
Package Patterns for Visual Architecture Recovery
In Proceedings of European Conference on Software Maintenance and Reengineering (CSMR 2006)

Mircea Lungu and Michele Lanza
Faculty of Informatics

University of Lugano, Switzerland

Tudor Gı̂rba
Software Composition Group

University of Bern, Switzerland

Abstract

Recovering the architecture is the first step towards
reengineering a software system. Many reverse engineer-
ing tools use top-down exploration as a way of providing
a visual and interactive process for architecture recov-
ery. During the exploration process, the user navigates
through various views on the system by choosing from sev-
eral exploration operations. Although some sequences of
these operations lead to views which, from the architec-
tural point of view, are mode relevant than others, current
tools do not provide a way of predicting which explo-
ration paths are worth taking and which are not.

In this article we propose a set of package patterns which
are used for augmenting the exploration process with in-
formation about the worthiness of the various exploration
paths. The patterns are defined based on the internal pack-
age structure and on the relationships between the package
and the other packages in the system. To validate our ap-
proach, we verify the relevance of the proposed patterns for
real-world systems by analyzing their frequency of occur-
rence in six open-source software projects.

Keywords: Software exploration, architecture recovery,
reverse engineering, program comprehension, visualization

1. Introduction

Although the architecture of a system is usually docu-
mented at the time of its development, evolutionary pro-
cesses lead to the decay of the initial design and result in
a separation between the as-designed and as-built archi-
tectures [11]. Because the architecture of the software sys-
tems is an important asset for many software engineering
tasks such as migrations, impact analysis or feature addi-
tions, there comes a time in the life of a system when the
actual architecture has to be recovered from the most reli-
able source of information about it: the source code.

There are many approaches to architecture recovery. One
approach, called reverse architecting, consists in recover-

ing the architectural information using a bottom-up ap-
proach, by first modeling the lowest level information and
then raising the abstraction level by grouping related enti-
ties [27, 28, 29, 34]. The main drawback of this approach is
that it requires domain-specific knowledge and it is largely
manual and therefore time-consuming.

Another class of approaches uses clustering techniques
in order to abstract related sets of artifacts into subsystems
[19, 20, 23, 24]. Such approaches can be automated in a
very high degree, but they have the drawback of having a
high number of possible false positives that require man-
ual verification.

Some of the existing approaches are highly dependent on
visualization and interaction [13, 26, 25, 32]. Out of these, a
distinct class is the top-down exploration tools which use in-
teractive exploration techniques to navigate hierarchical de-
compositions of software. The problem of these techniques
is that from the many views on the system generated dur-
ing the exploration, only a subset is relevant for the archi-
tecture of the system, and this subset can only be detected
by the individual analysis of each view.

In this article we propose a classification of the pack-
ages that can be used to augment the exploration by
annotating the views with information regarding the wor-
thiness of the possible exploration paths. The classification
is based on information regarding the structural proper-
ties of the packages and on the way they interact with one
another. We validate our approach by analyzing the fre-
quency of occurrence of the proposed package patterns in
six open-source systems.

Structure of the article. In the next section we discuss
the problems that arise with visual architecture recovery. In
Section 3 we introduce the concepts we use in the definition
of the patterns. In Section 4 we describe the patterns them-
selves. We validate our approach on several open-source
systems (Section 5). In Section 6 we briefly present a tool
that implements the concepts presented in this article and
then, in Section 7, we discuss the approach from different
points of view. We present the state of the art in Section 8
and in Section 9 we conclude with a brief discussion and an



outlook on our future work in this domain.

2. Visual Architecture Recovery

There are many definitions of software architecture, each
of them emphasizig another aspect of the concept. The
one that we consider in this work is provided by Bass and
Clemens: “The software architecture of a program or com-
puting system is the structure or structures of the system,
which comprise software elements, the externally visible
properties of those elements, and the relationships among
them” [4].

There is a significant variety of tools that support the ex-
traction and recovery of the architecture from a system and
in which visualization and interaction play an important role
[26, 25, 22]. While some steps of the process (e.g., fact ex-
traction, view generation) are usually automated, none of
the tools work without a certain degree of human inter-
vention (e.g., the user has to group related artefacts [25],
the user has to compare the architecture as-extracted with
the architecture as-predicted [26] or the user decides which
navigation paths to follow [22, 21]).

