
Supporting Software Development through

Declaratively Codified Programming Patterns

Kim Mens, Isabel Michiels Roel Wuyts
{ kimmens | Isabel.Michiels }@vub.ac.be Roel.Wuyts@iam.unibe.ch

Programming Technology Lab Software Composition Group
Department of Computer Science Institut für Informatik
Vrije Universiteit Brussel, Belgium Universität Bern, Switzerland

Abstract

In current-day software development, programmers
often use programming patterns to clarify their in-
tents and to increase the understandability of their pro-
grams. Unfortunately, most software development en-
vironments do not adequately support the declaration
and use of such patterns. To explicitly codify these
patterns, we adopt a declarative meta-programming ap-
proach. In this approach, we reify the structure of an
(object-oriented) program in terms of logic clauses. We
declare programming patterns as logic rules on top of
these clauses. By querying the logic system, these rules
allow us to check, enforce and search for occurrences
of patterns in the software. As such, the programming
patterns become an active part of the development and
maintenance environment.

Keywords: programming patterns, logic program-
ming, meta-programming, tool support

1 Introduction

Contemporary software development practice re-
gards software construction as an incremental and con-
tinuous process that involves large development teams.
In such a context, it is crucial that the software is as
readable as possible. One cannot afford that program-
mers have to wade through piles of documentation and
code to understand the software or to discover the in-
tents of the original programmers. Instead, they should
spend their precious time to tackle the real problem
(that is, the task of programming itself, i.e. conceptu-
alizing, designing, implementing and maintenance [7]).

By using commonly accepted programming (and de-
sign) patterns, it becomes much easier for programmers
to communicate their intents [1]. A problem with ad-

hoc patterns, however, is that they are not supported
by the programming language nor by the development
environment. For example, whether or not a certain
programming pattern is consistently used throughout
a program solely depends on the programmers’ disci-
pline.

By relieving the mind of all unnecessary work,
a good notation sets it free to concentrate
on more advanced problems, and in effect in-
creases the mental power of the race.

Alfred North Whitehead

To allow programmers to gain maximum profit from
the extra information that is encoded in patterns, there
is a need for tools that support the use of such patterns.
We envision the patterns as becoming an explicit and
active part of the development environment. Some ac-
tivities that such an environment should support are:

• checking whether a piece of source code matches
a pattern;

• finding all pieces of code that match a pattern;

• searching for all occurrences of patterns that were
used to program a piece of source code;

• detecting violations of the usage of a pattern;

• enforcing the consistent use of a pattern through-
out a program;

• generating code that matches a pattern.

This paper advocates the use of a declarative meta-
language for expressing and reasoning about program-
ming patterns in object-oriented programs.

2 Declarative Meta-Programming

Declarative meta-programming (DMP) is an in-
stance of hybrid language symbiosis, merging a declar-
ative language at meta-level with a standard (object-
oriented) base language. Base-level programs are ex-
pressed in terms of facts and rules at the meta-level.
Programming patterns are expressed as rules that rea-
son about the clauses representing those base-level pro-
grams. By querying the logic system, the rules can be
used to check, detect, search for occurrences of and
even generate code fragments from programming pat-
terns. Before discussing what the programming pat-
tern rules look like, we first elaborate on the base and
meta-language.

As declarative meta-language, we use a Prolog-
variant. Logic programming has long been identified
as very suited to meta-programming and language pro-
cessing in general. Prolog’s expressive power (e.g. uni-
fication and backtracking) and its capacity to support
multi-way reasoning1 are particularly attractive to rea-
son about patterns.

Although DMP can be applied to programs written
in any programming language, in this paper we take the
object-oriented language Smalltalk as base language.
One reason for choosing Smalltalk for our experiments
is that there exists a “Smalltalk culture” which makes
that Smalltalk programmers use a lot of well-known
patterns to express important intents [1, 3], but for
which no explicit language constructs are available.

2.1 Setup

A DMP environment consists of 4 main elements. In
a logic language, we declare programming patterns as
logic meta-programs that reason about programs writ-
ten in an (object-oriented) base language. The logic
meta-programs are stored in a logic repository. The
base-level language constructs are stored in an imple-
mentation repository that can be accessed from within
the logic language, by means of a meta-level interface.

