
-

s

ls that
lug-
typi-
, and

osing
oncur-

ner of
l ab-

order
Using Metaobjects to Model

Concurrent Objects with PICT1

Markus Lumpe, Jean-Guy Schneider, Oscar Nierstrasz

Software Composition Group, University of Berne2

Abstract. We seek to support the development of open, distributed applications from
plug-compatible software abstractions. In order to rigorously specify these abstractions,
we are elaborating a formal object model for software composition in which objects and
related software abstractions are viewed as patterns of communicating processes. The se
mantic foundation is Milner'sπ calculus, and the starting point for our object model is
Pierce and Turner's encoding of objects as processes in the experimental PICT program-
ming language. Our experience shows that common object-oriented programming ab-
stractions such as dynamic binding, inheritance, genericity, and class variables are most
easily modelled whenmetaobjectsare explicitly reified as first class entities (i.e., proc-
esses). Furthermore, various roles that are typically merged (or confused) in object-ori-
ented languages such as classes, implementations, and metaobjects, each show up a
strongly-typed, first class processes.

Keywords. Components, Software Composition, Object modeling,π calculus,PICT.

1 Introduction

One of the key challenges for programming language designers today is to provide the too
will allow software engineers to develop robust, flexible, distributed applications from p
compatible software components [19]. Current object-oriented programming languages
cally provide an ad hoc collection of mechanisms for constructing and composing objects
they are based on ad hoc semantic foundations (if any at all) [18]. A language for comp
open systems, we argue, should be based on a rigorous semantic foundation in which c
rency, communication, abstraction, and composition are primitives.

The ad hoc nature of object-oriented languages can be manifested in three ways:

1. The granularity and nature of software abstractions may be restricted: the desig
a software component may be forced (unnaturally) to define it as an object. Usefu
stractions may be finer (e.g., mixins) or coarser (e.g., modules) or even higher-
(e.g., a synchronization policy).

1. InProceedings of Languages et Modèles à Objets,Leysin, Switzerland, October 1996, pp. 1-12.

2. Authors’ address: Institut für Informatik (IAM), Universität Bern, Neubrückstrasse 10, CH-3012
Berne, Switzerland.Tel: +41 (31) 631.4618.Fax: +41 (31) 631.3965.
E-mail: {lumpe, schneidr, oscar}@iam.unibe.ch.WWW: http://iamwww.unibe.ch/~scg.

2. Using Metaobjects to Model Concurrent Objects with PICT

mers
h
inds

Com-
nta-

s, we
cur-
f con-
itives,
mantic

P
-
ming
e
lling

al way
s that

es
e our

e with

d for
saying
en de-
jects
n and
strac-

level.

uced
is
The

s. The
h is

yad-
n

2. The abstraction mechanisms themselves may be ad hoc and inflexible: program
typically have only limited facilities for defining which features are visible to whic
clients, how binding of features (static or dynamic) should be resolved, or what k
of entities may be composed.

3. Language features are informally specified or even implementation dependent.
binations of features may exhibit unpredictable behaviour in different impleme
tions.

Given the ad hoc way in which software composition is supported in existing language
identify the need for a rigorous semantic foundation for modelling the composition of con
rent object systems from software components. We also seek simplicity and unification o
cepts: if we can understand all aspects of our object model in terms of a small set of prim
then we have a better hope of being able to cleanly integrate these features and avoid se
interference [18].

As a first step towards the definition of a compositional object model, we have usedICT

[25], an experimental programming language based on theπ calculus, as an executable specifi
cation language for modelling abstractions common to many object-oriented program
languages. Our experience shows thatmetaobjects— objects responsible for the managing th
creation, initialization and behaviour of instances of a class — arise naturally when mode
advanced features in terms of more primitive mechanisms. Metaobjects provide a gener
to model various aspects of object creation and composition, in contrast to ad hoc solution
result in new language features for each new aspect.

In section 2 we motivate our choice of PICT as a modelling tool, and we present exampl
how object-oriented features can be modelled in this framework. In section 3 we summariz
experience using metaobjects to model various object-oriented features. We conclud
some remarks concerning future work and directions.