One distinct subclass of these tools, the top-down explo-
ration tools, offer the possibility of navigating a hierarchi-
cal decomposition of a system [12, 22, 21]. Although there
are many ways in which a system can be decomposed hi-
erarchically (e.g., directory structure, clustered decomposi-
tions, implicit namespaces, etc.), we limit our discourse to
the hierarchical package decomposition of Java systems.

The top-down exploration tools take a hierarchical de-
composition of the software system and, starting from the
view with the highest abstraction level, let the user gener-
ate new views by applying gardening operations [30]:

• Expand. By expanding a node the view is updated and
the node is replaced with nodes representing its chil-
dren.

• Collapse. By collapsing a node corresponding to a
package, the node, together with all the nodes repre-
senting the siblings of the package are removed from
the view and replaced with a node representing the par-
ent package.

During the exploration of a hierarchical package decom-
position, based on the previously mentioned operations,
many views can be generated depending on the se-
quence of exploration operations that have been taken.
From all these views, only a subset is relevant for the ar-
chitecture of the system as only a subset of the pack-
ages in the package hierarchy represent subsystems.

Example. Figure 1 shows a system in which the pack-
ages with subsystem semantics are X, Y and Z. Views which

do not have meaning from the architectural point of view
can be considered:

• A view in which X is expanded into its subpackages
X1, X2, and X3 will not present architectural informa-
tion because the three subpackages do not have sub-
system semantics: they only help in the implementa-
tion of subsystem X.

• A view presenting B unexpanded will not present ar-
chitectural information because B does not have sub-
system semantics: it is merely a container for the two
components X and Y.

B

A

X Y

Z

C

X1 X3X2

Figure 1. A containment hierarchy of pack-
ages where the architectural components are
modeled in the packages X, Y and Z.

The example shows that, the responsibility of deciding
wether a view is relevant or not is carried by the reverse en-
gineer. During the navigation process, he has to analyze the
view and decide whether all the packages in the view are at
the right abstraction level or not. After each exploration op-
eration, the reverse engineer has to address the following
questions:

• Is a package at a higher abstraction level than needed?
Then expand it.

• Is a package at the right abstraction level? Then do not
expand it.

• Is a package at a lower abstraction level than needed?
Then collapse it.

The challenge that results from here is providing a way
to automate the package characterization process. To ad-
dress this challenge, we propose a classification of packages
based on their relation with the other packages in the sys-
tem and on their internal structure. The result of the clas-
sification is a set of package patterns that have associated
exploration operations that have to be taken once the pack-
age appears in a view.



3. Packages and Dependencies

Packages are the main mechanism for the decomposi-
tion and modularization of a system written in Java, and
they are essential for the understanding and maintenance of
non-trivial programs. However, the packages in Java are de-
fined implicitly, by the mentioning of their name in the def-
inition of a class. Moreover, as the semantics of package
containment are not clearly specified, sometimes the term
can become ambiguous. We see packages from two points
of view:

1. Restricted Package - the collection of classes that be-
long to a package. The classes defined in the subpack-
ages are not considered.

2. Extended Package - the collection of classes that be-
long to a package and all its subpackages.

It is important to be able look at the packages in both
ways because for some purposes a package can be regarded
as a collection of classes while for others the fact that it con-
tains subpackages and the subpackages contain classes is
important.

Although Java offers a language mechanism for support-
ing the modelling of the dependencies between packages
(i.e., via the import statement), this mechanism works only
at the Restricted Package level. However, for some under-
standing tasks, the dependency relation has to be aggregated
from lower level packages to higher level ones. Sometimes
even the number of the dependencies between two pack-
ages is important for the understanding of the relationship
between them (In Figure 9 the dependencies between two
packages are represented as edges whose width is propor-
tional with the number of inferred dependencies).

In this work we consider the dependency between two
packages as being “The set of all the class dependencies be-
tween the classes defined in the two packages”. A depen-
dency has a direction so it makes sense to talk about incom-
ing dependencies and outgoing dependencies.

Example: Consider the packages in Figure 2. There
is no dependency between A and C as restricted pack-
ages. On the other hand, there is a dependency between
the extended packages A and C. We say that A has an out-
going dependency on C and C has an incoming depen-
dency from A.

