
Recovering Inter-Project Dependencies
in Software Ecosystems

Mircea Lungu
Faculty of Informatics
University of Lugano,

Switzerland
mircea.lungu@usi.ch

Romain Robbes
Computer Science
Department (DCC)

University of Chile, Santiago
rrobbes@dcc.uchile.cl

Michele Lanza
Faculty of Informatics
University of Lugano,

Switzerland
michele.lanza@usi.ch

ABSTRACT
In large software systems, knowing the dependencies be-
tween modules or components is critical to assess the impact
of changes. To recover the dependencies, fact extractors ana-
lyze the system as a whole and build the dependency graph,
parsing the system down to the statement level. At the
level of software ecosystems, which are collections of soft-
ware projects, the dependencies that need to be recovered
reside not only within the individual systems, but also be-
tween the libraries, frameworks, and entire software systems
that make up the complete ecosystem; scaling issues arise.

In this paper we present and evaluate several variants of
a lightweight and scalable approach to recover dependencies
between the software projects of an ecosystem. We evaluate
our recovery algorithms on the Squeak 3.10 Universe, an
ecosystem containing more than 200 software projects.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Algorithms, Measurements

1. INTRODUCTION
Static and evolutionary analysis of software systems has

traditionally focused on single systems. However, software
systems do not exist by themselves, but instead they exist
in larger contexts called “software ecosystems”. In previ-
ous work we have studied software ecosystems and argued
for the importance of holistic ecosystems analysis to better
understand both the ecosystems and the individual systems
that compose them. Our approach was driven by the goal
of automating the generation of ecosystem viewpoints that
capture both the social and the structural aspects of soft-
ware ecosystems [3]. In this paper we focus on structural
aspects of an ecosystem.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’10, September 20–24, 2010, Antwerp, Belgium.
Copyright 2010 ACM 978-1-4503-0116-9/10/09 ...$10.00.

A preeminent sub-problem of static analysis is the analysis
of dependencies between the elements of a system. Knowing
dependencies among components in a system is critical for
assessing the usage of a given component and the impact of
changes performed on it.

Recovering ecosystem-level dependencies is important for:
(1) understanding ecosystem’s structure – a developer knows
the structure of the project that he is working on, but not al-
ways how it fits in the context of the ecosystem; (2) monitor-
ing framework usage – if developers of a framework are aware
of how their project is used, they can make informed deci-
sions about API evolution; (3) understanding how projects
use each other – new developers of a project that depends on
an existing framework, would find it useful to extract usage
patterns that other projects have of that framework.

Extracting dependencies between projects is harder than
extracting dependencies between the components of a project,
for a number of reasons:

1. Scale. Ecosystems contain information orders of mag-
nitude larger than individual systems. Scaling up ap-
proaches tailored for single systems is doubtful at best.

2. Accuracy. The inter-project dependencies, i.e., depen-
dencies between artifacts residing in two different soft-
ware systems are simply not considered by existing
static analysis approaches.

3. Errors. Parsing a project in order to extract a model of
its structure usually requires that the project compiles.
However, at the ecosystem level, there are times when
multiple deprecated projects do not actually compile.

Considering all these issues, we analyze several lightweight
techniques for recovering the dependencies in entire ecosys-
tems. Once the dependencies are known, the road is open
for more accurate analyses of the software ecosystem. The
contributions of this paper are: (1) The definition of Ecco,
a lightweight software ecosystem representation that keeps
track of enough data to recover dependencies between projects;
(2) Several dependency-recovery algorithms which reflect
characteristics of source code at the ecosystem level; and
(3) The evaluation of these dependency-recovery algorithms
on the Squeak 3.10 Universe, an ecosystem of 211 projects.

Structure of the paper. In Section 2 we discuss related
work. Section 3 gives an overview of ecosystems. Section
4 presents our lightweight model Ecco. Section 5 presents
our evaluation methodology, while Section 6 presents depen-
dency recovery algorithms and their performance, which we
discuss in Section 7. Section 8 concludes.

2. RELATED WORK
Ossher et al. resolve dependencies between projects in or-

der to obtain a successful build of a target project [6]. Their
approach parses a project and looks for the type definitions
that are missing in the projects referenced in Sourcerer’s
project repository. Their approach requires finer grained in-
formation than ours. They propose and evaluate one depen-
dency resolution algorithm, while we evaluate several vari-
ants of lightweight algorithms. They target primarily the
Java programming language, in which this type informa-
tion is available, while our current case study is a Smalltalk
ecosystem, which lacks static type information and hence it
is a harder problem.