For the experiments in this paper, we used the logic
language SOUL [8] to allow powerful logic reasoning
about Smalltalk programs. SOUL was implemented
in Smalltalk and contains a primitive construct, called
“Smalltalk term”, for evaluating Smalltalk expressions
as part of logic rules. This allows SOUL clauses to
reason about Smalltalk source code by making direct
meta-calls to the Smalltalk image.

1A prototypical example is the append/3 predicate, which
can be used to append two lists, check whether a list is the
concatenation of two others, check for and generate prefixes and
postfixes of a list, and so on.

2.2 The Representational Mapping

The representational mapping defines the meta-level
interface between the declarative meta-language and
the object-oriented base language. For each base-
language construct we want to reason about at meta-
level, there is a logic fact or rule which reifies that
construct at meta-level. Figure 1 lists some of the pred-
icates that constitute this representational mapping.2

Reification is achieved by using SOUL’s symbiosis
with Smalltalk to access the Smalltalk image directly
by executing a piece of Smalltalk code as part of a
logic rule. E.g., the SOUL rules below reify the notion
of ‘classes’: 3

Rule class(?Class) if
constant(?Class),
[Smalltalk includes: ?Class name].

Rule class(?Class) if
variable(?Class),
generate(?Class, [Smalltalk allClasses]).

The first rule declares what happens when the class

predicate is called with a constant value. In that case,
the special Smalltalk term [Smalltalk includes: ?Class

name] checks whether the value represents an existing
class in the Smalltalk image. Note that a Smalltalk
term used in the position of a predication is required to
return true or false. The second rule is applied when
?Class is variable. In that case, a primitive generate

predicate is used to unify that variable (the first argu-
ment of the predicate) with each of the classes present
in the Smalltalk image. This is done by executing the
Smalltalk expression between square brackets, which is
provided as second argument to the generate predicate.
A Smalltalk expression used in a generate predicate is
supposed to return a collection of results.

Given these rules, the query Query class([Array])

verifies whether Array is an existing class in the
Smalltalk image, whereas the query Query class(?Class)

unifies ?Class with a class in the Smalltalk image. Note
that a Smalltalk term used in the position of a logic
term can return any value.

2In this table, a variable ?C represents a Smalltalk class, ?M a
method parse tree, ?N a method name, ?V an instance variable
name, ?P the name of a Smalltalk method protocol, ?MC a
Smalltalk meta-class, ?Stats a list of Smalltalk statements and
?Args a list of names of argument variables.

3In SOUL, the keyword if separates the body from the head
of a Rule ; logic variables start with question marks; a comma
denotes logical conjunction; lists are delimited with <> and
terms between square brackets represent Smalltalk expressions
that may contain (bound) logic variables.

Predicate Meaning
class(?C) ?C is a class
classImplementsMethod(?C,?N,?M) class ?C implements method ?M with name ?N

methodArguments(?M,?Args) method ?M has argument list ?Args
methodClass(?M,?C) method ?M belongs to class ?C
methodName(?M,?N) method ?M has name ?N

methodStatements(?M,?Stats) method ?M has list of statements ?Stats in its body
instVar(?C,?V) class ?C has instance variable with name ?V

isSentTo(?C1,?C2,?N,?Args) in class ?C1 message ?N with argument list ?Args is sent to receiver ?C2
metaClass(?C,?MC) class ?C has meta-class ?MC

methodInProtocol(?C,?P,?M) method ?M of class ?C belongs to method protocol ?P
subClass(?C1,?C2) class ?C1 has subclass ?C2

Figure 1. The representational mapping

Other rules that reify Smalltalk language constructs
are defined in a similar way; see [5, 9] for more exam-
ples. In the next section, we show how best practice
patterns, design patterns and other programming pat-
terns can be encoded in SOUL.

3 Codifying Programming Patterns

Every programming language has its set of patterns
that experienced programmers follow to produce more
understandable code. They use such patterns to make
clear their intents and to improve the overall readabil-
ity of the software. Well-known kinds of such patterns
are best practice patterns [1], design patterns [4], design
heuristics [6], bad smells and refactoring patterns [2].
In this section, we illustrate some of these patterns and
show how they can be codified in a DMP medium.

3.1 Best Practice Patterns

Beck’s “Smalltalk best practice patterns” cap-
ture commonly accepted programming conventions for
Smalltalk [1]. They suggest how to choose clear names
for objects, instance variables and methods, how to
communicate the programmer’s intents through code,
how to write understandable methods, etc. As concrete
examples we discuss the Getting Method and Construc-
tor Method best practice patterns.