2 Objects as Processes

There are several plausible candidates as computational models for objects. Theλ calculus has
the advantage of having a well-developed theoretical foundation and being well-suite
modelling encapsulation, composition and type issues [6], but has the disadvantage of
nothing about concurrency or communication. Process calculi such as CCS [15] have be
veloped to address just these shortcomings. Early work in modelling concurrent ob
[22][23] has proven CCS to be an expressive modelling tool, except that dynamic creatio
communication of new communication channels cannot be directly expressed and that ab
tions over the process space cannot be expressed within CCS itself, but only at a higher

Theπ calculus [17] addresses these shortcomings by allowing new names to be introd
and communicated much in the same way that theλ calculus introduces new bound names. Th
is needed for modelling creation of new objects with their own unique object identifiers.
basic (monadic) calculus allows only communication of channel names. The polyadicπ calcu-
lus [16] supports communication of tuples, needed to model passing of complex message
higher-orderπ calculus [27] supports the communication of process abstractions, whic
needed for modelling software composition within the calculus itself. Interestingly, the pol
ic and higher-order variants of theπ calculus can be faithfully translated (or “compiled”) dow

Markus Lumpe, Jean-Guy Schneider, Oscar Nierstrasz 3.

lculus

s as-

nous
f ex-

efined

t-
eri-

amic
stems,

. The in-
we

rep-
alue to
.g.,

ith

se
n object
simpli-

obtain
d dead-
to the basic calculus, so one may confidently use the features of richer variants of the ca
knowing that their meaning can always be understood in terms of the core calculus. Theπ cal-
culus has previously been used by Walker [34], Jones [11] and Barrio [3] to model variou
pects of object-oriented languages .

A further simplification has been studied by Honda [10], who proposed that asynchro
communication provides a better foundation for distributed systems, without any loss o
pressive power. This variant (also known as the “miniπ calculus”) essentially forms the core
language for PICT and the basis for our study.

PICT is an experimental programming language [25] whose language features are all d
by syntactic transformation to a core language that implements the miniπ calculus. PICT is as
much an attempt to turn theπ calculus into a full-blown programming language as it is a pla
form for experimenting with modelling of language features [26] and a platform for exp
menting with type disciplines and type inference schemes for theπ calculus [24]. We have been
using PICT for modelling traditional object-oriented features, such as inheritance and dyn
binding [28] as well as more esoteric abstractions needed for composing concurrent sy
such as generic synchronization policies [13][31].

2.1 The Pierce/Turner Basic Object Model

Pierce and Turner [26] have outlined a basic model for objects in PICT, in which objects are
modelled as a set of persistent processes representing instance variables and methods
terface of an object is a record1 containing the channels of all exported features. In figure 1
show the specification of a concurrent queue conforming to this model.

The concurrent queue consists of (i) two exported request channels (put to add a new item
to the queue andget to get a stored item) and (ii) a set of internal channels and processes
resenting the state of a queue object. Since communication is asynchronous, writing a v
a channel (e.g.,head!init) is non-blocking, whereas reading a value from a channel (e
tail?last > ...) blocks the reader. A value associated to a channel (such ashead!in-
it) can be viewed as a message, which is consumed when it is read.

Each exported request channel is bound to a process abstraction. Processes defined wabs
are “anonymous processes” analogous to lambda abstractions. So theput channel is bound to
a process abstraction that reads a tuple[value,r] and then performs some actions. The
exported abstractions are the only processes able to query and manipulate the state of a
(since the names of the channels used to realize the state are never exported). In order to
fy their use, the request channels are packaged together as a record.

The behaviour of a queue is correct in presence of concurrent clients: both methods
and release the necessary local resources in a manner that avoids both interference an
lock. If a get request blocks because the queue is empty, aput request will nevertheless be
possible. Interleavingput andget requests cannot interfere or result in deadlock.

1. Records, like tuples, can be easily encoded as processes in theπ calculus, but are provided as primitives
in PICT. It is not possible in the space available to give a complete introduction to PICT. For details, please
consult the PICT tutorial [25].

4. Using Metaobjects to Model Concurrent Objects with PICT

s
eters;
nd (ii)
the

l type:

lation,
el can
es. Ba-
ts, dy-

peri-
-

d self-
s, and
The reader may have noticed (i) the generic type parameterT (one of the major advantage
of the PICT type system is that it is quite easy to define processes with generic type param
the concrete type of an instantiated generic process will be inferred by the type system), a
the explicitlyfoldingandunfoldingof recursive types (the type inference algorithm used by
current PICT implementation does not support recursive type resolution). The datatypeCell,
which is used to fold a link channel, is a type alias for a generic and recursive tuple channe
Cell T = Rec(C) ^[T,C] .

The essentials of concurrent objects are captured by this basic object model: encapsu
identity, persistence, instantiation, and synchronization. It is less clear whether the mod
be extended to capture other common features of object-oriented programming languag
sic features found in most of the better known languages include self-references of objec
namic binding, inheritance, overriding, genericity, and class variables.

2.2 Extensions to the Basic Object Model

In this section we outline some extensions to the basic object model resulting from our ex
ences modelling object-oriented abstractions in PICT. For details, please refer to the corre
sponding technical reports [28][31].

