
Rapid Prototyping of Visualizations using Mondrian∗

Adrian Lienhard, Adrian Kuhn and Orla Greevy
Software Composition Group

University of Bern, Switzerland
{lienhard, akuhn, greevy}@iam.unibe.ch

Abstract

Science requires tools, and computer science is no dif-
ferent. In a typical research context however, it is not
known upfront how a tool should work. Researching the
tool’s design is part of the investigation process. Vari-
ous designs have to be prototyped and experimented with.
This paper focuses on the research process of interactive
visualization tools. We present how to improve develop-
ment, so that a novel tool can be tested and modified at (al-
most) the same time. We present the Mondrian frame-
work, which supports on-the-fly prototyping of interac-
tive visualizations. As an example, we present the re-
search process of the Feature Dependency Browser, a vi-
sualization tool which we developed to allow software en-
gineers inspect runtime dependencies between features.

1. Introduction

Research is an iterative process of exploration and
hypothesis formulation, which makes it difficult to de-
sign research tools in advance, as they need to co-
evolve with the research process. In this paper we focus
on researching visualizations for software comprehen-
sion. Building a novel visualization technique in one
round-trip is difficult. It is easier to build it in iter-
ations matching the research process. In each round-
trip, the visualization technique typically needs to be
adapted to accommodate new findings and hypothe-
ses about the underlying information space.

To address this, researchers would like to have a vi-
sualization framework which allows them to change a
visualization at runtime, while continuing the explo-
ration of the information space in parallel. Unfortu-
nately, most available frameworks do not facilitate an
iterative development of visualizations. Long deploy-
ment cycles lead to long iterations between hypothe-

∗ In Proceedings of the IEEE International Workshop on Visu-
alizing Software for Understanding (Vissoft’07), pp. 67–70

sis formulation and verification. This is tedious as it
slows down the research process.

In this paper we propose means to facilitate rapid
prototyping of novel visualizations. We advocate to ad-
dress this challenge by running the visualization engine
within a dynamic container. A dynamic container is a
scripting host that features changing the investigated
visualization technique at runtime – or “viewtime”, as
might be more accurate in this context.

Another challenge addressed in this paper is how
to facilitate interactivity and composition of visualiza-
tions. We present an extension of the model-driven
Mondrian framework [6], which facilitates composi-
tion of interactive visualizations using the DOM event
model to communicate between several visualization
canvases of the same tool.

To illustrate the flexibility of our setup, we present
the research development of our Feature Dependency
Browser tool, which we developed to analyze runtime
dependencies between features [4].

In the next section we briefly introduce the Mon-
drian framework. A sample research process using
rapid visualization development is presented in Sec-
tion 3 and Section 4 concludes.

2. On-the-fly prototyping

Using conventional development techniques, visual-
izations have to go through a complete compile round-
trip each time changes need to be applied. Hence, to
avoid this compile overhead, a key requirement for
rapid or even on-the-fly prototyping is to host the visu-
alization framework within a dynamic container. A dy-
namic container is a scripting host that features chang-
ing the investigated visualization technique at runtime.
Within the hosting container, both IDE and applica-
tion code run at the same time, allowing researcher to
develop a visualization at runtime.

To the best of our knowledge, no visualization frame-
works used in the research community supports On-

the-fly prototyping as we propose it in this paper. Note
that we speak of the development of novel visualiza-
tion techniques, which requires more than mere com-
position of predefined shapes. Furthermore, most visu-
alization frameworks provide only limited interaction
mechanisms.

Work on rapid prototyping of visualizations is still
in its infancy. Other researchers are experimenting
with rapid prototyping techniques for visualizations. A
promising approach is presented by Bull et al.; they
suggest Model Driven Engineering (MDE) for visu-
alization building [1, 2]. They advocate the use of
MDE to achieve customizable interfaces by composing
small model-driven visualization components. Their
approach differs from ours, as their focus on defining
reusable visualization widgets, similar to UI widgets in
user interface design. This allows researchers to build
new visualization tools in the same way today’s pro-
grammers build user interfaces.

For our research, we use Mondrian as engine and a
Smalltalk image as hosting container. However, other
dynamic environments (Ruby, Python, ECMAScript,
etc. . .) might be used as hosting container as well.

The key features of Smalltalk that enable rapid pro-
totyping are:

• Hot debugging support. The ability to hot-debug
exceptions and use break points speeds-up produc-
tivity significantly.

• Hot recompilation. On-the-fly method recompila-
tion, i.e., recompiling a method while the applica-
tion is running, is important since it supports up-
dating code without having to restart the tool.

Mondrian has been successfully employed in the do-
main of rapid prototyping [5, 6]. Mondrian provides ba-
sic building blocks that allow declarative scripting to
express visualizations based on an underlying model.
It does not presuppose any structure on the data. The
only requirement is that the data is described and que-
riable by the means of a simple metamodel.