Restricted Package Types. During the exploration, we
have a set of packages that are simultaneously visible at a
given moment in time. We call these packages the working
set. Our goal is to characterize a package based on its in-
teraction with the other packages in the working set. To do
this we caracterize the interaction of each of its subpack-
ages with the packages in the working set. We distinguish
four types of restricted packages:

A

Package

B

C1

C

Package

D

C2

direct
dependency

class 
dependency

inferred 
dependency

Figure 2. The two types of dependencies be-
tween packages

1. Silent package - there are no dependency relations be-
tween the restricted package and the packages in the
working set.

2. Consumer package - there is a dependency relation
from the restricted package to the packages in the
working set.

3. Provider package - there is a dependency relation from
the packages in the working set to the considered re-
stricted package.

4. Hybrid package - there is a bidirectional dependency
relation between the restricted package and the pack-
ages in the working set.

ProviderConsumerSilent Hybrid

Outgoing 
dependencies

Incoming 
dependencies

0 max 0 max

Package

Figure 3. The visual representations of the
four types of Restricted Packages



Using these types of restricted packages and their sym-
bolic representation as presented in Figure 3 we charac-
terize the interaction between an extended package and its
working set by looking at the types of restricted packages
it contains and at the way they are positioned in the struc-
ture.

Figure 4. The org.bouncycastle package from
Azureus

For example, looking at the package in Figure 4 we can
see that although it has a rich subpackage structure, only
three of its subpackages provide functionality to the pack-
ages in the working set. This leads us to think that the pack-
age implements a complex functionality which it exposes
through a small interface: Indeed, the package in the fig-
ure is the org.bouncycastle package in the Azureus system,
a package which provides cryptographic services.

4. Package Patterns

The main problem when visually exploring a system is
deciding which of the packages visible at a given moment
should be expanded and which should not. Because doing
this analysis after each exploration step is too time consum-
ing we decided to encode the knowledge of the process in a
set of patterns that can be automatically applied.

The patterns are organized as a catalog and are presented
using the following structure: a short description, sugges-
tion, detection rule, rationale and discussion. The Detection
Rule is a set of tests which are used to detect wether a pack-
age conforms to the pattern or not. For the packages that are
conforming an action is suggested in the Suggestion section
and the reason of doing so is explained in Rationale. A Dis-
cussion ends the description of the pattern.

4.1. Iceberg

An Iceberg is a package on which other packages in the
working set depend, but the dependency is limited to the re-
stricted version of the package. This means that from the

point of view of the other packages, its subpackages are hid-
den: all they see is the top of the iceberg.

a) b) c)

Figure 5. Possible Configurations for Iceberg
packages. a and b are from Azureus while c
is a Perfect Iceberg from Infoglue.

Suggestion: Do not expand the package

Rationale: Although the subpackages of such a package
might use functionality provided by other packages in
the working set, the extended package acts as one log-
ical provider of functionality and the understanding of
the other packages would not benefit from expanding
it.

Detection Rule: An Iceberg is a package for which the fol-
lowing rules hold:

1. The package in the restricted sense is either a
Provider package or a Hybrid package.

2. None of the descendant subpackages in the re-
stricted sense is a Provider or Hybrid package.

Discussion: A special case of the pattern is a Perfect Ice-
berg for which all the subpackages are of type Silent.
Such a package is probably a well delimited compo-
nent and unit of reuse or it could be an implementa-
tion of the Facade design pattern. An example of such
package is package c) from Figure 5.

A different kind of Iceberg package could be de-
tected by statistical means as being a package for
which the exposed functionality/defined functionality
ratio is very low.

4.2. Autonomous

An Autonomous package is one which contains at least
one Provider subpackage and no Consumer or Hybrid sub-
packages. In other words, an autonomous package does not
depend on the other packages in the working set.



a) b) c)

Figure 6. Possible configurations of Au-
tonomous packages. Package c) is from jEdit
and is also classified as Fall-Through

Suggestion: Do not expand the package.

Rationale: From the definition it is clear that such a
package does not depend on any other packages in
the working set. This means that it is an independent
provider of functionality.

Detection Rule: In order for a package to be an Au-
tonomous package it has to respect two conditions:

1. At least one descendant of the package, or the
package itself, regarded in the restricted sense
should be of type Provider.

