
A Small Observatory for Super-Repositories
In Proceedings of International Workshop on Principles of Software Evolution (IWPSE 2007)

Mircea Lungu
Faculty of Informatics

University of Lugano, Switzerland
mircea.lungu@lu.unisi.ch

Tudor Girba
Software Composition Group

University of Bern, Switzerland
girba@iam.unibe.ch

ABSTRACT
Software evolution research has been focused mostly on an-
alyzing the evolution of single software systems. However,
it is rarely the case that a project exists as standalone,
independent of others. Rather, projects exist in parallel
within larger contexts in companies, research groups or even
the open-source communities, contexts that we call super-
repositories. In this paper, we argue that visualization of
super-repositories is useful in a range of situations, and we
describe The Small Project Observatory , a prototype tool
which aims to visualize super-repositories.

1. INTRODUCTION
Researchers mine software project repositories for pro-

gram comprehension purposes to“learn from history”. Visu-
alization plays a key role in this context, because it helps to
break down the complexity of the data contained in repos-
itories, leading to a variety of techniques to extract useful
information [1, 2, 8, 10, 11].

An underlying assumption of many approaches is that a
project represents one single, complex entity that can be
analyzed independently. We argue that this is not always
the case. Instead, projects exist in larger contexts in com-
panies, research groups or the open-source community and
project repositories exist in parallel, in what we call super-
repositories, that is repositories of project repositories.

Few research projects analyze super-repositories as a whole.
One such project is the FlossMole project which provides a
database compilation of open-source projects from Source-
Forge and several other repositories [3]. Weiss analyzed
SourceForge only from a pure statistical analysis point of
view [12].

In this paper, we argue for the broadening of the perspec-
tive and raising the level of abstraction from single project
repositories to super-repositories. We claim that such an
approach is useful in a variety of contexts: when an open-
source contributor is searching for interesting projects to
contribute to, when a project manager wishes to supervise

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWPSE’07 September 3-4, 2007, Dubrovnik, Croatia
Copyright 2007 ACM 978-1-59593-722-3/07/09 ...$5.00.

multiple projects, or when a new employee wants to under-
stand the “treasure trove” of software that the company has
been developing over the years.

For this purpose, we have designed several visualizations
and implemented them in a tool called The Small Project
Observatory . We provide an overview of our tool and exem-
plify the visualizations on three open-source super-repositories.

2. WHY OBSERVE SUPER-REPOSITORIES?
At least three categories of stakeholders can benefit from

super-repository visualization: project managers, developers
and users. Each of these has different reasons to visualize
super-repositories according to his own goals. Several of the
possible scenarios are:

Users want to know how serious a project is. In
open repositories, we can find a multitude of projects,
many of them overlapping in purpose. However, not
all of them are equally worthy, and a user needs ways
of assurring himself of the seriousness of a project.

Developers want to know what the dependencies
are. Not only details of a particular project are rel-
evant, but also the inter-project dependencies are im-
portant. For example, in the case of a framework,
it is important to know what are the clients so that
they can be updated. Similarly, when an application
is build out of components, developers need to know
what components have changed.

Developers want to know who to ask. One important
source of information for developers, are other devel-
opers. Thus, developers need to know who to ask [4].
Another possible approach for obtaining information is
to ask a question on the mailing-list. However, when
getting an answer on the mailing list, the developer
wants to know whether the one that answers is knowl-
edgeable in the area.

Project managers want to know how teams work.
Projects are developed in teams, and a project man-
ager wants to know how these teams work. While or-
ganizational charts can show the team structure on
paper, the activity in the repository shows how the
actual work gets done [7].

Project managers want to know how projects evolve.
Successful projects need to continuously change [9],
hence a project manager needs to be up to date with
how projects change.

Exploration
View

Detail Panel

Available
Perspectives

Panel

Filters Panel

A

B

Figure 1: The Web Interface of Small Project Observatory. The figure presents the Inter-Project Dependen-
cies perspective in the Bern super-repository

3. THE SMALL PROJECT OBSERVATORY
Figure 1 presents a screenshot of The Small Project Ob-

servatory1 exploring the Bern super-repository. The Small
Project Observatory is a web application that allows us to
interactively explore and to filter the super-repository and
it offers multiple perspectives.