A key aspect of Mondrian visualizations is that they
are interactive. We can query the nodes to obtain more
fine-grained details about the underlying entity which
it represents and we can define actions to be executed
when the user interacts with the visualization.

When several Mondrian visualizations are inte-
grated into a tool, they have to be coordinated. The
selection of information in one visualization pane of-
ten filters the information or highlights an element
in the other panes. In Mondrian, the coordina-
tion is achieved by sharing state between the visual-
izations and by updating this state through interac-
tion handlers assigned to events. Mondrian provides a

rich set of event handlers which can be conveniently as-
signed to nodes and edges of a visualization. The same
mechanism is used to specify tooltips or to temporar-
ily display an additional visualization when hovering
over a node or edge.

To facilitate interaction in Mondrian, we imple-
mented a subset of DOM event handlers [7]. Event han-
dlers can be attached to the nodes of a visualization.

If an event is triggered its associated code, speci-
fied by the developer using block closures, is executed.
To use interactions to coordinate multiple views, in this
code, shared visualization state can be updated and the
relevant visualization canvas be redrawn.

This is a very light-weight approach and may sound
simple, but keep in mind that the more presumptions
are made about interaction, the more limitations are
introduced and as we do not know up front where our
research will lead us, flexibility is to be preferred.

3. The Feature Dependency Browser

In this section we present the Feature Dependency
Browser as a case study for rapid prototyping of visu-
alizations. The Feature Dependency Browser is a tool
for supporting a system engineer to understand how
features in an object-oriented system depend on each
other. In our previous work we proposed a new strat-
egy to precisely detect runtime dependencies between
features [4].

In the subsequent section we briefly introduce the
concept of this strategy.

3.1. Detecting Runtime Dependencies

To detect runtime feature dependencies, we adopt a
novel, fine-grained dynamic analysis approach, which
we refer to as Object Flow Analysis. It captures details
about how objects are referenced and how references
are transferred at runtime [3].

To trace the flow of objects at runtime, we exer-
cise an instrumented system and capture method calls,
passed arguments, method returns, assignments and
object instantiation. An Alias in our metamodel [3]
represents an object reference. The aliases of an ob-
ject record how it was passed through the system.

In our case studies we exercise different features of a
system in a sequent row and ask how a feature depends
on previous features, based on the alias dependencies
between features. We detect for each object that is used
in a feature whether it was passed into the feature from
a previously exercised feature. For the formal defini-
tion of feature runtime dependencies and for a more

2

1

2

3

4

5

a

b

c

d

e f

Figure 1. Above the evolution of visualizations
(a-f) as happened during the research process
of the final browser, each iteration cycle is de-
picted with a bold connector (1-5). Below the
final browser, the interaction between the can-
vases is shown using dotted arrows.

in depth discussion we refer the reader to our previ-
ous work [4].

3.2. Iterative evolution of the browser

After completing the implementation of our re-
search environment encompassing dynamic analysis,
the metamodel and a detection strategy to identify fea-
ture runtime dependencies, we wanted to explore the
results of our analysis. Our main goals were (i) to learn
about the kind of dependencies we found and (ii) to in-
vestigate ways to make the resulting information acces-
sible to a system engineer.

For our first experiment, we analyzed feature depen-
dencies of an IRC Chat Client. We traced the execu-

tion of the program while exercising different features
like Open, Setup, Connect, Join Channel, Send Mes-
sage, Receive Message etc.

At the time when we investigated feature dependen-
cies and started implementing the browser, we did not
yet have a clear picture of how to meaningfully present
the dependency information.
Step I. We started with a simple visualization script
(listed below). It generates a labelled box for each fea-
ture. Inside the box of a feature we used small rectan-
gles to represent its dependencies (see Figure 1-a).

view labelShape.
view

nodes: self features
forEach: [:each |

view rectangleShape.
view nodes: each dependencies.
view flowLayout gapSize: 2].

view horizontalLineLayout

Based on this initial script we evolved the Feature
Dependency Browser. The evolution was an iterative
process driven by new insights we gathered during ex-
perimentation phase.
Step II. The view we obtained from the script above
gives us a first impression of the number and the dis-
tribution of the dependencies among the features. In a
second step we extended the script to present a view
which (i) focuses on exactly one selected feature at a
time and (ii) aggregates the dependencies by objects
and classes (Figure 1-b).

Our hypothesis was that, with only few exceptions,
each object a feature depends on is referenced by an-
other object the feature depends on. As a first attempt
to verify this, we implemented Figure 1-c, a tree vi-
sualization showing the owner relationship of objects.
Ownership means that all access paths of an object go
through its owner. The nodes in the tree are the ob-
jects and the edges from left to right denote an owner
relationship.