3.1.1 Getting Method

One way to make the distinction between state and
behavior more transparent is by hiding every access
to the state of an object by a message send. This is
the motivation behind the idea of accessing methods.
An accessing method is responsible for getting or set-
ting the value of an instance variable. All references to
an instance variable should be made by calling these

methods. Methods that get the value of a variable are
Getting Methods ; methods that set the value of a vari-
able are Setting Methods. The Getting Method best
practice pattern [1] states:

Getting Method How do you provide access
to an instance variable?
Provide a method that returns the value of
the variable. Give it the same name as the
variable.

One possible DMP implementation for representing
the structure of a Getting Method is given below. It
declares that the statement list of a Getting Method
consists of a single statement, which merely returns
the value of the instance variable ?V:

Fact gettingMethodStats(<return(variable(?V))>,?V).

Note that the above fact expresses only the simplest
form of a Getting Method. Other forms of Getting
Methods can be codified by adding similar facts or
rules. E.g., a Getting Method that uses ‘lazy initial-
ization’ has an extra statement to initialize the value
of the variable the first time the variable is retrieved.
Due to space limitations, we did not include these other
forms here.

The predicate gettingMethodStats only defines the
statement list of a Getting Method. To check whether
a method of a class is a Getting Method for some in-
stance variable, we need to verify that the instance
variable belongs to that class, that the method has the
same name as the variable and that the method returns
that particular instance variable.4

4The underscore symbol ‘ ’ denotes a special variable of which
the actual value is unimportant.

Rule gettingMethod(?Class,?Method,?InstVar) if
classImplementsMethod(?Class, ,?Method),
instVar(?Class,?InstVar),
methodName(?Method,?InstVar),
gettingMethodStats(?Stats,?InstVar),
methodStatements(?Method,?Stats).

This gettingMethod predicate states that ?Class has
an instance variable ?InstVar and a Getting Method
?Method that retrieves the value of that variable.5

3.1.2 The Constructor Method

The Constructor Method best practice pattern indi-
cates how you best express the creation of a class in-
stance [1]:

The Constructor Method. How do you
represent instance creation?
Provide methods that create well-formed in-
stances. Pass all required parameters to
them. (Put Constructor Methods in a method
protocol called “instance creation”.)

The fact that all Constructor Methods are, by con-
vention, put in the instance creation method protocol,
makes it very easy to codify this pattern:

Rule constructorMethod(?Class,?Meth) if
metaClass(?Class,?Meta),
methodInProtocol(?Meta,[#’instance creation’],?Meth),
returnType(?Meth,?Class).

In Smalltalk, Constructor Methods are defined on
meta-classes. Hence, we retrieve the meta-class and
verify that ?Meth belongs to its ‘instance creation’
method protocol. As an extra consistency check, we
verify that the Constructor Method returns an instance
of the correct type ?Class, by using an auxiliary predi-
cate returnType(?Meth,?Class).

This typing predicate returnType only ‘guesses’ the
type because Smalltalk is dynamically typed. To in-
fer the type of the expression that is returned by the
method, we look at all messages that are sent to that
expression (in the context where it occurs). A class
is a possible type for that expression if it understands
all these messages (if not, a ‘message not understood’
error may occur at run-time).

5To facilitate reasoning about method statements, a
?Method is represented as a logic data-structure that corre-
sponds to the method’s parse tree, rather than as a string con-
taining the original Smalltalk source code. The predicate meth-
odStatements/2 matches a list of Smalltalk statements with the
statements occurring in such a parse tree.

3.2 Design Patterns

Whereas best practice patterns define programming
conventions at the level of single classes, methods or in-
stance variables, design patterns [4] have a more global
scope and focus on typical class collaborations. As with
best practice patterns, we codify the structure6 of de-
sign patterns as logic meta-programs that reason about
the structure of a base-level program. As an illustra-
tion, we codify the Visitor design pattern (structure).

The general idea of the Visitor design pattern is to
separate the structure of some elements from the op-
erations that can be applied on these elements. This
separation makes it easier and more cost-effective to
add new operations, because the classes that describe
the element structure do not need to be changed. Sep-
arating the nodes of a parse tree from the different op-
erations performed on those nodes (such as generating
code, pretty printing, optimizing) is the typical exam-
ple where the Visitor design pattern offers a solution.