• Interaction. The Exploration View presents the cur-
rently selected perspective (in this case the dependen-
cies between projects) in a context in which the user
can interact with its the elements. The graphical ele-
ments can be selected, hoovered over and have contex-
tual menus. The graphics are implemented with SVG2

and the interaction is generated with Javascript.

• Predefined Filters. A variety of predefined filters
are part of the application, such as filtering by author,
by the status of the project, by the size of the project
or by the stage in the release cycle of a project. The

1Available online at www.inf.unisi.ch/phd/lungu/spo/
2Scalable Vectore Graphics (www.w3.org/Graphics/SVG/)

user can add and remove predefined filters by using the
Filters Panel.

• Multiple Perspectives. To accomodate the needs
of the different stakeholders the tool provides multiple
perspectives on the data. The Available Perspectives
Panel presents the list of available perspectives from
which a user can choose.

To the right of the exploration view there are Detail
Panels which provide supplementary information on
the view or on the selected elements in the view. The
detail panel from Figure 1 presents the list of develop-
ers which are involved in the projects in the view and
the projects they are involved in.

4. VISUAL PERSPECTIVES FOR SUPER-
REPOSITORIES

This section presents three of the multiple super-repository
perspectives that The Small Project Observatory provides.
The perspectives are illustrated with examples from the three
Smalltalk project repositories presented in the table below.

The first is the Open Smalltalk Repository hosted by Cin-
com3. The next two are maintained at the Universities of
Bern and Lugano, in Switzerland.

Repository Projects Classes Developers Since
Cincom 288 19.830 147 2000
Bern 190 10.600 76 2002
Lugano 43 2.088 11 2005

Table 1: The analyzed super-repositories

4.1 Repository Timelines
Purpose: The purpose of the Repository Timelines is

to illustrate the evolution of a certain metric at repository
level and in the same time, show the contributions of the
individual projects to this general evolution. Any metrics
which can be aggregated from project-level such as size or
activity can visualized this way.

Construction: The total time interval of interest is di-
vided in smaller time units such as months, weeks, or days
depending on the granularity of the desired analysis. Each
project is assigned a specific color and it is represented as a
surface where the horizontal axis shows time and the height
of the surface is given at every point in time by the value
of the metric for the project at that point in time. The
projects are stacked one on top of the other in cronological
order with the oldest ones at the bottom. The perspec-
tive also emphasizes the specific time intervals when each
project’s size changes: the brightness of the project color is
higher in the periods when the size remains constant.

Size is Constant

Size is Changing

P
ro

je
ct

 O
rd

er
in

g

New

Old

Figure 2: Size Timeline in Lugano

Example: Figure 2 illustrates the the Project Size Time-
line for the projects in the Lugano super-repository. Since
we are dealing with a repository of projects written in an
object-oriented languages, we consider Number of Classes to
be a good estimation [6]. One can notice the fact that the
repository is growing with different speeds over time. After

3http://smalltalk.cincom.com

about one year of slow growth the size jumps dramatically
at the begining of 2007.

Another interesting observation is that in this repository
there are several projects which grow for a short period of
time and freeze after that. To find out more about these
projects the user can zoom in and focus on them.

4.2 Inter-Project Dependency Map
Purpose: The Inter-Project Dependency Map presents

the static dependencies between the projects in a super-
repository. Depending on the type of repository and on the
languages in which the projects are developed the depen-
dency information can be computed in various ways. In the
case of Store repositories, every project can explicitly list
the projects that it depends on.

Construction: The visual representation is a graph where
projects are nodes and dependencies between them are arows.
Various metrics, computed for the individual projects, are
mapped on the color of the projects. Such an overview pin-
points the critical projects in a company (i.e., projects that
cannot die) or can be useful in assesing the relevance of the
project. Indeed even if there is low activity in a project, if
there are many projects depending on it, it is a safe bet that
the project is relevant.

Example: Figure 1 shows a screenshot of our tool dis-
playing a dependency map for all the projects from the Bern
repository which were active in the last year. The color of
the project is proportional to its age: the older the project,
the darker the color. The figure shows that the most de-
pended on project ’MooseDevelopment’ (marker A) which a
Timeline View shows to be the oldest active project in the
repository.

4.3 Developer Collaboration Map
Purpose: The purpose of the Developer Collaboration

Map is to provide a visualization of the inter-developer col-
laborations as they can be inferred from the history of all
the projects in the super-repository.