Mockus indexes a large amount of open source versioning
control systems, in order to run analyses on the entire pub-
lic source code base [5]. In an exploratory study, Gonzales-
Barahona et al. have analyzed the Debian Linux distribu-
tion. They visualize the dependencies between projects in
Debian, but those are declared dependencies [2].

In our previous work [4] we visualized dependencies be-
tween projects at the ecosystem level, but we did not extract
those dependencies ourselves, but rather, we extracted them
from the super-repository meta-data.

3. SOFTWARE ECOSYSTEMS
In our previous work we have defined a software ecosystem

as a collection of software projects which are developed and
co-evolve in the same environment [3].

The environment can have a geo-spatial identity as in the
case of a small company or a research group, but can also be
free of geographical limitations, as in the case of an open-
source community or a multi-national enterprise.

We consider software ecosystems to be another level of
abstraction at software analysis needs to be performed, the
next after code, design, and architecture. One such type
of analysis is reverse engineering an ecosystem, a process
which analyzes low-level information about the projects in
the ecosystem and generates high-level views that charac-
terize the ecosystem as a whole. These high-level views can
be either focused on the projects, or on the developers in
the ecosystem [3].

One of the critical ecosystem views related to projects is
the project dependency map [3] which presents the details
of the dependencies that exist between the projects in an
ecosystem.

The main source of information for extracting information
about inter-project dependencies are the super-repositories
associated with a given ecosystem. Customarily, the history
of every project in the ecosystem is recorded in the version
control repository of that project. At the ecosystem level
we say that the history of the entire ecosystem is recorded
in a super-repository. We define a super-repository as a
collection of all the version control repositories for multiple
software projects [4].

Some super-repositories contain meta-information about
project configurations and project dependencies (e.g., Store
for Smalltalk, the Debian Linux distribution), while others
do not (e.g., CVS, SVN, Git). Our dependency extraction
techniques are useful for both types of super-repositories,
either to verify existing dependencies or to recover implicit
ones.

4. ECCO
Treating an ecosystem with the same level of detail as

a single system introduces scalability issues. We need to
abstract away most of the details of individual systems if
we want the construction of the model and the subsequent
analyses to scale to an entire ecosystem.

Ecco models an ecosystem as a set of projects written in an
object-oriented language (see Figure 1), for which we need
to find dependencies.

Calls: Set
Defines: Set

Requires:Set = Calls -

Defines

Project

Client: Project
Provider: Project

Elements: Set

Dependency

Projects: Set

Ecosystem

Dependencies: Set

Dependency
Extraction Strategy

* *
*

*

Figure 1: The Ecco metamodel

In this model, a project contains three sets of entities: (1)
entities called by the project, are entities that the project
references; (2) entities provided by the project are entities
that the project defines; and (3) entities required are the
ones that are called but are not provided by the project.

Entities can be classes or methods. To keep the model
lightweight, these entities are modelled with their identifiers
only. To populate the model, one needs parsing mechanisms
which recognize the definition and usage of classes and meth-
ods. To model dependencies, we use a simple relationship
between a client project and a provider project. The rela-
tionship contains a set of entities that the client may use
from the provider, and an optional weight or confidence in
the dependency (when recovered). There are multiple pos-
sible dependency sets based on the extraction strategy.

5. EVALUATION
To evaluate the accuracy of our dependency recovery tech-

niques we selected the Squeak 3.10 Universe [7], a package
distribution based on the source code for Squeak Smalltalk.
It contains 211 Projects that define 8,692 classes and 68,808
unique method names. We extracted the dependencies be-
tween the packages as they are specified in the universe, to
create our oracle of dependencies to recover.

The Squeak 3.10 Universe contains 173 documented de-
pendencies between the 211 projects. Each package further
depends on the base system, but these dependencies are im-
plicit.

There are other sources of implicit dependencies, as shown
in Figure 2. On the left we see the dependencies declared in
the package distribution. On the right, we see the dependen-
cies extracted by a hypothetical algorithm. The extracted
dependencies can be of three types: (1) Original—the ones
that were present in the reference dependency graph, true
positives; (2) New—the ones that were not present in the
original graph, false positives; (3) Inferable—the ones that
were not present in the original graph, but are actually in-
direct dependencies.

A

B

C D E

F G

A

B

C D E

F G

Reference Extracted

original new inferable

inferable

Figure 2: The retrieved dependencies can be of three
possible types: original, new, and inferable

In Figure 2 the dependency from A to G can actually be
correct. A might depend on functionality defined in G, but
the maintainer, knowing that G is in the dependency chain
of A, did not specify this dependency in an explicit manner.
Since G needs to be present for B to be loaded, and B has
to be present before A is loaded, specifying the dependency
is optional. We classify potentially indirect dependencies as
neither true nor false positives.