The basic model does not encapsulate traditional class features like class variables an
references of objects, which are needed to support dynamic binding in local method call
has no notion of inheritance.

def queue [:T:][] = {- generic type parameter T -}
let

new head, tail, init {- new, private channels -}
run head!init {- store name of head cell -}
run tail!init {- next available tail -}

in
record

put = abs [value, r] > {- put new value at tail of queue -}
let

new link {- make a new tail channel -}
in

tail?last > {- retrieve last available tail -}
(tail!link {- store new link and value -}
| last![value, (fold (Cell T) link)]
| r![]) {- and reply to client -}

end
end,
get = abs [r] > {- get value from head of queue -}

head?item > {- retrieve name of head cell -}
item?[value, link] >{- retrieve value & next link -}

(head!(unfold link) {- remember the new head -}
| r!value) {- return value to client -}

end
end

end
Figure 1 A Concurrent Queue in PICT

Markus Lumpe, Jean-Guy Schneider, Oscar Nierstrasz 5.

r to il-
active

cess-
e have

ech-
of lan-
Modelling Class Variables

As a first extension we add class variables and class methods to the basic model. In orde
lustrate this we add a counter to the queue which counts all currently queued items in all
queues and a class method which gives us access to the value of the counter.

A straightforward mapping of these features is to define them in global scope as two pro
es, but this violates data encapsulation and allows every client to access these features. W
found that the most natural solution is to introduce explicitmetaobjectsto encapsulate the logic
for creating and initializing instances of a class. Metaobjects [12] are a commonly used m
anism in various object-oriented programming languages to encapsulate the interpret

val QueueClass = {- global metaobject channel -}
let

new total
run total!0 {- private class variable -}

in
record

gettotal = abs [r] > {- public class method -}
total?value >

(total!value | r!value)
end,

create = abs [:T:][r] > {- creation interface -}
r!(let

new head, tail, init
run head!init
run tail!init

in
record

put = abs [value, r] >
let

new link
in

tail?last > total?queued >
(tail!link
| last![value,(fold (Cell T) link)]
| total!(queued+1)
| r![])

end
end,
get = abs [r] >

head?item > item?[value, link] > total?queued >
(head!(unfold link)
| total!(queued-1)
| r!value)

end
end

end)
end

end
end

Figure 2 A Metaobject for a Concurrent Queue in PICT

6. Using Metaobjects to Model Concurrent Objects with PICT

psulate
re mod-

ate, in-
bject
ess in-
etaob-

a ge-
nt

ge-
ot

ake

lf is

(this

h ob-
of the

es spe-
a
since

object.

of a
guage features behind the interface of an object. In this case we use metaobjects to enca
and restrict access to class variables and methods. Class variables and class methods a
elled as instance variables and exported methods of the metaobject, respectively.

We use metaobjects not only to model shared class features, but more generally to cre
itialize, and control the behaviour of objects. In the basic model of Pierce and Turner, o
creation is modelled by a generator process in global scope. Moving this generator proc
side the metaobject is a first step towards modelling inheritance and self-references. A m
ject for the concurrent queue class is shown in figure 2.

QueueClass is declared as a unique global channel representing the metaobject for
neric concurrent queue class. The methodsput andget have been extended in order to cou
the total number of currently queued items. The class methodgettotal returns the total
count and the class methodcreate returns a new object of the queue class. Note that the
neric type parameterT appears only in thecreate methods. The metaobject itself does n
have to be generic.

Modelling Inheritance by Dynamic Binding of Self

The pseudo-variableSelfis needed to model dynamic binding. To model this feature, we m
use of a PICT library process that implements so-calledreference cells. A reference cell is an ob-
ject that providesset andget methods to set and retrieve stored values, respectively. Se
modelled as a reference cell that is set just once in thecreate method of the metaobject. In
order to initializeSelf, we first have to assign the new fresh object to a temporary channel
is the generator process), and second to define afixed point operatorwhich delivers the minimal
fixed point —Self(figure 3).

In a first approach we model inheritance by delegation (as in Self [30] and Sina [1]): eac
ject owns an instance of its direct superclass. This means that only the exported methods
superclass can be accessed by the subclass instance. Modelling dynamic binding requir
cial care. In the absence of dynamic binding ofSelf,if an inherited ancestor method calls
method redefined by the subclass, the original and not the redefined method will be called
Selfwithin the superclass instance refers to the superclass object, but not to the subclass
To achieve dynamic binding, we need a superclass instance in whichSelfrefers to the subclass
instance [7] (figure 4).