Construction: We say that two developers collaborate
on a certain project if, during the lifetime of that project,
they both make modification to the project for a certain
number of times which is greater than a given threshold. We
call this metric the developer commit count (DCC). Based
on this information we can construct a collaboration graph
where the nodes are developers and the edges between them
represent projects on which they collaborate.

To represent the collaboration graph for a super-repository
we draw the graph using a force-based layout algorithm which
clusters connected nodes together and offers an aesthetically
pleasing layout [5]. Thus, developers which collaborate will
be positioned closer together. Complementary to the po-
sitioning information, the color of an edge emphasizes the
project which determines that collaboration. We call this a
collaboration map of the repository.

Example: Figure 3 presents the collaboration maps
of two of the analyzed repositories: the left is the Cincom
repository and the right is the Bern repository. In both the
cases we have considered a contributor to be a developer if
he had DCC > 15. One surprising observation is that the
Bern super-repository, although smaller, contains more col-
laborative projects than the Cincom. Another observation
is that in the case of Bern there are a number of developers
which are very central to the network as they collaborate

A

Figure 3: Collaboration between the developers in the Cincom and Bern super-repositories

with many other on many projects (e.g., marker A).

5. CONCLUSIONS
In this article we have argued that interactive visualiza-

tion is important for understanding super-repositories and
we have presented The Small Project Observatory a proto-
type tool which supports such visualizations.

Acknowledgments We would like to thank Jochen Wuttke

and Daniel Ratiu for discussions on earlier versions of this article.

We also gratefully acknowledge the financial support of the Swiss

National Science Foundation for the project“NOREX — Network

of Reengineering Expertise” (SNF Project IB7320-110997).

6. REFERENCES
[1] T. Ball and S. Eick. Software visualization in the

large. IEEE Computer, 29(4):33–43, 1996.

[2] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and
K. Wampler. A system for graph-based visualization
of the evolution of software. In Proceedings of the 2003
ACM Symposium on Software Visualization, pages
77–86, New York NY, 2003. ACM Press.

[3] M. Conklin, J. Howison, and K. Crowston.
Collaboration using ossmole: a repository of floss data
and analyses. SIGSOFT Softw. Eng. Notes, 30(4):1–5,
2005.

[4] D. Cubranic and G. Murphy. Hipikat: Recommending
pertinent software development artifacts. In
Proceedings 25th International Conference on Software
Engineering (ICSE 2003), pages 408–418, New York
NY, 2003. ACM Press.

[5] T. M. J. Fruchterman and E. M. Reingold. Graph
drawing by force-directed placement. Softw. Pract.
Exper., 1991.

[6] T. Gı̂rba, S. Ducasse, and M. Lanza. Yesterday’s
Weather: Guiding early reverse engineering efforts by
summarizing the evolution of changes. In Proceedings
of 20th IEEE International Conference on Software
Maintenance (ICSM’04), pages 40–49, Los Alamitos
CA, Sept. 2004. IEEE Computer Society.

[7] T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse.
How developers drive software evolution. In
Proceedings of International Workshop on Principles
of Software Evolution (IWPSE 2005), pages 113–122.
IEEE Computer Society Press, 2005.

[8] M. Jazayeri, H. Gall, and C. Riva. Visualizing
Software Release Histories: The Use of Color and
Third Dimension. In Proceedings of ICSM ’99
(International Conference on Software Maintenance),
pages 99–108. IEEE Computer Society Press, 1999.

[9] M. Lehman and L. Belady. Program Evolution:
Processes of Software Change. London Academic
Press, London, 1985.

[10] M. Pinzger, H. Gall, M. Fischer, and M. Lanza.
Visualizing multiple evolution metrics. In Proceedings
of SoftVis 2005 (2nd ACM Symposium on Software
Visualization), pages 67–75, St. Louis, Missouri, USA,
May 2005.

[11] F. Van Rysselberghe and S. Demeyer. Studying
software evolution information by visualizing the
change history. In Proceedings 20th IEEE
International Conference on Software Maintenance
(ICSM ’04), pages 328–337, Los Alamitos CA, Sept.
2004. IEEE Computer Society Press.

[12] D. A. Weiss. A large crawl and quantitative analysis of
open source projects hosted on sourceforge. In Report
001/05, Pozna University of Technology, Poland, 2005.