2. None of the descendant packages or the package
itself regarded in the restricted sense can be of
type Consumer or Hybrid.

Discussion: The Autonomous pattern is a more strict rule
for detecting modular components in the code than
the Iceberg. This is due to the second condition which
forces an Autonomous package to not depend on any
of the other packages in the working set.

If a package is classified as both Autonomous and
Iceberg in the same time, the suggestion is reinforced.
On the other hand, if a package is detected as being
Autonomous and Fall-Through (see package c from
Figure 6), the Fall-Through suggestion has priority.

The existence of Autonomous packages in a system
is a sign of a good modular design.

4.3. Archipelago

An Archipelago is a package which contains at least
three direct subpackages which, when regarded in the ex-
tended sense, do not depend on one another.

Suggestion: Do not expand the package.

Rationale: Becuase there are no invocations between the
subpackages, it means that there is no need for collab-
oration for achieving the desired functionality. Such a
situation can appear in three cases:

a) b) c)

Figure 7. Possible configurations of
Archipelago packages. Packages a) and
b) display perfect structural symmetry.

1. When the package contains alternative imple-
mentations of the same concept (e.g., architecture
dependent implementations).

2. When the package represents a collection of enti-
ties of the same type (e.g., plugins, entities from
the domain model).

3. When the contained subpackages are bundled to-
gether for lack of a better alternative (e.g., a util-
ities package).

Only in the last case it might be argued that it is
possible to bring more architectural information by ex-
panding the package. However, it can be assumed that
the subpackages are not important for the system if
they were bundled in a utilities package, therefore, it
is unlikely that the user would obtain architectural in-
formation by expanding them.

Detection Rule: In order for a package to be an
Archipelago package it has to respect two condi-
tions:

• It should have at least three direct subpackages.

• The direct subpackages in the extended sense
should not depend one on another.

Discussion: During the experiments that we have per-
formed, we have detected cases where a package that
contained several entities of the same kind was not
detected as an Archipelago because two out of seven
packages depended very lightly on a third. One solu-
tion to this problem and other of the same kind would
be to modify the rules in such a way that they use fuzzy
logic and return a smaller confidence when the rules
are not fully obeyed.



4.4. Fall-Through

A Fall-Through package is one that contains a single
subpackage and whose restricted version is a Silent pack-
age. Such a package should be expanded as it provides no
interesting information.

a) b) c)

Figure 8. Possible configurations of Fall-
Through packages. a) is from Infoglue, b) is
from Azureus and c) is from Infoglue

Suggestion: Expand the package.

Rationale: The description implies that the only infor-
mation that such a package could provide would be
conveyed by its name. Therefore, there is no architec-
tural information loss if the user expands the package.
Moreover, by expanding the package, the name of the
inner package becomes visible and the visible infor-
mation becomes more precise.

Detection Rule: For a package to be a Fall-Through pack-
age it has to respect two conditions:

1. The package should have only one direct sub-
package.

2. The package seen in a restricted sense should be
a Silent package.

Discussion: Usually, the top level packages in a java sys-
tem, are Fall-Through packages. This is a result of hav-
ing the top-level packages in a hierarchy mimic the do-
main name of the author.

The suggestion might conflict with other sugges-
tions in the case where several patterns apply for the
same package (e.g., Autonomous pattern). In case of
conflict, the Fall-Through suggestion should have pri-
ority.

5. Validation

To validate our approach, we seek answers for the fol-
lowing questions:

• How often do they appear in real world systems?

• Do overlapping patterns occur? Do they contradict or
reinforce each other in their suggestions?

To answer these questions, we perform several experi-
ments. For each experiment, we set up a script that simulates
all the possibile ways of exploring a system in a top-down
manner and automatically gathers the useful data from sys-
tem. The systems used for the analysis are the following
open-source systems:

• ArgoUML (v0.16.1) - a UML modelling tool [1].

• Azureus (v2.2.0.2) - a BitTorrent client [3].

• Columba (v1.0 RC2) - a Java email client [8].

• Hipergate (v2.1.17) - an web based customer relation
management tool [15].

• Infoglue (v1.3.2) - a content management platform
[16].

• jEdit (v4.3pre2) - a text editor for programmers [17].