We now introduce “intermediate objects” in which all methods and instance variables
class are defined, butSelfis unbound: all methods have an additional first parameterSelf . The

create = abs [:T:][r] >
r!(let

val Self = emptyRef[: AObjectType :][]
new temporary {- make a new channel for Self -}
run temporary!(...

object creation
...)

in
Self.set[temporary]; {- bind Self -}
Self.get[] {- return current value of Self -}

end)
Figure 3 Initialization of Self

Markus Lumpe, Jean-Guy Schneider, Oscar Nierstrasz 7.

orted
ing of
l self-
metaobject of each class defines a processCreateIntermediate (comparable with a gen-
erator in [7]) where the intermediate object of the class is defined (figure 5).

In theCreate method of the metaobject, an intermediate object is created, each exp
method is bound to a method defined in the intermediate object, and the correct bind
Self is established. As in the previous model, an empty reference cell is used to mode
reference (figure 6).

SubClass
Super

Self

Self SuperClass

SubClass SuperClass

Super
SelfSelf

Figure 4 Binding of Self with inheritance

Incorrect binding of Self

Correct binding of Self

def CreateIntermediate [] =
let

new head, tail, init
run (head!init | tail!init)

in
record

put = abs [Self, v, r] > ... {- Self is an explicit parameter -}
get = abs [Self, r] > ...

end
end

Figure 5 Intermediate objects delay binding of Self

def Create [] =
let

val QueueIntermediate = CreateIntermediate []
val Self = emptyRef []
val NewInstance =

record
put = abs [v,r] = QueueIntermediate.put [Self.get[],v,r] end,
get = abs [r] = QueueIntermediate.get [Self.get[],r] end

end
in

Self.set[NewInstance];
Self.get[]

end
Figure 6 Binding Self in the metaobject

8. Using Metaobjects to Model Concurrent Objects with PICT

he
-

n an-
direct

e class
ited

of ob-
d fea-
d their

senting
annels
e se-

When
rained
r con-
llows
n type-
access

ly when
iables
chieved
g the

), we

pro-
s that

roles of
es. For
nct no-

(i.e.,
some-
Now, in addition to exporting theCreate method and all other public class methods, t
metaobject exports the methodCreateIntermediate , which returns a fresh copy of an in
termediate object of the class.

Inheritance is now straightforward to model. In order to reuse the methods defined in a
cestor class, the metaobject of a class gets a fresh copy of the intermediate object of its
superclass. This intermediate object is then used to define the intermediate object of th
itself. It is possible to (i) override methods, (ii) define new methods, and (iii) call inher
methods.

3 Observations

The basic object model of Pierce and Turner is a robust basis for modelling many aspects
jects. We have been able to adapt this model quite easily to support all the object-oriente
tures which we set as a challenge. While we added many features to objects and modifie
internal representation and implementation, the interface of objects did not change.

An object is a server process containing a set of local processes and channels repre
methods and instance variables. The interface to an object is a record containing the ch
of all exported features. By modifying the interface record, the visibility of features can b
lectively controlled.

Two mechanisms are used to control feature visibility: scope rules and type system.
finer grained control over a feature is needed, it is moved to an inner scope; for coarse-g
control, it is moved to an outer scope. The type system offers a more sophisticated way fo
trolling visibility: type restriction can be used to hide features whereas type extension a
features to be added or redefined. The use of type restriction may cause problems whe
safe downcasting is possible, because downcasting might be used to obtain uncontrolled
to private features.

To model class variables, class methods, and self-references, we have introducedmetaob-
jectsto represent classes as run-time entities. The need to use metaobjects arises natural
we want to model correct initialization and controlled access to these features. Class var
and methods are modelled as features of the metaobject, whereas self-references are a
by a combination of a generator and a fixed point process in the metaobject (i.e., mimickin
way self-reference can be modelled using functions and records [7]).

Although metaobjects are usually associated with Metaobject Protocols [12] (MOPs
did not find a need to introduce a full MOP for the purpose of modelling objects in PICT.
Metaobjects were useful even without any application of runtime reflection. Metaobjects
vide a general way to model object creation and composition, in contrast to ad hoc solution
introduce new language features — for example, to model thesuper feature of Smalltalk, we
do not need to change the language, but simply alter the metaobject.

We also found that modelling objects and classes as processes clarifies the separate
mechanisms that are merged or confused in most object-oriented programming languag
example, object-oriented languages overload classes to represent four or even five disti
tions: (i) classes as “cookie-cutters” (i.e., intensions) for objects, (ii) classes as extensible
inheritable) software components, (iii) classes as types, (iv) classes as metaobjects, and

Markus Lumpe, Jean-Guy Schneider, Oscar Nierstrasz 9.

, un-
ped
senting
ects
riza-

. We

nce is
delled

osely

ct-
n that

is
f
in the

delled

n
e
struc-
is often

pera-
cre-

ore we
lling
OC)
pace
t, an

ssible
ence
trac-
times even (v) classes as sets of instances (i.e., extensions). The PICT object model clearly sep-
arates these distinct roles.

