Towards a Simplified Implementation of Object-Oriented Design Metrics

Cristina Marinescu Radu Marinescu

LOOSE Research Group

“Politehnica” University of Timisoara, Romania

{cristina, radum} @cs.utt.ro

Abstract

In order to compute metrics automatically, these must
be implemented as software programs. As metrics become
increasingly complex, implementing them using imperative
and interrogative programming is oftentimes cumbersome.
Consequently, their understanding, testing and reuse are
severely hampered. In this paper we identify a set of key
mechanisms that are involved in the implementation of de-
sign metrics and, more general, of design-related structural
analyses: navigation, selection, set arithmetic, filtering and
property aggregation. We show that neither of the afore-
mentioned approaches offers a simple support for all these
mechanisms and, as a result, an undesirable overhead of
complexity is added to the implementation of metrics. The
paper introduces SAIL, a language designed to offer a
proper support to a simplified writing of design metrics and
similar design-related analyses, with a especial emphasis
on object-oriented design. In order to validate the expres-
siveness of SAIL the paper provides a comprehensive com-
parison with the other two approaches.

1 Introduction

In the last decade the number and complexity of design-
related structural analyses (e.g., design metrics[16], design
heuristics[4], quality models[1]) for quality assessment has
increased significantly.

When the source code is as small as a few or hundreds
of lines of code, these analyses can be applied manually;
but as the source code becomes larger, the various analy-
ses that asses the quality of a piece of software must be
automated. Consequently, the automation of such analyses
requires that they are implemented; thus, analyses become
themselves programs. Additionally, as the area of quality
assessment evolves, analyses become more and more com-
plicated and, consequently, their implementations become
more and more obfuscated and thus harder to understand
and maintain.

Tudor Girba
Software Composition Group
University of Berne, Switzerland
girba@iam.unibe.ch

Through the last years we were much involved in the de-
finition and implementation of various metrics (or metrics-
related analyses)[15, 17, 18] regarding the quality assess-
ment of object oriented design. This experience has shown
us that apart from their intrinsic complexity, there is an ad-
ditional complexity due to the expressiveness limitations of
the programming language used for implementation.

Metrics are defined in terms of an abstract view of the
system (i.e., a model). Based on how models are repre-
sented we identify two major approaches for their imple-
mentations: the structure based and the repository based
approach (Section 2). Additionally, we identify a set of
five key mechanisms that are the building blocks for the im-
plementation of any structural analysis: navigation, filter-
ing, selection, set arithmetic and property aggregation. We
show that none of the two aforementioned implementation
approaches offers a simple support for all key mechanisms
and we claim that this adds an undesirable overhead of com-
plexity to the implementation of analyses.

The main goal of this paper is to show how the afore-
mentioned mechanisms could be implemented efficiently in
a programming language, so that they support a simplified
writing of metrics and other quality assessment analyses.
Thus, as a proof of concept, we defined and successfully
used a simple interpreted language, called SAIL. In this pa-
per we use SAIL to illustrate our approach towards a sim-
plified implementation of metrics.

The paper is structured as follows: in Section 2 we de-
scribe the two aforementioned approaches with a special fo-
cus on the model representation. The first part of Section 3
identifies the mechanisms of a structural analysis and dis-
cusses how the current approaches support them. In Sec-
tion 4 we introduce the SAIL language and illustrate how
it enhances the support for the five key mechanisms. Next
(Section 5) we present a validation of SAIL by comparing
the size and complexity of the implementation of a suite
of over 40 object-oriented design metrics. The paper con-
cludes with a discussion on related work (Section 6) and
some final remarks and hints towards future work (Section
7).

YF]',F.

COMPUTER
SOCIETY

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

Package | _

3

Class |, [Method

[/
o / | Global Function

/ i

- | Operation |

N

A /

[Global Variable | \ | Local

vy p

Variable

Figure 1. Structure based meta-model

2 Representation of System Models

To compute a metric on a given software system, we
need to extract a model of the system. This model is ex-
tracted and stored based on a meta-model that specifies
the relevant entities (e.g., classes, methods etc.) and their
relevant properties and relations (e.g., inheritance, method
calls)[17]. In this context a crucial question is: how is this
meta-model represented? There are two “mainstream” fam-
ily of approaches: structure based and repository based.
Next, we describe them briefly and summarize both the pos-
itive and the negative aspects with respect to an example.

2.1 Structure Based Approach

In this approach the meta-model is represented as an in-
terconnected set of data structures, usually one for each type
of design entity. The fields are either elementary properties
of that design entity or links to other related data structures.
For example, a structure that models the Variable design
entity is expected to have a field of type Class that estab-
lishes its connection to the class that represents the type of
a variable. Commonly, in the structure based approach the
meta-model and the metrics are implemented in a language
that support user-defined data structures (i.e., a procedural
or object-oriented language).