5.1. How often do the patterns appear in real-
world systems?

To answer this first question, we devised the following
experiment. For each system and each pattern we set the
script to start from the top-most view on the system and
successively expand the packages it encounters. Each time
a package is brought into view for the first time, it is charac-
terized in the context of the current working set. For the pre-
sented patterns this is enough as the characterization stays
the same even if the other packages are expanded or col-
lapsed.

Table 1 presents the aggregated results of the experi-
ment. The Tested column of the table presents the number
of packages that were expanded and classified. The second
and third column present the number of packages for which
suggestions were made as an absolute value and as a rela-
tive value.

The detailed results of the experiment are present in Ta-
ble 2. In the followings we detail the analysis separately for
each pattern.

Iceberg. It is interesting to see that in all the systems,
the Iceberg patterns were around 10% of the packages. It
is only in jEdit that the percentage is very low. However,
jEdit is not very relevant case study as the package hierar-
chy is minimal. On the other hand, in the jEdit system that
we found bsh, a Perfect Iceberg (labeled c in Figure 5). At a



System Tested Patterns Percentage
ArgoUML 67 15 (22%)
Azureus 250 66 (26%)
Columba 171 13 (7%)
Hipergate 77 13 (16%)
Infoglue 70 31 (44%)

jEdit 40 14 (40%)

Table 1. The results of the exploration simu-
lation.

closer look we understood why the package is so well mod-
ularized: it contains the BeanShell Java scripting interpreter
[5] which is third party code and therefore, does not depend
on the other components of the system.

After checking the packages which conform to the Ice-
berg pattern we did not find any false positives.

Autonomous. The rules for the detection of the pattern
were very strictly defined and this is why there was one sys-
tem where no conforming packages were detected. Besides
the strictness of the rules, another reason for the low oc-
currence rate is that when the reusable components are not
that big they are bundled in a single package and when they
are big, they might present their functionality through a fa-
cade package. Iceberg does not provide this functionality as
it has conditions only regarding the top-level package while
sometimes the package that provides the functiuonality is
lower in the hierarchy. This is the case with the package
org.bouncycastle that is presented in Figure 4.

Some of the detected patterns are surprising. For exam-
ple package b) from Figure 6. On the one hand, the package
is totally independent of all the packages in the system. On
the other hand, the dependence on all the levels of the hier-
archy looked suspect. After closer inspection we found out
that the package contains 47 interfaces! This explains why
there were no dependencies on other packages and why the
package was detected as a Autonomous.

System Tested Iceberg Fall-
Through

Autonomous Archipelago

ArgoUML 67 5 6 3 1
Azureus 250 34 15 9 8
Columba 171 5 4 3 1
Hipergate 77 5 5 3 0
Infoglue 70 6 23 0 2
jEdit 40 1 8 4 1

Table 2. The results of the exploration simu-
lation.

Archipelago. Although Archipelago does not have a
high occurrence rate the packages that were detected were
in all the cases conforming to the hypotheses presented in
the Rationale section of the pattern: they were either col-
lections of packages with parallel functionality or packages
gathering together other utility subpackages.

One interesting fact is that some of the Archipelago
packages presented surprising symmetries at the structural
level (see Figure 7). This is probably the result of detect-
ing sets of similar artefacts packaged together. The struc-
tural symmetry of the contained packages could be another
way of detecting the Archipelago pattern.

Fall-Through. The pattern is well represented in the an-
alyzed systems. It is interesting to see that the pattern is
complementary to Iceberg and Archipelago, but not to Au-
tonomous.

5.2. Do overlapping patterns occur?

As it can be seen from their definitions in Section 4, the
patterns are not always mutually exclusive. Some packages
can conform to the rules of several patterns at the same time.
To find how often this phenomenon happens, we studied its
occurrence in the analyzed systems. Table 3 presents the ag-
gregated results.

Pattern Iceberg Fall-
Through

Autonomous Archipelago

Iceberg - impossible 0 2 (+)
Fall-
Through

impossible - 8 (-) impossible

Autonomous 0 8 (-) - 5 (+)
Archipelago 2 (+) impossible 5 (+) -

Table 3. Pairwise overlapping between pat-
terns. The “(+)” and “(-)” signs indicate
wether the two overlapping patterns have
identical and opposite suggestions, respec-
tively.