Since PICT is statically typed, every abstraction or process is statically typed. Therefore
like those of CLOS [12] or Smalltalk [8], our metaobjects are also statically typed. Ty
metaobjects have several advantages: (i) metaobjects are typed first class objects repre
plain classes, (ii) no runtime method lookup is needed, (iii) visibility of features of metaobj
can be controlled by the type system, and (iv) genericity is well-typed; it is just a paramete
tion of metaobject features.

Modelling inheritance and dynamic binding requires a more sophisticated solution
found that we needed to define so-calledintermediate objectsthat define all the methods and
instance variables of a class, while leaving self-reference unbound. Binding of self-refere
established by the metaobject when an object is actually created. Inheritance can be mo
by copying and modifying intermediate objects of superclasses. This approach follows cl
that used by Cook and Palsberg to propagate self-reference to a modified client [7].

4 Conclusions and Future Work

Our experiences show that theπ calculus is expressive enough for modelling standard obje
oriented programming language features in a convenient way. Walker [34] has show
POOL [2] can be modelled in theπ calculus, but in his approach, no subtyping or inheritance
supported. Subtyping and a notion ofSelfcan be modelled with the “Calculus of Objects” o
Vasconcelos [32]. Barrio [3] has given a nearly complete representation of active objects
π calculus, but dynamic binding and a notion ofSelfare still missing. With this work we have
shown that inheritance, dynamic binding, and self-reference can also be conveniently mo
with theπ calculus with the aid of processes representing metaobjects.

Modelling object-oriented features in theπ calculus is tedious work, akin to programming i
a “concurrent assembler.” PICT simplifies this work somewhat by providing syntax for a larg
number of common, basic programming abstractions, like Booleans and integers, control
tures, functions, expressions, and statements. Still, to model objects as processes, one
obliged to forsake natural abstractions and explicitly describe behavioural in low-level, o
tional terms. For example, to specify the concurrent queue in figure 1, we had to explicitly
ate and manipulate the reply channel used to deliverput andget results to clients.

It is possible to specify the concurrent queue in PICT without explicitly mentioning reply
channels, but the abstractions needed to do so are not immediately obvious [28]. Theref
are looking for a less primitive, intermediate calculus that is more convenient for mode
concurrent objects. We are beginning to explore a so-called “guarded object calculus” (G
[20] in which an objects is modelled as a set of functions that read and write a local tuple s
of messages representing the object’s state. Whenever an operation is called on an objecin-
put guardgrabs the needed resources from the tuple space. After the calculation, anoutput trig-
gerrestores resources.

The use of guards and triggers for modelling objects has the advantage that (i) it is po
to specify any kind of operation in GOC style and (ii) objects behave correctly in the pres
of multiple clients. On the other hand it is still an open question how to model other abs
tions, such as local method calls, self-references and inheritance.

10. Using Metaobjects to Model Concurrent Objects with PICT

ation
-
o on,
h, we

P
inves-
n ap-

om-
com-
. There
ltiple
ng bi-
rphic
efini-
pre-
f some

e re-
ystem

P for
om-
To our
. It is
e sys-
ction

an
s,
e de-

stems
s, but

nt im-
bu-
imple
en

n-time
d ab-
nent
As an extension to our object model, we have modelled McHale’s “generic synchroniz
policies” (GSP) [13] as composable concurrent abstraction in PICT. GSPs are reusable specifi
cations of synchronisation policies, such as “mutual exclusion”, “readers/writers” and s
that may be bound to the implementation of different object classes. In our first approac
used a preprocessor to translate GSP abstractions into PICT code. After a few iterations, we
found we were able to omit the preprocessing phase and implement GSPs directly inICT.
There are numerous other interesting approaches in modelling concurrent objects worth
tigating, such as the “composition filters” approach of Sina [4], the state variable unificatio
proach to synchronization of Oz [29], or theseparateextension to Eiffel [14].

Although it is our long-term goal to define an object model suitable for specifying the c
position of open, concurrent systems, so far we have mainly concentrated on modelling
mon features of object-oriented languages that do not necessarily address concurrency
are still a few abstractions we did not incorporate into our first object models, such as mu
inheritance, binary methods, type-safe downcasting, and constrained genericity. Modelli
nary methods is a challenging task, especially in the context of subclassing and polymo
data structures, since the definition of binary methods naturally leads to recursive type d
tions. Bruceet al.[5] have surveyed the sources of problems with binary methods, and have
sented a comparison of various solutions to these problems. We hope that an adaptation o
of these solutions to our object models will not only give us further insight into the precis
quirements of a concurrent object model, but also help us to define an appropriate type s
for software composition.