In[17] we applied this approach, by defining a meta-
model called MEMORIA ! used for the implementation
of software metrics and other quality assurance analyses.
MEMORIA is concretely implemented in JAVA and, thus,
classes were used to implement the data structures. In Fig-

IMEMORIA is similar to the FAMIX[24] meta-model

. lobal variables
global functions | t_packages __g.

classes

alinbutes

tcl

methods

« t_operations|

paramefers,
local vanables

-

t_variables

Figure 2. Repository based meta-model

ure 1 we show a simplified depiction of this meta-model
where only aggregation relations are represented (e.g., a
class has methods and attributes, a method has parame-
ters and local variables). The use of an object-oriented
language for implementation allows us to hide the fields
that describe the entity and define operations by which an
entity communicates with other entities — e.g., every en-
tity has a getName () method, the Class entity has a
getMethods () operation that returns a collection with
all the Method entities defined in the given class.

2.2 Repository Based Approach

In this approach the meta-model is represented as a
knowledge source that can be queried. Oftentimes this ap-
pears physically as a relational database system in which
usually one table is defined for each design entity. The
fields of the table contain the relevant properties of the en-
tity and its connections to other (related) entities. In a nor-
malized database these are established by means of foreign
keys. Thus, reusing the example from the previous section, a
hypothetic Variable table would contain a field (i.e., a table
column) that would point to the Class table, more precisely
to that entry that represents the type of the variable.

Figure 2 presents a repository-based implementation of
the meta-model already depicted in Figure 1 2. Each ele-
ment in Figure 2 represents a table. Each arrow in the fig-
ure indicates a foreign key that relates two tables. As we did
in Section 2.1, despite the fact that there are more relations
than those depicted in the figure, for the sake of simplic-
ity we decided to visualize only the has relations, as they
contribute decisively to the navigability of the model.

2 An earlier version of this was concretely implemented in SQL and is
presented in[14]

YF]',F.

COMPUTER
SOCIETY

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

3 Key Mechanisms

Next we are going to identify the key mechanisms that
are involved in the implementations of metrics and see how
these are supported by the two approaches discussed above.

3.1 Types of Analyses and Key Mechanisms

In general, metrics (or metrics-related analyses) fall
mainly in two big categories: group building and prop-
erty computing. The former category is mainly used
for understanding a system while the latter is used
for the assessment of the system. The implementation
of each of these requires a particular set of key mechanisms.

Group Building Analyses construct collections of
meta-model entities that are associated by a particular rule,
described by the analysis itself, with the analyzed entity.
Building a group for a meta-model entity requires a set of
four elementary mechanisms:

e Navigation. All, except trivial metrics, are based on
multiple entities so it is necessary to be able to browse
through the model, going from the analyzed entity to a
related entity (e.g., from a class to its base class) or to
a group of related entities from the meta-model (e.g.,
from a class to the group of its methods).

e Selection. Every meta-model entity is described by
various fields but only several of these are of interest
in the context of a particular analysis. Therefore, the
selection mechanism enables the definition of a "view
of interest” by choosing only a subset of an entity’s
fields.

o Set Arithmetic. Groups of entities are after all built by
means of set arithmetic. The most used set operations
in analyses are: the addition of an entity to a group (a
set) and the reunion of two or more groups>.

e Filtering. An essential mechanism for building a
group with a particular property is applying some fil-
tering conditions to an initial larger group. For exam-
ple, getting the group of public methods of a class re-
quires first a navigation to the group of methods and
then it requires also a filtering operation that builds a
new group that keeps only methods with the “’public”
access specifier.

Property Computing Analyses associate a new, non-
elementary, property to an entity. Usually, computing a
property is preceded by the construction of an appropriate

3Sometimes the cartesian product between two sets is also needed. For
example getting all the method pairs in a class is needed in the context of
cohesion metrics (see Section 5)

group. Thus, we may say that in most of the cases property
computing analysis imply a group building analysis.
Therefore, all key mechanisms identified before are, on
principle, needed for a property computing analysis.

Example. Computing the FAN-OUT metric[12] for a
class is obviously a property computing analysis. Yet, it
first requires the construction of the group of all the classes
on which the analyzed class depends. This operation is in
itself a group building analysis. Additionally, in order to
compute a property, usually a numeric or boolean value
computed from a group associated with the entity, we need
a fifth mechanism:

e Property Aggregation. This mechanism allows to
compute and associate a single value for a group, a
value which is aggregated from the values of each part
of the group. Probably the most simple property ag-
gregation is to get the cardinality of a group (used in
the computation of most metrics). Depending on the
type of properties of the entities belonging to the group
more such aggregations can be imagined (e.g., sum or
average for numerical properties, maximum length for
strings, logical AND for booleans).

3.2 The Structure Based Approach

In this section we are going to present how the key
mechanisms identified before are expressed in the struc-
ture based approach. For each mechanism, we are going
to illustrate its expression by using an ongoing example.
Every implementation is written in Java and uses heavily
the model of the system. It is stored is a suite of col-
lections (e.g., sysPackages, sysClasses) whose el-
ements contain information about the relevant design enti-
ties extracted from the source code. The structure of a kept
entity is a class (e.g., Package, Class, Method).