We see that there were only a few packages with mul-
tiple classifications. These packages can be split in two
categories: (1) the ones for which the suggestions of the var-
ious matching patterns are the same and (2) the ones for
which the suggestions are contradictory.

For example, in the case where a package is classified
as both Autonomous and Fall-Through, the suggestions are
contradictory. However, as we proposed in the discussion
related to the Fall-Through pattern, in such a case the sug-
gestion of expanding the package has priority.



Map
Perspective

Detail
Perspective

Autonomous Module
Fall-Through Module 

Pattern - Color
Mapping

Exploration
Perspective

Aura

Figure 9. Softwarenaut exploring the Azureus case study. In the Exploration Perspective the pack-
ages are annotated with navigation suggestions

6. Softwarenaut

We have implemented the automatic package character-
ization process in our exploration tool called Softwarenaut
[21, 31]. Figure 9 presents a snapshot of Softwarenaut dur-
ing the exploration of the Azureus system. The tool provides
three complementary perspectives on a system. The explo-
ration perspective is the one where the exploration takes
place. The map perspective emphasizes the position of the
visible packages in the system’s package hierarchy. The de-
tails perspective, provides details on the package which has
the focus in the exploration perspective.

The tool assists the user in navigation by annotating
the exploration view with suggestions based on package
patterns. Figure 9 shows one Autonomous and two Fall-
Through packages emphasized with coloured auras. The
packages for which the recommendation is expand are em-
phasized with auras coloured in shades of red, while the
ones for which the recommendation is stop are emphasized

with auras coloured with shades of green.

7. Discussion

Human Decision. We consider the approach presented
in this paper a first step towards an automatic decomposi-
tion of a system based on its package structure. However, in
the current stage, the decomposition process can not be fully
automated because there are two situations when human de-
cision is needed: when there are no heuristics that apply on
a given package and when there are heuristics that propose
different actions for the same package. In these cases the
user has to decide the operation based on intuition and the
available information.

Visualization Variations. There might be systems where
both a package and one of its descendants would be relevant
for the same view. With the visualization techniques used in
the exploration perspective, only one of them can be vis-
ible at a given moment. A solution to this problem could



be devised using a visualization technique based on nested
graphs as the one used in the SHriMP tool [32].

Data Model. In this paper, we only identified depen-
dencies between packages only by analyzing the invoca-
tions. Furthermore, we did not distinguish between differ-
ent types of invocations. Other kinds of relationships, like
inheritance, are also important for the architecture. We plan
to explore the different types of relationships in the future.

Patterns Usage. The patterns were developed with the
explicit goal of helping in the exploration process. How-
ever, there is nothing that impedes their utilization without
the visual aids. They could be used to detect violations of
good design rules or could detect possible improvements in
the package structure of the system.

Extensibility. The simplicity of the approach is both a
strength and a weakness. On the one hand, using the same
technique other languages and other dependency types can
be analyzed. On the other hand, the technique uses only
high-level information and more specific patterns can not
be found.

8. Related Work

Research on architecture recovery spans a wide area of
activities: Approaches such as Bookshelf [13], Dali [18] or
Rigi [25] follow the Extract-Abstract-View Metaphor [10],
and focus on the creation of condensed high-level views to
facilitate program understanding. Most tools differ in the
underlying fact extraction technique, in the methods and de-
tails of fact representation, and in the analysis and visualiza-
tion techniques.

Cremer et al. [9] described a graph-based approach for
reengineering COBOL programs. Since the focus of their
work is on source code transformation, their visualizations
are very detailed but do no support abstractions to higher
levels.

Ebert et al. introduced GUPRO which is an integrated
workbench that supports program understanding of hetero-
geneous systems on arbitrary levels of granularity [10].
However, it does not concentrate on the abstraction of
higher-level views from source code. Moreover, GUPRO
supports program understanding via textual information,
but it does not include graphical representations to depict
its findings.

Extracting architectural properties from large open
source systems such as the Mozilla system has been ad-
dressed by Godfrey et al. [14]. Their work relied on
PBS [13] which is a reverse engineering workbench con-
taining the Relational Algebra tool Grok. PBS does not
consider the visualization of metrics to characterize ab-
stracted entities and relationships, or to filter out the infor-
mation of minor interest leading to more condensed and
comprehensible views.