Although metaobjects are usually associated with MOPs, we only defined a basic MO
our PICT object models. Two major questions arise: what kind of MOPs do we need in a c
position language, and what are the consequences for the underlying type system?
knowledge, most of the languages supporting run-time MOPs are not statically typed
therefore a challenging task to see what kind of MOP can be defined with the current typ
tem of PICT, or how the type system should be extended in order to support run-time refle
using metaobjects.

Our overall goal in this work is to develop a formal model of software composition and
executablecomposition language[19] for specifying components, composition abstraction
and applications as compositions of software components. Ultimately we are targeting th
velopment of open, hence distributed systems. A composition language for open sy
should not only have its formal semantics specified in terms of communicating processe
should really support concurrent and distributed behaviour. The run-time system of curre
plementation of PICT only runs on a single processor; it is not possible to specify real distri
tion of processes. As a first step towards real distribution, we have implemented a s
prototype for a subset of the PICT programming language supporting communication betwe
distributed nodes [33]. What we need, however, is a distributed abstract machine as ru
system for the composition language, comparable to that used for Java [9]. A distribute
stract machine for software composition could be built on top of an existing intercompo
communication system (e.g., COM or CORBA)..

Acknowledgements

We would like to thank Benjamin Pierce for his helpful and detailed comments.

Markus Lumpe, Jean-Guy Schneider, Oscar Nierstrasz 11.

iver-

 of a
,

Ob-

te,

eav-
b-

mor-

rect-

n,”
it-

e
inity

ce

rt I/

pp
References

[1] Mehmet Aksit, “On the Design of the Object-Oriented Language Sina,” Ph.D. thesis, Un
sity of Twente, 1989.

[2] Pierre America, Jaco de Bakker, Joost N. Kok and Jan Rutten, “Operational Semantics
Parallel Object-Oriented Language,”Proceedings POPL ’86, St. Petersburg Beach, Florida
Jan 13-15, 1986, pp. 194-208.

[3] Manuel Barrio Solorzano, “Estudio de Aspectos Dinamicos en Sistemas Orientados al
jeto,” PhD thesis, Universidad de Valladolid, September 1995.

[4] Lodewijk Bergmans, “Composing Concurrent Objects,” PhD thesis, University of Twen
1994.

[5] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Objects Group, Gary T. L
ens and Benjamin Pierce,On Binary Methods, 1996, To appear in Theory and Practice of O
ject Systems.

[6] Luca Cardelli and Peter Wegner, “On Understanding Types, Data Abstraction, and Poly
phism,”ACM Computing Surveys, vol. 17, no. 4, Dec. 1985, pp. 471-522.

[7] William Cook and Jens Palsberg, “A Denotational Semantics of Inheritance and its Cor
ness,”Proceedings OOPSLA ’89, ACM SIGPLAN Notices, vol. 24, no. 10, October 1989, pp.
433-443.

[8] Adele Goldberg and David Robson,Smalltalk 80: the Language and its Implementation, Ad-
dison-Wesley, Reading, Mass., May 1983.

[9] James Gosling and H. McGilton,The Java Language Environment, Sun Microsystems Com-
puter Company, May 1995.

[10] Kohei Honda and Mario Tokoro, “An Object Calculus for Asynchronous Communicatio
Proceedings ECOOP ’91, Pierre America (Ed.), LNCS 512, Springer-Verlag, Geneva, Sw
zerland, July 15-19, 1991, pp. 133-147.

[11] Cliff B. Jones, “A pi-calculus Semantics for an Object-Based Design Notation,”Proceedings
of CONCUR'93,E. Best (Ed.), LNCS 715, Springer-Verlag, 1993, pp. 158-172.

[12] Gregor Kiczales, Jim des Rivières and Daniel G. Bobrow,The Art of the Metaobject Protocol,
MIT Press, 1991.

[13] Ciaran McHale, “Synchronisation in Concurrent, Object-oriented Languages: Expressiv
Power, Genericity and Inheritance,” Ph.D. thesis, Department of Computer Science, Tr
College, Dublin, 1994.

[14] Bertrand Meyer, “Systematic Concurrent Object-Oriented Programming,”Communications
of the ACM, vol. 36, no. 9, September 1993, pp. 56-80.

[15] Robin Milner,Communication and Concurrency, Prentice Hall, 1989.

[16] Robin Milner, “The Polyadic pi Calculus: a tutorial,” ECS-LFCS-91-180, Computer Scien
Dept., University of Edinburgh, Oct. 1991.

[17] Robin Milner, Joachim Parrow and David Walker, “A Calculus of Mobile Processes, Pa
II,” Information and Computation, vol. 100, 1992, pp. 1-77.