Filtering. Example 1. From the analyzed system, we
want to obtain the package named my . package.

In order to obtain from a group the entities that satisfy
one or more conditions it is mandatory to iterate through
the elements of the group. This operation is done using a
cycling instruction, usually the while (like in 3) or for
instruction. It is also mandatory to apply the filtering condi-
tion to each element, using a branching instruction, usually
the if statement, like in 5. In Java 1.5, instead of the clas-
sic cycling instructions, we can use foreach. In our ex-
amples we did not used it because not every structure based
approach provides it and its use only eliminates the need of
a cast instruction, like the one in 4.

1 Package myPack;
2 Iterator it = sysPackages.iterator();

YF]',F.

COMPUTER
SOCIETY

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

while (it.hasNext ()) {

myPack= (Package) it .next () ;

if (myPack.getName () .equals ("my.package"))
break; }

o Ul B W

Thus, a simple operation like the one presented in this ex-
ample requires a significant overhead that reduces the read-
ability of the code and, thus, hampers its maintenance. As
we will see next, this complexity increases if we need to
navigate deeper in the hierarchy of containment and it gets
even more obfuscated if the filtering conditions are “dis-
persed” through all the navigated entities.

Navigation. Example 2. From the analyzed package, we
want to obtain the group of the defined methods (excluding
global functions).

As it can be noticed in Figure 2.1, the defined methods
do not directly belong to a package, they belong to classes.
Due to this, in order to obtain the desired group of methods,
we need to pass two levels in the hierarchy of containment.

Collection methods=new ArrayList () ;
core.Class crtClass;
it=myPack.getClasses () .iterator () ;

while (it.hasNext ()) {
crtClass=(core.Class)it.next () ;
methods.addAll(crtClass.getMethods())};

o Ul wN R

The navigation to the level of classes in the hierarchy whose
root is the result of the first example, as you see in 3, is
not difficult because passing one level means the access of
an aggregated entity (in this case the collection of classes).
Moving to the level of methods implies the iteration from
4. The iteration is done, like in the case of the filtering
mechanism, using a cycling instruction.

What if we needed to navigate to the level of parameters?
It is obvious we would perform one more iteration inside the
one from 4. As long as we navigate deeper, the obfuscation
of the implementation increases.

Selection. Example 3. From the defined methods in the
analyzed package, we want to obtain only their names and
signatures.

The result of this analysis is a collection which contains
less information about the defined methods in the package
called my . package than the previous one. Each element
from the result contains only the name and signature of a
method and is an instance of the DetailedMethod class.

1 class DetailedMethod{
2 private String name, sign;}

For each defined method we create an element that has a
reduced structure and it is added to the result. Storing in-
formation in this new element requires the calls of some

accessor methods®. Thus, reducing the information defined
by the meta-model requires a lot of operations which increas
the size of the implementation.

Set Arithmetic. Example 4. From the analyzed pack-
age, we want to obtain the defined operations (methods and
global functions).

We have obtained in the second example all the methods
from the analyzed package. The only thing that remains
is to unify them with the global functions defined in the
package. Fortunately, the global functions are obtained in 1
by passing only one level in the hierarchy of content.

1 Collection globals = myPack.getGlobalFunctions() ;
2 methods.addAll (globals) ;

Due to the library support for manipulation of collections
provided by Java, the union operation between the collec-
tion of methods and the global functions (see line 2) can
be expressed in a straightforward way. But in a structure
based approach which does not provide the aforementioned
support, writing such union would required more operations
(e.g., writing iterations, comparisons).

Property Aggregation. Example 5. From the analyzed
package, we want to obtain the number of its classes.

1 int classNo=myPack.getClasses.size();

Like in the mechanism presented before, the library support
for manipulation of collections allows a simple expression
of this mechanism and its absence would increase the com-
plexity of the implementation.

3.3 The Repository Based Approach

In this section we are going to present how the key mech-
anisms identified in Section 3.1 are expressed in the repos-
itory based approach. We illustrate for each mechanism its
expression by using the same example like the one in Sec-
tion 3.2. In the following implementations each design en-
tity is stored in a table, the columns whose names end with
ID are primary keys, foreign keys and the interrogation is
done using the SQL language.

Filtering. If the group whose cardinality we want to re-
duce is stored in only one table, the implementation of the
filtering mechanism is expressive due to the where clause,
like below.

1 select x from t_packages
2 where f name="my.package"

4We did not provide the implementations of the accessor methods de-
fined in the DetailedMethod class

YF]',F.

COMPUTER
SOCIETY

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

But when the group is obtained by interrogating more than
one table the expression of the filtering mechanism becomes
obfuscated because in the where clause we have, beside
the conditions for filtering, other conditions that assure the
interconnections between tables.

Navigation. The navigation between a design entity from
a level to another entity or to a group of entities from a
deeper level can be mainly done in two ways.