As shown in Figure 2, in the Visitor design pattern
structure there is a hierarchy describing the elements
and there is a separate hierarchy implementing the op-
erations. Assume that Element is the root class of
a hierarchy on which the subclasses of the class Vis-
itor define operations. Every Element class defines a
method accept that takes a Visitor as argument and
calls this visitor. This call is in general unique for that
element. The Visitor hierarchy consists of the classes
that define operations on the Element classes. They
just need to implement the calls made by the different
element classes.

The rule describing the structure of the Visitor de-
sign pattern is fairly straightforward. First of all, it de-
clares that ?Visitor is a class that implements the visit
method ?VisitSelector. In the same way, the class ?El

implements a ?Method called ?AcceptM. This method
is responsible for calling the visitor ?V with the actual
visit operation ?VisitSelector. Finally we need to verify
that one of the arguments of this call is the receiver (de-
noted by self in Smalltalk) and that the passed visitor
?V is an argument of the accept method:

Rule visitor(?Visitor,?El,?AcceptM,?VisitSelector) if
classImplementsMethod(?Visitor,?VisitSelector,),
classImplementsMethod(?El,?AcceptM,?Meth),
methodStatements(?Meth,

<return(send(?V,?VisitSelector,?VisitArgs))>),
member(variable([#’self ’]),?VisitArgs),

6Note that a design pattern captures more than only the
structure of a class collaboration. It also has a motivation, intent,
applicability, as well as relationships with other design patterns.
In this paper, however, we only focus on the structure of design
patterns.

Element

accept: aVisitor

ConcreteElement2ConcreteElement1
ConcreteVisitor1

Visitor

accept: aVisitoraccept: aVisitor

visitConcreteElement1: e
visitConcreteElement2: e

visitConcreteElement1: e
visitConcreteElement2: e

Figure 2. Visitor Design Pattern Structure

methodArguments(?Meth,?AccArgs),
member(?V,?AccArgs).

3.3 Other Programming Patterns

Next to best practice patterns and design patterns,
other patterns exist that check whether or not the soft-
ware is well designed or well structured. Examples are
Riel’s design heuristics [6] and Beck and Fowler’s bad
smells [2]. As a typical example consider the following
heuristic [6, Heuristics 5.6 and 5.7]:

All abstract classes must be base classes and
all base classes should be abstract classes.

This heuristic can be codified as follows:

Rule abstractClassHeuristic() if
forall(abstractClass(?Class),baseClass(?Class)),
forall(baseClass(?Class),abstractClass(?Class)).

where baseClass(?Class) checks whether ?Class is a
class from which another class inherits and abstract-

Class(?Class) checks whether ?Class is abstract by
verifying that it contains at least one abstract method.
In Smalltalk, abstract methods can be recognized
because they make a subclassResponsibility self send.
In other words, we check whether their statement list
matches the following pattern:
<send(variable([#’self ’]),[#’subclassResponsibility’],<>)>

A second example of a programming pattern for de-
tecting ill-designed code is the Duplicated Code bad
smell [2]:

Duplicated Code
. . . A common duplication problem is when
you have the same expression in two sibling
subclasses. . . .

This ‘bad smell’, together with its proposed solution,
is similar to Riel’s heuristic 5.10 [6], which suggests
when and how to refactor two classes that implement
the same state and behavior:

If two or more classes have common data and
behavior (i.e. methods) then those classes
should each inherit from a common base class
which captures those data and methods.

Below, we codify two rules that check for a common
expression in two classes.7 Two classes ?Class1 and
?Class2 have common behavior if they implement a
method with the same method body.

Rule commonBehavior(?Class1,?Class2,?Met1,?Met2) if
classImplementsMethod(?Class1, ,?Met1),
classImplementsMethod(?Class2, ,?Met2),
methodStatements(?Met1,?Statements),
methodStatements(?Met2,?Statements).

Having common data is codified as having a common
instance variable ?InstVar of the same type.

Rule commonData(?Class1,?Class2,?InstVar) if
instVar(?Class1,?InstVar),
instVar(?Class2,?InstVar),
instVarType(?Class1,?InstVar,?Type),
instVarType(?Class2,?InstVar,?Type).