[18] Oscar Nierstrasz, “Composing Active Objects,”Research Directions in Concurrent Object-
Oriented Programming, G. Agha, P. Wegner and A. Yonezawa (Ed.), MIT Press, 1993,
151-171.

12. Using Metaobjects to Model Concurrent Objects with PICT

Soft-
s
-

b-
e-

rrent

er-

ct-

n-
ay

rder
ept.,

s,

e

bora-
rch

,

[19] Oscar Nierstrasz and Theo Dirk Meijler, “Requirements for a Composition Language,”Pro-
ceedings of the ECOOP ’94 Workshop on Coordination Languages, ed. P. Ciancarini, O.
Nierstrasz, A. Yonezawa, Springer-Verlag, LNCS 924, 1995, pp. 147-161.

[20] Oscar Nierstrasz, Jean-Guy Schneider and Markus Lumpe, “Formalizing Composable
ware Systems — A Research Agenda,”Proceedings 1st IFIP Workshop on Formal Method
for Open Object-based Distributed Systems FMOODS’96, Paris, France, March 1996, to ap
pear.

[21] Else K. Nordhagen, “Omicron, An Object-Oriented Calculus,”Proceedings FMOODS’96,
IFIP WG 6.1 (Ed.), Paris, France, March 1996.

[22] Michael Papathomas, “Behaviour Compatibility and Specification for Active Objects,” O
ject Frameworks, D. Tsichritzis (Ed.), Centre Universitaire d’Informatique, University of G
neva, July 1992, pp. 31-40.

[23] Michael Papathomas, “A Unifying Framework for Process Calculus Semantics of Concu
Object-Oriented Languages,”Proceedings of the ECOOP ’91 Workshop on Object-Based
Concurrent Computing, M. Tokoro, O. Nierstrasz and P. Wegner (Ed.), LNCS 612, Spring
Verlag, 1992, pp. 53-79.

[24] Benjamin C. Pierce and David N. Turner, “Simple Type-Theoretic Foundations for Obje
Oriented Programming,”Journal of Functional Programming, vol. 4, no. 2, April 1994, pp.
207-247.

[25] Benjamin C. Pierce, “Programming in the Pi-Calculus: An Experiment in Concurrent La
guage Design,” Technical Report, Computer Laboratory, University of Cambridge, UK, M
1995, Tutorial Notes forPICT Version 3.6a.

[26] Benjamin C. Pierce and David N. Turner, “Concurrent Objects in a Process Calculus,”Pro-
ceedings Theory and Practice of Parallel Programming(TPPP 94), Takayasu Ito and Akinori
Yonezawa (Ed.), Springer LNCS 907, Sendai, Japan, 1995, pp. 187-215.

[27] Davide Sangiorgi, “Expressing Mobility in Process Algebras: First-Order and Higher-O
Paradigms,” Ph.D. thesis, CST-99-93 (also: ECS-LFCS-93-266), Computer Science D
University of Edinburgh, May 1993.

[28] Jean-Guy Schneider and Markus Lumpe, “Modelling Objects inPICT,” Technical Report, no.
IAM-96-004, University of Bern, Institute of Computer Science and Applied Mathematic
January 1996.

[29] Gert Smolka, “A Survey of Oz,” Draft, German Research Center for Artificial Intelligenc
(DFKI), January 24, 1995.

[30] David Ungar and Randall B. Smith, “Self: The Power of Simplicity,”Proceedings OOPSLA
'87, ACM SIGPLAN Notices, vol. 22, no. 12, December 1987, pp. 227-242.

[31] Patrick Varone, “Implementation of ‘Generic Synchronization Policies’ inPICT,” Technical
Report, no. IAM-96-005, University of Bern, Institute of Computer Science and Applied
Mathematics, March 1996.

[32] Vasco T. Vasconcelos, “Typed Concurrent Objects,”Proceedings ECOOP’94, M. Tokoro, R.
Pareschi (Ed.), LNCS 821, Springer-Verlag, Bologna, Italy, July 1994, pp. 100-117.

[33] Pierre Viret, “Viewing C++ Objects as Communicating Processes,” Master’s thesis, La
toire de Téléinformatique, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH, Ma
1996.

[34] David Walker, “Objects in theπ calculus,” Information and Computing, vol. 116, no. 2, 1995
pp. 253-271.

	Using Metaobjects to Model Concurrent Objects with PICT
	Markus Lumpe, Jean-Guy Schneider, Oscar Nierstrasz
	Software Composition Group, University of Berne
	1 Introduction
	1. The granularity and nature of software abstractions may be restricted: the designer of a softw...
	2. The abstraction mechanisms themselves may be ad hoc and inflexible: programmers typically have...
	3. Language features are informally specified or even implementation dependent. Combinations of f...