Once we have extracted the dependencies we build the
Ecco model of our ecosystem. We also create a project repre-
senting the base system, in order to have a complete picture
of the ecosystem, and of dependencies to the base system.
Building the model of an ecosystem of the scale of Squeak
3.10 Universe becomes a matter of minutes.

To run the algorithms, we first build an index of each
entity defined in the ecosystem. The index contains the set
of projects that defines the entity. The index is the primary
data structure used by the algorithms alongside the Ecco
model of the ecosystem. Once the index is built, we run
each algorithm and store the list of candidate dependencies
they output.

6. EXTRACTION APPROACHES
We present several strategies for extracting dependencies

from an ecosystem and analyze various parameters that af-
fect their performance. For each technique we provide a
rationale, detail the algorithm, and discuss its results. To
compare the approaches we use the well-known IR metrics
precision, recall, and F-measure.

6.1 Unique Method Invocations
Rationale. If a project calls a method defined only by an-
other project, the first depends on the second.
Algorithm. For each project we build an index of the meth-
ods that it defines and the methods that it calls. If package A
contains at least one method which is defined only in pack-
age B, this strategy considers that there is a dependency
relationship between package A and B.
Results. P = 0.19 R = 0.59 F = 0.29

None of the measures is exceptionally good, and precision
is poor. Since precision and recall are complementary, we
can increase one at the expense of the other. We look in
turn at techniques for improving the precision or the recall.

In order to improve the precision we would need to be
more conservative and request that at least n unique meth-

ods be provided by a given project before we declare the ex-
istence of a dependency. For n = 3, we obtain a F-measure
of 0.55.

To obtain a better recall we relax the condition that a
method be unique, and consider that a method can be a
dependency if it is declared in n or less projects. However,
this degrades the precision, for n = 2, F falls to 0.06.

6.2 Unique Class References
Rationale. The class names are more unique than the
method names, so using this strategy we expect to increase
the accuracy of the extraction algorithm. If a class sub-
classes or references a class defined in a separate project, we
assume that the first project depends on the second.
Algorithm. The strategy is the same as the previous one,
but considers classes instead of methods. For each project
we build an index of the classes that are declared in that
package. If any class defined in package A subclasses or
references a class defined in package B (package B being the
only provider) we consider that A depends on B.
Results. P = 0.80 R = 0.71 F = 0.75

This strategy outperforms the best strategy based on meth-
ods. We expected the precision to be much higher, but did
not expect the recall to rise as well. This result is partially
due to classes with unique names which are being used with
common methods.

We experimented with requiring more than one unique
class before we declare a dependency, but this decreased the
performance; so did relaxing the uniqueness requirement.

6.3 Weighted Dependencies
Rationale. A dependency between two projects provides to
the client a number of entities that it requires. Dependencies
providing more (or more unique) entities are more likely to
be accurate.
Algorithm. We generate all the dependencies that satisfy
at least one required entity of each project, and assign a
weight to them. We return the entities above a threshold.
The filtering can also be a second step on any dependency
list produced by any other algorithm. We defined several
weighting schemes:

• Number of dependencies counts the number of entities
the client requires that the provider satisfies.

• Number of non-trivial dependencies. As in [1], we dis-
tinguish between “common” names for entities (e.g.,
Table) and uncommon names (e.g., DependencyTable).
A common name is an identifier made from a single
word; we filter it out.

• Proportional dependencies defines the weight of each
satisfied entity as the inverse of the number of projects
defining it.

Results. P = 0.85 R = 0.70 F = 0.77
We explored the space of possible thresholds, but we could

not find a weighting scheme or a threshold that exceeded
the performance of strategies that rely on the presence of
uniquely defined classes, at best equalling it, which is disap-
pointing since these algorithms are ressource intensive.

The only improvement we report is when we filter the de-
pendencies returned by the “uniquely provided classes” al-
gorithm with non-trivial class dependencies. This increases

the precision and slightly lowers the recall, leading to an f-
measure of 0.77, instead of 0.75. Some variables in the code
are assumed to be class names; these tend to have more
generic names than classes, so filtering on the generality of
the names filters them out.

6.4 Combined Unique Methods and Classes
Rationale. By considering all the dependencies that are de-
tected with the help of classes and methods together, we
expect that the performance will be the highest.
Algorithm. We experimented with two algorithms com-
bining classes and method information. Both involved first
computing class dependencies and computing method-level
dependencies in cases where class dependencies only could
not decide if a dependency were warranted. The cases were:

• When a class-dependency is the sole provider of a sin-
gle unique class, with a common name (e.g., Timer).
In that case, we validate the dependency if the method-
level dependency also satisfies at least one method.