Although this approach is quite sophisticated, we
experimented with alternatives due to the feedback we
got from the software engineers we showed the tool
to. They had difficulties to understand the meaning of
our visualization. Going through various iterations, we
eventually came up with a completely different visual-
ization (see Figure 1-d). It shows how objects reference
each other in the context of the selected feature.

This step also marks the point in the evolution of
our tool where we moved from the approach of single
scripts to a tool approach, which composes the views
and provides interaction to change a selected feature.

The script below shows the method implementing
the top left view (Figure 1-b). Basically, it is the initial

3

script extended with interaction (and having factored
out the implementation displaying the content of a fea-
ture). Now, when clicking on a node, the block passed
to onClick: is evaluated with the clicked feature as ar-
gument. In this case we update the field of the appli-
cation window instance which points to the currently
selected feature and then we trigger a redraw of the vi-
sualizations.

view labelShape.
view interaction onClick: [:feature |

self selectFeature: feature.
self refresh].

view
nodes: self features
forEach: [:each |

self displayFeature: each on: view].
....

At this stage, what is missing is a way to know where
the dependencies occur in the source code. What we re-
quire is a way to drill down from an object to the source
code where it is used.

Since we are looking at objects which have been
passed around at runtime it is not obvious how to link
them to the source code. The solution we found com-
prises two new panes at the bottom of the browser (Fig-
ure 1-e and Figure 1-f). The left pane shows the flow
of an object between and within features. The right
pane shows the source code of the method in which
one selected object reference (alias) in the tree is cre-
ated. These two views allow the developer to investi-
gate the exact flow of an object and see from where to
where the object is passed at runtime.

As a last step we added contextual information
through tooltips to various elements. For example,
when moving the mouse over a node in the object de-
pendency graph, a tooltip displays the class name of the
object. Another example is the object references which
show the messages that were sent through it. In Mon-
drian, tooltips are convenient to add as illustrated be-
low.

view interaction popupText: [:alias |
alias receivedMessages printString].

The final browser is shown on Figure 1 at the bot-
tom, selection and composition interactions are indi-
cated using dotted rectangles and arrows. Also, the en-
tire evolution of the tool is summarized on Figure 1.

4. Conclusion

In this paper, rapid prototyping has been applied
in the context of a software visualization tool. How-
ever, the technique presented here is not only applica-
ble to software, but can be generalized to any research

in any information space. On-the-fly prototyping is es-
pecially useful at exploring large datasets with com-
plex structures prior unknown to the researcher. This
paper shows how the researcher can adapt a visualiza-
tion on-the-fly to reflect new findings and hypotheses,
without the need to stop and restart the research tool.
Because Mondrian provides a lightweight mechanism
for generating and modifying visualizations at “view-
time” –, we were able to adapt our visualization during
the experimentation phase.

The prototyping techniques described in this paper
reduce the need for feedback round-trips when experi-
menting with the development of novel visualizations.
It is our conviction, that this will result in a more ef-
ficient research process. As future work, we suggest to
investigate this hypothesis using empirical studies.
Acknowledgments: We want to thank Michael Meyer and
Tudor Gı̂rba for designing and realizing the Mondrian frame-
work. We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Analyz-
ing, capturing and taming software change” (SNF Project
No. 200020-113342, Oct. 2006 - Sept. 2008).

References

[1] R. I. Bull and J.-M. Favre. Visualization in the con-
text of model driven engineering. In A. Pleuss, J. V. den
Bergh, H. Hussmann, and S. Sauer, editors, MDDAUI,
volume 159 of CEUR Workshop Proceedings. CEUR-
WS.org, 2005.

[2] R. I. Bull, M.-A. Storey, J.-M. Favre, and M. Litoiu.
An architecture to support model driven software visu-
alization. In International Conference on Program Com-
prehension, pages 100–106, Athens, Greece, 2006. IEEE
Computer Society.

[3] A. Lienhard, S. Ducasse, T. Gı̂rba, and O. Nierstrasz.
Capturing how objects flow at runtime. In Proceed-
ings International Workshop on Program Comprehension
through Dynamic Analysis (PCODA’06), pages 39–43,
2006.

[4] A. Lienhard, O. Greevy, and O. Nierstrasz. Track-
ing objects to detect feature dependencies. In Proceed-
ings International Conference on Program Comprehen-
sion (ICPC’07), pages 59–68, Washington, DC, USA,
June 2007. IEEE Computer Society.

[5] M. Meyer. Scripting interactive visualizations. Master’s
thesis, University of Bern, Nov. 2006.

[6] M. Meyer, T. Gı̂rba, and M. Lungu. Mondrian: An
agile visualization framework. In ACM Symposium on
Software Visualization (SoftVis’06), pages 135–144, New
York, NY, USA, 2006. ACM Press.

[7] World Wide Web Consortium. Document Object Model
DOM Level 2 Events Specification, 1998.

4