The first form of navigation we present is the one in
which we use only one querying instruction which takes
data from all the passed through design entities (in this case,
from operations, classes and packages) and assures the in-
terconnection between the elements in the where clause
(see line 4 and 5). In the where clause is also implemented
the filtering mechanism (we are interested in the methods
which belong to the package called my . package). This
mixture of purposes from 3 to 5 in the selection condition
drastically reduces the understanding of this implementa-
tion.

1 select F.* from t_ packages as P,

2 t_classes as C,t_operations as F,
3 where P.f name="my.package"

4 and C.f_packageID=P.f packageID

5 and F.f classID=C.f classID

The other way in which the navigation can be done is pre-
sented below . We use a number of querying instructions
which equals the number of levels we pass through (in this
case 3) and, beside the querying instruction associated with
the reached level, every other is embedded into the one re-
garding the next level. This way the filtering condition is
separated from those referring to the interconnection but
having a select inside another select does not make
the implementation more understandable.

1 select * from t_operations as F inner join
2 (select f classID from t_classes as C

3 inner join

4 (select f_packageID from t_packages

5 where f package="my.package") as P

6 on C.f clasID=P.f classID)
7 on F.f classID=C.f classID

Selection. This mechanism, usually, is not difficult to im-
plement in a repository based approach. Establishing the
fields of interest associated with an entity requires an enu-
meration of fields, like the one from 1.

1 select f name, f signature from t_operations

5This particular implementation is based on the MYSQL inner join
mechanism. Most of the the SQL dialects don’t support this.

Set Arithmetic. The union of two or more groups can be
rapidly done using the UNION command. But this com-
mand always needs at least two select instructions which
compute the groups that are going to be unified and we have
seen that sometimes the select instruction might have an
obfuscated expression.

select F.x from t operations as F,
t_classes as C,t_packages as P
where F.f classID=C.f classID

and P.f name="my.package"

and C.f_packageID=P.f packageID

select F.x from t_operations as F,
t_packages as P

where F.f_ classID=P.f_globallD

0 and P.f name="my.package"

1
2

3

4

5

6 UNION
7

8

9

1

The first operand within the previous UNION instruction
is the same as the one created in the paragraph regarding
the Navigation. But why did not we reuse it? Modular-
ity, the main mechanism that provides reusability, despite
the introduction of user-defined functions, is still weak in
SQL:99[13], a superset of SQL:92. For example, in Mi-
crosoft SQL Server 2000 user-defined functions have some
restrictions placed upon them[10]: not every SQL statement
or operation (e.g., statements that update, insert, or delete
tables or views) is valid within a function. This weakness
of the modularity harms the implementation and, obviously,
the maintenance.

Property Aggregation. Usually, the repository based ap-
proach provides a lot of operators for aggregation that re-
duce the complexity of the implementations.

1 select COUNT(C.x) from t_classes as C,

2 t_packages as P
3 where P.f name="my.package"
4 and C.f packageID=P.f packageID

3.4 Comparative Discussion

In this section we are going to compare briefly the im-
plementations of the mechanisms presented in Section 3.1
in a structure based approach and in a repository based ap-
proach. Figure 3 presents the characteristics of the imple-
mentations regarding simplicity.

In a structure based approach Filtering requires an iter-
ation over the elements that are filtered and for each ele-
ment is mandatory to apply the filtering condition while in
a repository based approach this operation does not have
such complexity.

None of the compared approaches provides support for
a simple expression concerning Navigation between more
than one level.

Selection requires a lot of operations in the structure
based approach while in the repository based approach this

YF]',F.

COMPUTER
SOCIETY

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

Set Property

Filtering |Navigation | Selection Arithmetics| Aggregation

Structure-

Based x X x

Approach

Repository- 5
Based ‘z/ x ‘N'/ x ‘a/

Approach

Figure 3. Key mechanisms’implementations

mechanism requires only the structure of the remained in-
formation.

The implementation of the Ser Arithmetic mechanism is
quite simple in the structure based approach but only if the
used language provides library support for the manipulation
of collections; if not, it requires a lot of iterations. In the
other approach, the mechanism requires at least two Nav-
igation steps and because the expression of the navigation
itself is not simple, the expression of Setr Arithmetic is ob-
fuscated, too.

The Property Aggregation is provided by the repository
based approach, while in the other one approach it might be
missed out (like in the case of Ser Arithmetic).

Because the structure based approach provides modular-
ity, it allows us to reuse analyses and compound them into
more abstract and complex ones. The weak modularity pro-
vided by the repository based approach severely reduces the
aforementioned properties.

4 The SAIL Language

As mentioned in the beginning, the main goal of this pa-
per is to identify the causes of the complexity overhead that
appears in the implementation of design metrics and to sug-
gest how programming languages could support in a better,
more simplified way, the writing of metrics. In the previous
section we identified the key mechanism involved in met-
rics’ implementation and discussed the limitations of cur-
rent approaches. In this section we will introduce SAIL,
a dedicated language that we defined and successfully used
for the implementation of metrics and further design related
structural analyses. The role of SAIL in this paper is mainly
to illustrate how the identified mechanism could be more
efficiently implemented at a language level, so that the var-
ious complexity overheads identified in Section 3 would be
removed.