	2 Objects as Processes
	2.1 The Pierce/Turner Basic Object Model
	Figure 1 A Concurrent Queue in Pict

	2.2 Extensions to the Basic Object Model
	Modelling Class Variables
	Figure 2 A Metaobject for a Concurrent Queue in Pict

	Modelling Inheritance by Dynamic Binding of Self
	Figure 3 Initialization of Self
	Figure 4 Binding of Self with inheritance
	Figure 5 Intermediate objects delay binding of Self
	Figure 6 Binding Self in the metaobject

	3 Observations
	4 Conclusions and Future Work
	Acknowledgements
	References
	[1] Mehmet Aksit, “On the Design of the Object-Oriented Language Sina,” Ph.D. thesis, University ...
	[2] Pierre America, Jaco de Bakker, Joost N. Kok and Jan Rutten, “Operational Semantics of a Para...
	[3] Manuel Barrio Solorzano, “Estudio de Aspectos Dinamicos en Sistemas Orientados al Objeto,” Ph...
	[4] Lodewijk Bergmans, “Composing Concurrent Objects,” PhD thesis, University of Twente, 1994.
	[5] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Objects Group, Gary T. Leavens an...
	[6] Luca Cardelli and Peter Wegner, “On Understanding Types, Data Abstraction, and Polymorphism,”...
	[7] William Cook and Jens Palsberg, “A Denotational Semantics of Inheritance and its Correctness,...
	[8] Adele Goldberg and David Robson, Smalltalk 80: the Language and its Implementation, Addison-W...
	[9] James Gosling and H. McGilton, The Java Language Environment, Sun Microsystems Computer Compa...
	[10] Kohei Honda and Mario Tokoro, “An Object Calculus for Asynchronous Communication,” Proceedin...
	[11] Cliff B. Jones, “A pi-calculus Semantics for an Object-Based Design Notation,” Proceedings o...
	[12] Gregor Kiczales, Jim des Rivières and Daniel G. Bobrow, The Art of the Metaobject Protocol, ...
	[13] Ciaran McHale, “Synchronisation in Concurrent, Object-oriented Languages: Expressive Power, ...
	[14] Bertrand Meyer, “Systematic Concurrent Object-Oriented Programming,” Communications of the A...
	[15] Robin Milner, Communication and Concurrency, Prentice Hall, 1989.
	[16] Robin Milner, “The Polyadic pi Calculus: a tutorial,” ECS-LFCS-91-180, Computer Science Dept...
	[17] Robin Milner, Joachim Parrow and David Walker, “A Calculus of Mobile Processes, Part I/ II,”...
	[18] Oscar Nierstrasz, “Composing Active Objects,” Research Directions in Concurrent Object- Orie...
	[19] Oscar Nierstrasz and Theo Dirk Meijler, “Requirements for a Composition Language,” Proceedin...
	[20] Oscar Nierstrasz, Jean-Guy Schneider and Markus Lumpe, “Formalizing Composable Software Syst...
	[21] Else K. Nordhagen, “Omicron, An Object-Oriented Calculus,” Proceedings FMOODS’96, IFIP WG 6....
	[22] Michael Papathomas, “Behaviour Compatibility and Specification for Active Objects,” Object F...
	[23] Michael Papathomas, “A Unifying Framework for Process Calculus Semantics of Concurrent Objec...
	[24] Benjamin C. Pierce and David N. Turner, “Simple Type-Theoretic Foundations for Object- Orien...
	[25] Benjamin C. Pierce, “Programming in the Pi-Calculus: An Experiment in Concurrent Language De...
	[26] Benjamin C. Pierce and David N. Turner, “Concurrent Objects in a Process Calculus,” Proceedi...
	[27] Davide Sangiorgi, “Expressing Mobility in Process Algebras: First-Order and Higher-Order Par...
	[28] Jean-Guy Schneider and Markus Lumpe, “Modelling Objects in Pict,” Technical Report, no. IAM-...
	[29] Gert Smolka, “A Survey of Oz,” Draft, German Research Center for Artificial Intelligence (DF...
	[30] David Ungar and Randall B. Smith, “Self: The Power of Simplicity,” Proceedings OOPSLA '87, A...
	[31] Patrick Varone, “Implementation of ‘Generic Synchronization Policies’ in Pict,” Technical Re...
	[32] Vasco T. Vasconcelos, “Typed Concurrent Objects,” Proceedings ECOOP’94, M. Tokoro, R. Paresc...
	[33] Pierre Viret, “Viewing C++ Objects as Communicating Processes,” Master’s thesis, Laboratoire...
	[34] David Walker, “Objects in the p calculus,” Information and Computing, vol. 116, no. 2, 1995,...