Other works concentrate on diverse coupling metrics: in
[6] Briand et al. discuss a unified framework for coupling
measurement in object-oriented systems based on source
model entities. Based on this metrics they verified in [7] the
coupling measurements on file level using statistical meth-
ods and logical coupling information based on “ripple ef-
fects” [33]. In [2] Briand et al. describe how coupling can
be defined and measured based on dynamic analysis of sys-
tems. This recent study shows that some dynamic coupling
measures are significant indicators of change proneness and
that they complement existing coupling measures that are
based on static analysis.

9. Conclusions and Future Work

When only the source code is available, recovering the
architecture of a large software system is a difficult task be-
cause of its sheer size and complexity.

This paper presents an interactive visual approach to ar-
chitecture recovery based on package information. In the
first part we propose a method of augmenting an exploration
tool with complementary views of a system in such a way
that it makes possible the characterization of packages and
views in terms of their architectural relevance. In the sec-
ond part, we propose heuristics that automate the package
patterns detection, and we use these patterns to guide the
user in the exploration of the system. The guidance consists
in annotating the visualized packages with information of
whether a certain package represents an architectural frag-
ment relevant for the current view, or whether the user needs
to drill further down into the package hierarchy.

We believe that more research needs to be done in the di-
rection of augmenting and automating the visual explo-
ration of software systems. For example, many of the clus-
tering techniques generate decompositions which have a hi-
erarchical structure, and we want to research how the clus-
ters can be navigated using our the technique.

Acknowledgments. We want to thank the anonymous re-
viewers for the constructive comments. We also gratefully
acknowledge the financial support of the Hasler Founda-
tion for the project ”EvoSpaces - Multi-dimensional nav-
igation spaces for software evolution” (Hasler Foundation
Project No. MMI 1976), of the Swiss National Science
Foundation for the project “Recast: Evolution of Object-
Oriented Applications” (SNF 2000-061655.00/1), and for
the project ”COSE - Controlling Software Evolution” (SNF
Project No. 200021-107584/1), and “NOREX - Network
of Reengineering Expertise” (SNF SCOPES Project No.
IB7320-110997).



References

[1] Argouml. http://freshmeat.net/projects/argouml/.
[2] E. Arisholm, L. C. Briand, and A. Føyen. Dynamic Cou-

pling Measurement for Object-Oriented Software. Transac-
tions on Software Engineering, 30(8):491–506, 2004.

[3] Azureus. http://azureus.sourceforge.net/.
[4] L. Bass, P. Clements, and R. Kazman. Software Architecture

in Practice, 2/E. Addison Wesley Professional, 2003.
[5] BeanShell. http://www.beanshell.org/.
[6] L. C. Briand, J. W. Daly, and J. K. Wüst. A Unified

Framework for Coupling Measurement in Object-Oriented
Systems. IEEE Transactions on Software Engineering,
25(1):91–121, 1999.

[7] L. C. Briand, J. W. Daly, and J. K. Wüst. Using coupling
measurement for impact analysis in object-oriented systems.
In Proceedings of the 21st International Conference on Soft-
ware Engineering (ICSE 1999), pages 475–482, 1999.

[8] Columba. http://columba.sourceforge.net/.
[9] K. Cremer, A. Marburger, and B. Westfechtel. Graph-based

tools for re-engineering. Journal of Software Maintenance,
14(4):257–292, 2002.

[10] J. Ebert, B. Kullbach, V. Riediger, and A. Winter. Gupro -
generic understanding of programs. In T. Mens, A. Schürr,
and G. Taentzer, editors, Electronic Notes in Theoretical
Computer Science, volume 72. Elsevier, 2002.

[11] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mockus. Does code decay? assessing the evidence from
change management data. IEEE Transactions on Software
Engineering, 27(1):1–12, 2001.

[12] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis,
H. Mueller, J. Mylopoulos, S. Perelgut, M. Stanley, and
K. Wong. The software bookshelf. IBM Systems Journal,
36(4):564–593, Nov. 1997.

[13] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis,
H. Müller, J. Mylopoulos, S. Perelgut, M. Stanley, and
K. Wong. The software bookshelf. IBM Systems Journal,
36(4):564–593, November 1997.