After the presentation of the Meta-Model we are going to
present how each key mechanism is implemented in SAIL,
using the examples defined in Section 3.2.

4.1 Meta-Model Approach in SAIL

In SAIL the meta-model is represented as an intercon-
nected set of predefined data structures (e.g., Package,
Class, Method). A structure groups a number of fields
of different types. What types? A structure may contain el-
ementary types (a package has a name), structured types (a
variable is an instance of a class) and collections (a pack-
ages has classes, a class has methods). The information
extracted from the analyzed system is stored and accessed
as predefined collection variables (e.g., sysPackages,
sysClasses, sysMethods). We are not going to dis-
cuss how are these predefined collections fulfilled because
this is beside the point of this paper.

4.2 Filtering

In the beginning of this section we are going to provide
the implementation in SAIL of the first example defined in
Section 3.2.

In 1 we declare the package which will store the result.
But in order to make it store the information about the pack-
age called my . package we need the assignation from 2.
The value that is assigned to myPack is the result of a

query.

1 Package myPack;
2 myPack = select (x) from sysPackages
3 where name="my.package";

On one hand, the efficient querying mechanism introduced
in SAIL (i.e., the select statement) contributes deci-
sively to reducing the complexity overhead found in struc-
ture based approaches when complex navigation must be
combined with filtering. On the other hand, because query
results can be stored in SAIL variables, it becomes pos-
sible to “break down” the excessively complex monolithic
queries often encountered in the repository based approach.
Thus, the intelligence of the query can be better modular-
ized, making the analysis easier to understand. The filter
condition might be complex but in SAIL we can encapsu-
late its complexity into one or more functions. Mandatory,
the return type of the used function in the where clause is
boolean. A called function inside the select instruc-
tion increases the readability of this statement and in the
same time it serves the modularity criteria by letting those
functions be reused in the context of another analysis.

4.3 Navigation

The navigation in SAIL has a facile expression. Passing
one level down in the hierarchy of contents means, like in
the structure based approach, the access of an aggregated
entity. Every deeper navigation requires the use of the as-
signment and the select statements. But the difference

YF]',F.

COMPUTER
SOCIETY

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

between the presented approaches and SAIL is the absence
of the embedded select instructions which creates a clear
implementation of the Navigation mechanism.

For the exemplification, in 2 we pass to the levels of
methods belonging to the package obtained before by us-
ing the aforementioned instructions.

1 Method[] methods;
2 methods = select (methods) from myPack.classes;

If we liked to navigate to the level of defined variables in
the methods, we would write one more select like below.

3 Variable[] variables;
4 variables = select (variables) from methods;

We can also navigate from the entity myPack directly to
the level of variables, like in 5.

5 variables = select (classes.methods.variables)
from myPack;

The collection in the £rom clause of the select instruc-
tion can be simple (like in the previous examples) or com-
pound (e.g., resulting from the union of two or more col-
lections of the same type, from the call of a function whose
result is a collection).

4.4 Selection

In order to perform a selection we need to define a struc-
ture which has only fields whose values are interesting for
us. In 1 we define a new structure type which contains only
the name and the signature of the method.

1 struct DetailedMethod{
2 string name;
3 string sign; };

Filling a collection of this type, like in the repository based
approach is done by enumerating the interesting fields
within the select instruction.

4 DetailedMethod[] detailed;
5 detailed = select (name, sign) from methods;

4.5 Set Arithmetic. Property Aggregation

SAIL provides support for the manipulation of collec-
tions and, consequently, writing an union of two or more
collections requires only one operation (like in 3). Beside
the union, SAIL brings support for the well-known inter-
section and difference operations with collections (all of
them can be done between collections or between a collec-
tion and a structure variable of the same type as the ele-
ments of the collection). The collection arithmetic provided
by SAIL also includes support for computing the cartesian
product between two or more collections.

1 Method[] globals = myPack.globalFunctions;
2 methods += globals;

In SAIL we have two types of aggregation operators. The
first type of aggregation operators use directly a collection
(an example of this is provided in 3).

3 int classNo = myPack.classes.#;

The other category of aggregation operators, instead of a
direct use of a collection, embeds a collection within the
select instruction, like in 4.

4 classNo = select count (x) from myPack.classes;

5 Comparative Evaluation of Approaches

In this section we propose a comparative evaluation be-
tween the implementations of different object-oriented de-
sign metrics. We have implemented a suite of over 40 met-
rics in a structure based approach (using Java), a repository
based approach (using SQL) and SAIL. Table 1 provides
some characteristics about the implementation of the afore-
mentioned suite.

y [Java [SQL [SAIL |
LOC [1650 [1073 | 1461
Size | 37580 | 48057 | 31012

Table 1. The implementations’characteristics

The number of lines of code (LOC) of the SQL imple-
mentations is smaller than any others. But in this case it
does not mean a shorter implementation. If we take a look
at the second row of the table, we find the SQL implemen-
tations are the largest in terms of bytes. On average, a SQL
line of code contains 44.73 bytes while the one written in
Java and SAIL have 22.8, resp. 21.2 bytes.