• When a class-dependency does not provide any sin-
gle unique class, but provides at least a class that is
provided by 2 projects at most. We validate the depen-
dency if a method-level dependency can be established
as well, based on a number of provided methods which
is higher than a given threshold.

Results. P = 0.85 R = 0.70 F = 0.77
The first case gave an improvement so slight that it dis-

appeared in the rounding. When looking at the results, we
saw that exactly one false negative was transformed in a
true positive. The second case gave us an overall f-measure
of 0.75 for very high thresholds (i.e., requiring that the de-
pendency satisfies more than 20 methods). That score is
equivalent to the score of the unique class algorithm.

7. DISCUSSION OF THE RESULTS
The overall conclusion we extract from our experiments

is that simple, class-based dependency recovery techniques
work best overall. So far, we were able to reach an equivalent
accuracy when considering method information, but were
not able to exceed it.

We see this positively, since it means that some of the
best lightweight dependency extractors are the ones which
are simplest to build: classes are several times less numerous
than methods. At the time of writing, parsing the Squeak
3.10 Universe takes 4 minutes, indexing the entities takes
seconds (a fraction of a second in the case of classes), and
running the fastest (and most accurate) algorithm is also a
matter of seconds.

In order to get a better impression of the accuracy of
our best-performing algorithm, we inspected more closely its
false positives and false negatives. Our algorithm returned
105 true positives, 17 false positives, and 42 false negatives.

Of the 17 false positives, 12 were actually true positives
that did not prevent the code to load when the dependency
was not fulfilled. A portion of them would fail at runtime,
but are probably in code that is not used often. The remain-
der used defensive programming in order to ensure that the
entity required was actually present. For instance:

(Smalltalk hasClassNamed: #BytecodeGenerator)
ifFalse: [MagmaUserError signal:

’WriteBarrier requires NewCompiler’]

Of the 42 false negatives, 9 were caused by code duplication:
3 projects were present in the universe, but were also in-
cluded as copies as part of the source code of other projects.
This of course impacts algorithms that rely on uniquely pro-
vided names.

Finally, 16 of the 42 false negatives and 2 of the 17 false
positives were dependencies involving very small projects (10
classes or less), for which not much information is available.
We plan to investigate other techniques to better recover
these two specific cases.

8. CONCLUSIONS
To increase awareness between clients and providers of

source code, recovering dependencies between projects of
an ecosystem is critical. We presented a model of soft-
ware projects and ecosystems suited for dependency recov-
ery. Ecco is a lightweight representation of projects and
ecosystems: a project simply contains the list of entity names
it depends on, uses and provides.

We presented several techniques for dependency recovery
with heuristics matching the nature of the data present in an
ecosystem. We validated them on the Squeak 3.10 Universe,
a Smalltalk ecosystem with 211 projects. Each technique
was evaluated in terms of the precision and recall of the set
of dependencies it produced, compared with the oracle of
manually specified dependencies in the universe.

We found that techniques using class names were both
the simplest and the ones with the highest precision and
recall. We identified two major factors that hamper the
accuracy of our algorithms: the presence of duplicated code,
and recovering dependencies involving small code bases. We
will investigate how to solve these issues.

Acknowledgements.
We thank Ricardo Baeza-Yates (Yahoo! Research and

University of Chile), Mark Carman and Alberto Bacchelli
(University of Lugano) for insightful discussions related to
this work. We gratefully acknowledge the financial support
of the Swiss National Science foundation for the project “Di-
CoSA” (SNF Project No. 118063).

9. REFERENCES
[1] A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes.

Benchmarking lightweight techniques to link e-mails
and source code. In WCRE, pages 205–214, 2009.

[2] J. M. Gonzalez-Barahona, G. Robles, M. Michlmayr,
J. J. Amor, and D. M. German. Macro-level software
evolution: a case study of a large software compilation.
Empirical Software Engineering, 2008.

[3] M. Lungu. Reverse Engineering Software Ecosystems.
PhD thesis, University of Lugano, October 2009.

[4] M. Lungu, M. Lanza, T. Girba, and R. Heeck. Reverse
engineering super-repositories. In WCRE, pages
120–129, 2007.

[5] A. Mockus. Amassing and indexing a large sample of
version control systems: Towards the census of public
source code history. In MSR, pages 11–20, 2009.

[6] J. Ossher, S. Bajracharya, and C. Lopes. Automated
dependency resolution for open source software. In
MSR, pages 130–140, 2010.

[7] A. Spoon. Package universes: Which components are
real candidates? Technical report, EPFL, 2006.