[14] M. Godfrey and E. H. S. Lee. Secrets from the Monster: Ex-
tracting Mozilla’s Software Architecture. In Proceedings of
Second Symposium on Constructing Software Engineering
Tools (CoSET’00), June 2000.

[15] Hipergate. http://freshmeat.net/projects/hipergate/.
[16] Infoglue. http://sourceforge.net/projects/infoglue.
[17] jEdit. http://sourceforge.net/projects/jedit/.
[18] R. Kazman and S. J. Carriére. Playing detective: Re-

constructing software architecture from available evidence.
Journal of automated Software Engineering, 6(2):107–138,
April 1999.

[19] R. Koschke. An incremental semi-automatic method for
component recovery. In Working Conference on Reverse En-
gineering, pages 256–, 1999.

[20] R. Koschke. Atomic Architectural Component Recovery for
Program Understanding and Evolution. PhD thesis, Univer-
sität Stuttgart, 2000.

[21] M. Lungu, A. Kuhn, T. Girba, and M. Lanza. Interactive ex-
ploration of semantic clusters. In Proceedings of VISSOFT
2005 (3rd IEEE International Workshop on Visualizing Soft-
ware For Understanding and Analysis), pages 95–100. IEEE
CS Press, 2005.

[22] C. B. M.-A. D. Storey and J. Michaud. Shrimp views: An in-
teractive and customizable environment for software explo-
ration. In Proceedings of International Workshop on Pro-
gram Comprehension (IWPC ’2001), 2001.

[23] S. Mancoridis and B. S. Mitchell. Using Automatic Cluster-
ing to produce High-Level System Organizations of Source
Code. In Proceedings of IWPC ’98 (International Workshop
on Program Comprehension). IEEE Computer Society Press,
1998.

[24] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner.
Bunch: A Clustering Tool for the Recovery and Maintenance
of Software System Structures. In Proceedings of ICSM ’99
(International Conference on Software Maintenance), Ox-
ford, England, 1999. IEEE Computer Society Press.

[25] H. A. Müller and K. Klashinsky. Rigi – a system for
programming-in-the-large. In Proceedings of the 10th Inter-
national Conference on Software Engineering, pages 80–86,
Singapore, 1988. IEEE Computer Society Press.

[26] G. Murphy, D. Notkin, and K. Sullivan. Software reflex-
ion models: Bridging the gap between source and high-level
models. In Proceedings of SIGSOFT ’95, Third ACM SIG-
SOFT Symposium on the Foundations of Software Engineer-
ing, pages 18–28. ACM Press, 1995.

[27] M. Pinzger and H. Gall. Pattern-supported architecture re-
covery. In Proc. of the 10th International Workshop on
Program Comprehension, pages 53–61, Paris, France, June
2002. IEEE Computer Society Press.

[28] C. Riva. Reverse architecting: an industrial experience re-
port. In Proceedings WCRE 2000, pages 42–50. IEEE Com-
puter Society, 2000.

[29] C. Riva. View-based Software Architecture Reconstruction.
PhD thesis, Technical University of Vienna, 2004.

[30] G. G. Robertson, J. D. Mackinlay, and S. K. Card. Cone
trees: animated 3d visualizations of hierarchical informa-
tion. In CHI ’91: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 189–194, New
York, NY, USA, 1991. ACM Press.

[31] Softwarenaut. http://www.inf.unisi.ch/phd/lungu/softwarenaut/.
[32] M.-A. D. Storey, K. Wong, F. D. Fracchia, and H. A. Mueller.

On integrating visualization techniques for effective soft-
ware exploration. In INFOVIS ’97: Proceedings of the 1997
IEEE Symposium on Information Visualization (InfoVis ’97),
page 38, Washington, DC, USA, 1997. IEEE Computer So-
ciety.

[33] S. S. Yau, J. S. Collofello, and T. MacGregor. Ripple effect
analysis of software maintenance. In The IEEE Computer
Society’s Second International Computer Software and Ap-
plications Conference, pages 60–65. IEEE Press, nov 1978.

[34] T. Zimmermann, S. Diehl, and A. Zeller. How History Jus-
tifies System Architecture (or not). In Proceedings of the
6th International Workshop on Principles of Software Evo-
lution, pages 73–83. IEEE Computer Society Press, Septem-
ber 2003.