According to Ghinsu’s[11] code reduction module, there
are some general properties that usually characterize sim-
pler programs: they are shorter in size, have fewer variables
and fewer nested constructs[23].

Metrics written in SAIL are shorter in size than any oth-
ers. We are going to illustrate how the rest of the properties
mention before are fulfilled in SAIL by presenting details
about the implementations of two metrics, Tight Class Co-
hesion (TCC)[3] and Changing Methods (CM)[17].

TCC is defined as the relative number of directly con-
nected methods defined in the analyzed class. Two methods
are connected if they access a common instance variable of
the class. In Java, beside imports, declarations and assign-
ments, the implementation requires two embedded cycling
instructions through the defined methods in the class and

YF]',F.

COMPUTER
SOCIETY

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

[LOC | Java | SQL | SAIL |
TCC | 53 [31 | 21
CM | 89 | 25 | 25

Table 2. LOC for TCC and CM

| Size | Java | SQL [SAIL |
TCC | 2016 | 1346 893
CM | 3600 | 1152 | 933

Table 3. Size in bytes of TCC and CM

between each member of the pair of methods (inside the cy-
cling instructions) we have to check if there is a common
access. Finding the common access requires the use of an-
other cycling instructions. Thus, the Java implementation of
TCC has 3 nested cycling instructions and 13 variables. The
implementation in SQL consists in the creation of 3 tempo-
rary tables that are filled by using 3 select instructions.
Beside this we also have 3 embedded select instructions.
In SAIL the expression of TCC has 4 variables and does
not contain any nested cycling instructions. The simplicity
is provided by the powerful Navigation mechanism doubled
by the proper operation for manipulating collections (e.g., in
this case, the cartesian product between the methods of the
analyzed class).

CM measures the dispersion of the changes, (i.e., in how
many classes are spread the methods that are potentially af-
fected by a change in the given class). A method depends
on a class if invokes methods or redefines methods defined
in the class or accesses its attributes. Obviously, the result
of this analysis is a union of three collections. In Java, CM
contains 19 variables and 3 cycling instructions and each of
them embeds at least another cycling instruction. In SQL
the implementation consists of a union of the three involved
entities and this union is surrounded by 2 select state-
ments. In SAIL we have 3 variables. Finding the overrid-
den methods is done using 2 select statements and ob-
taining the others involved collection requires another two
select statements. But the miss of the embedded instruc-
tions brings clarity into the implementation.

6 Related Work

We dedicate this section to a briefing of several repre-
sentative solutions that fall in (or are closely related with)
the two implementation approaches: the structure based
and the repository based one. Eventually, we are going to
discuss the relation between SAIL, Embedded SQL, OQL
and GOQL approaches as apparently they are similar.

Approaches Based on Structural Models. The ap-
proaches based on structural models are used both in
the research and the commercial world. One research
environment that is based on such approach is Moose[6].
This platform uses an object-oriented meta-model, is
implemented in Smalltalk and is used intensely for vari-
ous structural analyses in the context of object-oriented
re-engineering. Due to the language powerful support for
collections and, especially, to the select message that
can substitute the SQL SELECT, this approach is the only
adequate alternative to SAIL that we found so far. On
the commercial side a good (and popular) example is IBM
Eclipse[21] which also defines an object-oriented repre-
sentation of the meta-model and supports the definition of
metrics via a Java API. Thus, metrics must be written as
Java programs. As we have seen in Section 3.4 this makes
their writings verbose and complex due to an insufficient
support for navigation and filtering.

Approaches Based on Repository Models. An interest-
ing one is found in[4], where Ciupke proposes an approach
and a tool kit for detecting automatically violation of design
heuristics like those defined by Riel[19]. For this, he stores
the system model in form of Prolog fact repository, while
the heuristics are implemented as queries on this repository.
The queries are formulated as Prolog rules that analyze the
model and deliver the locations of problems. As the author
himself acknowledges, this approach requires logical pro-
gramming skills and even so, is adequate only for structural
analyses of moderate complexity. In spite of its limitations,
this approach illustrates the fact that repository-based ap-
proaches are not limited to relational databases and SQL
programming.

A commercial tool for auditing that takes the reposi-
tory approach for defining analyses is Audit C/C++[5].
The tool was also used in the context of re-engineering
research[20, 2] mainly for the implementation of design
metrics. In this concrete case the source code model is
stored in form of a set of 4-5 plain ASCII data tables with
a predefined format. They build the repository. Analyses
are then written in CQL, which is a subset of SQL mainly
focused on the interrogation instruction (SELECT). All
the disadvantages and limitations already discussed in
Section 3.4 are totally applicable in this case[14].