Similar to the returnType predicate, our lightweight
type inference rules guess the type of an instance vari-
able by looking at all messages sent to that variable (in
the scope of its class) and computing all classes that
understand all these messages. In addition, initializa-
tion of variables, as well as factory methods and getting
and setting methods are taken into account.

4 Supporting Software Development

In the previous section we used DMP to declare
many kinds of programming patterns. In this section
we elaborate on how a programmer can use these rules
to support him when developing or maintaining soft-
ware. The rules can be used in different ways: checking

7To save space we only show the simplest implementation.

whether a certain pattern is satisfied, searching source
code that matches some pattern, detecting violations
of patterns, and even code generation.

4.1 Checking and Searching

Due to the multi-way reasoning capability of our
logic language, most predicates can be used in multi-
ple ways. To illustrate this, let us elaborate on the get-
tingMethod predicate of Subsection 3.1.1. When call-
ing the predicate with constant arguments, it merely
checks whether a given method of a given class is a
Getting Method for a given instance variable. When
the query contains variables, we search for all values
that satisfy the pattern. For example,

Query gettingMethod([ApplicationModel],?M,[#’builder’])

returns the Getting Method for the variable ‘builder ’
of the Smalltalk class ApplicationModel. We can even
use more than one logic variable, as in

Query gettingMethod([ApplicationModel],?M,?InstVar)

which finds all Getting Methods together with their
corresponding instance variable for the class Applica-
tionModel.

We can also use the predicate in the opposite way to
find all classes that have a Getting Method for a given
instance variable ‘name’:

Query gettingMethod(?Class,?Method,[#’name’])

Again, this query returns several results (one for each
of the classes that implements such a Getting Method).

Finally, we can call the predicate with variables only,
in which case all classes in the entire Smalltalk image
are searched for Getting Methods. Computing such a
query may take a very long time, however.

A similar reasoning can be made for all other pred-
icates that were defined in Section 3. As a second ex-
ample of “checking and searching” we revisit the com-

monBehavior rule of Subsection 3.3 that tells us when
to move common behavior in sibling subclasses to their
common base class. We can use the rule below to find
all classes ?C1 and ?C2 that should be refactored or
to detect whether two classes have some behavior in
common, and so on. The rule also returns the common
base class and the methods to be moved.

Rule behaviorRefactoring(?C1,?C2,?Base,?M1,?M2) if
subClass(?Base,?C1),
subClass(?Base,?C2),
commonBehavior(?C1,?C2,?M1,?M2).

4.2 Detecting Violations

Getting Method Coming back to the Getting
Method pattern, in addition to checking whether a
method is a Getting Method and searching the image
for occurrences of Getting Methods, we can also write
queries that check the source code for violations of the
Getting Method pattern.

Methods that violate the encapsulation imposed by
the Getting Method programming pattern are methods
that directly send messages to instance variables (with
the exception of Getting Methods themselves, because
they are the only ones allowed to do so). The rule for
detecting such violations verifies whether no method
implemented in a class sends messages that have as
receiver an instance variable of that class:

Rule accessingViolator(?Class,?Meth,?IV,?ViolMsg) if
instVar(?Class,?IV),
classImplementsMethod(?Class, ,?Meth),
not(gettingMethod(?Class,?Meth,?IV)),
isSentTo(?Class,variable(?IV),?ViolMsg,).

We can then invoke the query below to find all vio-
lations of the Getting Method pattern. It returns the
violating method ?Meth that directly accesses some in-
stance variable ?IV, together with the class ?Class it
belongs to and the violating message ?Msg it sends to
the instance variable.

Query accessingViolator(?Class,?Meth,?IV,?Msg)

Visitor Design Pattern As an illustration of how
to use the visitor predicate of Subsection 3.2 for de-
tecting violations, consider some class hierarchy with
root class ParseTreeElement representing a parse tree.
We want to detect all non-abstract parse tree elements
that do not comply to the Visitor pattern. To do so,
we select all subclasses of ParseTreeElement that are
not abstract, and for each of those we find the ones
that do not comply to the visitor rule:

Query hierarchy([ParseTreeElement],?Node),
not(abstractClass(?Node)),
not(visitor(?Visitor,?Node,[#’doNode:’],?VisSel))

The last line in this query mentions the name of the
visit-method (i.e., ‘doNode:’) used by the visitor to
visit the nodes. When we do not know the name of
this method, we can leave it variable. The system will
then deduce the name used in this specific instance of
the visitor pattern.

