by
the analyzed methods. The binaries belong to 186 different
projects identified by the unique artifact descriptor. We group
Lucene and client releases by major version to get an overview
of the usage, as shown in Table I. For Lucene versions 1 and
7 we observe very small usage, so we ignore them in the
experiment hereafter.

Figure 4 shows for each major Lucene version how widely a
method is used among clients and how often it is invoked when
used. The product of these two usage metrics results in the
number of total invocations of a method, denoted by the color
of a method point. This evaluation can serve as an estimation
of the impact when Lucene changes its API methods. From the
plots we can read how many call sites need to be refactored
when a Lucene method changes its signature and how many
clients are affected. We find hotspots in the high-level API
methods to create queries and documents, and to read from
and write to the full-text index. Cold spots are API methods
that deal with file format of the index. We observe that the
general usage changes over time. While some methods are
used in 40 out of 48 clients of Lucene 2, the most widespread
methods are used in only 17 out of 35 clients for Lucene 6. In
newer Lucene versions, methods are generally invoked more
often. Two projects, Elasticsearch and Solr, which have grown
together with Lucene, are responsible for this phenomenon.
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V. LIMITATIONS AND THREATS TO VALIDITY

For our experiment KOWALSKI collects only Lucene and
other OSS projects that depend on Lucene and are published
on Maven Central. First, this excludes all closed source
projects. If given access to a company repository, KOWALSKI
can also be used to collect a dataset of clients of a company-
internal library. The static analysis can be reapplied as well.
Second, all open source projects that are not published on
Maven Central are excluded. There are other popular Maven
repositories that may contain other Lucene clients, for example
jcenter7 and clojars.8 However, Maven Central is a large
repository that serves 1 935 045 versions of 185 693 artifacts.9

Package repositories are primarily used to distribute reusable
libraries, therefore our dataset has a strong bias towards
libraries as clients. Libraries may use Lucene differently than
projects further down the dependency hierarchy. Third, we
lack a measure to estimate how many Lucene clients are
only distributed as sources, for example on GitHub. As our
analysis is tailored to run on binaries, it would require a
build of these projects. While building arbitrary projects from
source is non-trivial [6], we conjecture the widespread use of
Travis CI among active projects might facilitate this issue. The
identification of clients of a dependency on GitHub requires a
searchable index similar to mvnrepository for Maven, but for
GitHub projects. Parsing POMs alone will not detect clients
that rely on a transitive dependency [14]. Identifying transitive
dependencies requires resolving all dependencies of a projects,
which is an time-intensive task. Fourth, we only analyze the
Lucene ecosystem, and the results may not generalize to other
ecosystems.

7https://bintray.com/bintray/jcenter
8https://clojars.org/
9https://search.maven.org/#stats, date of access May 3, 2017

VI. RELATED WORK

There are several datasets over large parts of GitHub.
Google’s BigQuery GitHub dataset10 can be queried for con-
tents of source files. It even runs static analysis remotely,11 but
type information is not provided and must be reconstructed.
Dyer et al. provide ASTs that include partial type information
from sources in GitHub projects in the Boa dataset [9]. The
binaries collected by KOWALSKI provide more type informa-
tion as we can track method invocations to the invoked method
and library version without ambiguity. By choosing Maven
repositories as our datasource we are restricted to a smaller
set of OSS projects than GitHub, but we gain type precision.

Lämmel et al. check out 6 286 SourceForge projects and
manage to build 1 476 of them with Ant to analyze them for
API usage [6]. They manually search for missing dependencies
to fix build errors in 15% of the built projects. Instead of
building projects from source, we collect binary Maven arti-
facts with resolved dependencies. We use the SOOT analysis
framework that creates phantom references for unresolvable
classes.

Sawant et al. build a typed dataset for five APIs and their
usages in 20 263 GitHub projects using Maven [15]. They
use partial compilation to work around unresolvable classes.
By compiling from source, projects can be inspected for
any revision of a source file in a version control system.
Our dataset includes only built binary artifacts, yet they are
versioned as well, therefore we can track the evolution of a
project as well, although on a coarser level of releases.

VII. CONCLUSIONS

We present KOWALSKI, a tool to collect API clients for
API usage analysis. Our experiment shows that KOWALSKI is
performant and produces datasets that can be analyzed to find
hotspots.

The KOWALSKI pipeline can be used to collect datasets
about any API that is hosted in the supported Maven repos-
itories, from large ecosystems around Apache, Eclipse, or
Mozilla artifacts to more focused sets of clients of a single
product such as Hibernate, JUnit, or Guava. KOWALSKI can
also be used on a company internal repository. The collected
clients of closed source frameworks and libraries can be
analyzed to identify hotspots.

To conquer the bias in the collected datasets towards li-
braries, one future direction is to utilize Travis CI for extending
KOWALSKI with a task to build projects from GitHub.
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