Embedded SQL. The term embedded SQL refers to SQL
statements placed within a procedural (or object-oriented)
program. This approach improves the modularity of the
code over standard SQL and it does also allow the use of cy-
cling and decisional instructions. For example PL/SQL[9]
is a procedural language that was designed to fill the gaps
of standard SQL by allowing Oracle database developers
to interface with the underlying relational database in an

YF]',F.

COMPUTER
SOCIETY

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

imperative manner. PL/SQL is analogous to the embedded
procedural languages for other relational databases (e.g.,
Transact-SQL, PL/pgSQL etc). What makes embedded
SQL different from our approach? Apparently, SAIL is just
a procedural language that “embeds” an SQL-like SELECT
statement. The main difference resides in the relation
between the data model and the language instructions
that manipulate the data. In embedded SQOL the model of
the analyzed code is still stored in a relational database
and therefore the “intelligence” of metrics that need a lot
of navigation and filtering tends to be still centralized in
complex SELECT statements. Thus, it is hard to distribute
their logic between the declarative statements (i.e., SQL’s
SELECT) and the imperative statements (e.g., loops,
branches etc) because the data model is not directly manip-
ulable in a procedural manner. On the contrary, in SAIL
the model, based on data structures, can be used without
any overhead both in the imperative statements and in the
SELECT instruction. This lack of overhead in accessing
the model reduces the complexity when implementing
metrics in SAIL.

OQL. Even object-oriented database systems did not gain
general acceptance yet[13], we are going to emphasize
some similarities and differences between SAIL and
OQL[8], an object-oriented query language. Both of the
languages have a select instruction, similar to the one
found in SQL. Within the select instruction from OQL
the Navigantion can not have the facile expression like the
one in SAIL. In OQL we can not navigate with only one
select from an entity two levels down in the hierarchy
of contents as long as the first level we pass through is a
collection of entities. OQL can be used interactively in
the command prompt or as a function called from other
languages (e.g., C++, Java, O2C - a programming lan-
guage specialized for developing object-oriented database
applications[7]). It is obvious the first way of using OQL
does not fit ours needs. Concerning the second way of using
OQL, we are going to present how OQL is used within
O>C. O2C has a predefined function o2query which has
a parameter that embeds the OQL select instruction. In
this case, the expression of selection’s criteria is actually
a string and is not validated by the compiler before
passing it to OQL. In addition, in SAIL the mechanism of
querying is integrated directly into the language.

GOQL. GOQL is an OQL-like query language, for query-
ing graphs[22]. GOQL has, like OQL, the traditional
select instruction from SQL. But in the where clause
of the instruction, beside the conditions for filtering, we
have also conditions regarding the interconnection of the
elements that, like in SQL, obfuscate the expression of the
Navigation.

7 Conclusions. Future Work

Structural analyses are getting more and more complex.
We have identified a set of key mechanisms based on which
code analysis are built: navigation, selection, set arithmetic,
filtering and property aggregation. We have analyzed in
detail two major analyses’approaches and found out that a
considerable complexity overhead is due to insufficient lan-
guage support for the key mechanisms identified in the be-
ginning. The implementation approaches based on proce-
dural or object-oriented programming languages are espe-
cially unsatisfactory for non-trivial combinations of model
navigation and filtering. The approaches based on query-
ing a repository have another major problem: they miss
adequate mechanisms that would support a better modular-
ization. This oftentimes leads to analyses that consist of a
monolithic query, which is very hard to maintain.

In this paper we introduce SAIL, a language designed to
offer a proper support for all the needed key mechanisms.
There are three major ideas in SAIL:

1. The integration of query mechanism (i.e., the
select) in a very simple structured programming
language which is syntactically very close to known
programming languages like C and Java. This brings
a twofold advantage: the language “grabs” the key ad-
vantages of a query language and it requires almost no
learning effort for a programmer, due to its syntactic
similarity with C and Java.

2. The representation of the data model in SAIL, al-
though totally based on data structures, can be used
without any overhead both in imperative statements
and in the query mechanism.

3. The simple manipulation of collections in SAIL
proved to play an important role in simplifying the
writing of metrics (or metrics-related analyses). This
is mainly because, as we have seen in this paper, set
operations are an essential building stone in all non-
trivial analyses.

The paper validates the claim that the use of SAIL would
lead to a simplified expression of metrics (or metrics-related
analyses) by comparing the size and complexity of imple-
mentation for a suite of over 40 metrics, most of them quite
complex (e.g., TCC and CM which are also discussed in
more detail). These metrics were all implemented in Java,
SQL and respectively SAIL. One one hand, the compar-
ison has revealed that SQL implementations usually need
less lines of code to be implemented than Java or SAIL but
the complexity of each line highly exceeds those of found
in the approaches based on structural/object-oriented pro-
gramming. On the other hand, comparing SAIL and Java

YF]',F.

COMPUTER
SOCIETY

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

implementations, metrics written in SAIL prove to be sig- [11] PE. Livadas and PK. Roy. Program dependence

nificantly more concise than those implemented in Java. analysis. In Proc. IEEE Conference on Software Main-

This supports the hypothesis that while keeping the “shape” tenance, 1992.

gi: pljzfec:;llrlalu{:megsuage, SAIL adds to it the conciseness [12] M. Lorenz and J. Kidd. Object-Oriented Software
quety fanguages. Metrics. Prentice-Hall, 1994,

Acknowledgments This work is supported by the Austrian [13] W. Mahnke and H. Steiert. Modularity in ORDBMSs-

Ministry BMBWK under Project No. GZ 45.527/1-VI/B/7a/02. A new Challenge. ~ Grundlagen von Datenbanken,

We owe a lot to Violeta Voinescu for taking her time to review 2001.

the paper and to Daniel Cioatd for testing intensively the SAIL [14] R. Marinescu. The Use of Software Metrics in the

interpreter. Last but not least we would like to thank the LOOSE Design of Object-Oriented Systems. Diploma Thesis,

Research Group for being such a great and challenging team. *Politehnica” University Timisoara, 1997.

Ref [15] R. Marinescu. Using Object-Oriented Metrics for

CIETEnces Automatic Design Flaws in Large Scale Systems.

In Serge Demeyer and Jan Bosch, editors, Object-

[1] J. Bansiya and C.G. Davis. A Hierarchical Model for Oriented Technology (ECOOP’98 Workshop Reader).

Object-Oriented Design Quality Assessment. [EEE Springer-Verlag, 1998.
Transactions on Software Engineering, 2002. . .)
[16] R.Marinescu. A Multi-Layered System of Metrics for

[2] H. Bir, M. Bauer, O. Ciupke, S. Demeyer, S. Ducasse, t.he Measurement O_f Reuse by Inheritance. In Proceed-
M. Lanza, R. Marinescu, R. Nebbe, O. Nierstrasz, ings of TOOLS Asia, 1999.

M. Przybilski, T. Richner, M. Riegejr, C. Riva, [17] R. Marinescu. Measurement and Quality in Object-
A. Sassen, B. Schulz, P. Steyaert, S. Tichelaar, and Oriented Design. PhD thesis, "Politehnica” University
J. Weisbrod. The FAMOOS Object-Oriented Reengi- of Timisoara, 2002.
neering Handbook. 1999.

[18] R. Marinescu. Detection strategies:metrics-based

[3] J.M. Bieman and B.K. Kang. Cohesion and Reuse in rules for detecting design flaws. In Proc. IEEE Inter-
an Object-Oriented System. Proc. ACM Symposium national Conference on Software Maintenance, 2004.

R ility, 1995.
on Software Reusability, 1995 [19] AJ. Riel Object-Oriented Design Heuristics.

[4] O. Ciupke. Automatic Detection of Design Problems Addison-Wesley, 1996.
in Object-Oriented Reengineering. In Technology of [20] A.M. Sassen and R. Marinescu. Metrics-Based Prob-
Object-Oriented Languages and Systems, 1999. lem Detection in Object-Oriented Legacy Systems Us-

. ing Audit-Reengineer. In Proceedings of the ECOOP

[5] Sema Group Corp. User Manual Concerto2/Audit- Workshop on Experiences in Object-Oriented Re-
CC++. Sema Group, France, 1998. Engineering, 1999.

[6] S. Ducasse, M. Lanza, and S. Tichelaar. Moose: [21] S. Shavor, J. DAnjou, and J. Kellerman P. McCarthy
an extensible language-independent environment for S. Fairbrother, D. Kehn. The Java Developer’s Guide
reengineering object-oriented systems. In Proceed- to Eclipse. Addison-Wesley, 2003.
ings of the Second International Symposium on Con- 291 Lei Sh 7 Meral &) d lteki
structing Software Engineering Tools, 2000. [22] Lei Sheng, Z. Meral Ozsoyoglu, an .Gu tekin

Ozsoyoglu. A graph query language and its query

[7] Deux etal. The O, System. Communications of ACM, processing. In Proc. International Conference on Data
1991. Engineering, 1999.

23] E. Skordalaki dN. P . Ghinsu’ d

[8] R. Cattell et al. The Object Data Standard. Morgan [23] oraaiatis ai Apaspyron G insu’s Code
Kauf 2000 Reduction Module. Software Engineering Laboratory,

auimann,) National Technical University, Athens, 1995.
[9] S. Feuerstein. Oracle PL/SQL Programming, 3rd ed. [24] S. Tichelaar. Modeling Object-Oriented Software for

O’Reilly and Associates, 2002.

[10] K. Gayda. Introduction to Transact SQL User-Defined
Functions. Jupitermedia Corp, 2000.

Reverse Engineering and Refactoring. PhD thesis, In-
stitute of Informatics and Applied Mathematics, Uni-
versity of Bern, 2001.

YF]',F.

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

COMPUTER
SOCIETY