The results of this query contain the methods that
do not comply to the Visitor design pattern, and that
might need to be reimplemented. If the query fails,
this means that all classes and methods satisfy (the
structure of) the Visitor design pattern.

4.3 Code Generation

Getting Method Instead of searching for Getting
Methods and violations thereof, it can be useful to
generate automatically the code of the Getting Meth-
ods for some instance variable of a class. This can
be done by combining the gettingMethodStats predicate
describing the body of a Getting Method with a primi-
tive predicate generateMethod that generates the source
code of a method from its logic parse tree description.8

Rule generateAccessor(?Class,?InstVar) if
instVar(?Class,?InstVar),
“Verify that no method with name ?InstVar exists”
not(classImplementsMethod(?Class,?InstVar,)),
gettingMethodStats(?Stats,?InstVar),
“Generate code from the method parse tree description”
generateMethod(

method(?Class,?InstVar,<>,<>,?Stats)).

Due to space limitations, we do not show the detailed
implementation of the generateMethod predicate. It is a
meta-predicate that makes use of the strong symbiosis
between SOUL and Smalltalk to add the method (in
parse-tree format) it takes as input to the Smalltalk
image; see [9] for more details.

Behavior refactoring As a second example of code
generation, we reconsider the predicate behaviorRefac-

toring of Subsection 4.1. It only searches the image
for common methods to be refactored. To perform the
actual refactoring, we codify the Pull Up Method refac-
toring pattern [2].

Pull Up Method
You have methods with identical results on
subclasses.
Move them to the superclass.

We only show the easiest case where two methods have
exactly the same body (typically as a result of “copy
and paste” programming). The rule below defines how
to do the refactoring. The comments (between paren-
theses) explain the code; the mechanics of the refactor-
ing corresponds to what is described in [2].

8A method parse tree description consists of five parts: the
method’s class, the name of the method, its argument list, a list
of temporary variables and a statement list.

Rule pullUpMethod(?C1,?C2) if
“Check that ?C1 and ?C2 have common behavior”
behaviorRefactoring(?C1,?C2,?Base,?M1,?M2),
“Retrieve information about the common method”
methodName(?M1,?Name),
methodStatements(?M1,?Stats),
methodArguments(?M1,?Args),
methodTempVars(?M1,?Temps),
“Verify that the common base class ?Base does
not implement a method with the same name”
not(classImplementsMethod(?Base,?Name,)),
“Generate code for the new method”
generateMethod(

method(?Base,?Name,?Args,?Temps,?Stats)),
“Delete code of the old methods”
removeMethod(?M1),
removeMethod(?M2).

In addition to the generateMethod meta-predicate, this
rule uses a removeMethod meta-predicate to remove a
given method from the Smalltalk image.

Being able to generate code has the important ad-
vantage that a programmer gains time to concentrate
on more intellectually-rewarding development or main-
tenance activities. Straightforward coding tasks can
be performed partially. For example, we might imag-
ine having some kind of design pattern tool where we
just select some pattern from which a code template is
automatically generated for the programmer to fill in.

In the next section, we further elaborate on possible
tool support and on how to integrate the DMP lan-
guage with an existing development environment.

5 Tool Support

Our logic meta-language SOUL is well integrated in
the Smalltalk development environment. It can reason
about and manipulate Smalltalk entities directly and
can even execute parameterized Smalltalk source-code
fragments. Conversely, SOUL queries can be executed
from within Smalltalk itself. All this is achieved by im-
plementing SOUL in Smalltalk and by using the power-
ful reflective capabilities of Smalltalk to obtain a good
symbiosis with the logic language.

More recently, SOUL was extended with a synchro-
nization framework to build tools that rely on some
kind of synchronization between design9 and imple-
mentation [9]. It enables the construction of tools that
monitor and act upon any change to the implementa-
tion or design. For example, we can make a tool to en-
force the use of certain patterns in the implementation.
Suppose that we want to enforce the consistent usage of
the Getting Method best practice pattern throughout

9or other high-level descriptions on top of the implementation

a program. The tool monitors all changes to methods
and gives an error or warning whenever a programmer
accepts a method that accesses an instance variable
directly instead of through a Getting Method.

In our experiments we worked directly at the level
of the logic meta-language. We defined our own logic
rules and used logic queries directly to reason about
patterns. However, for programming patterns to be-
come an explicit and active part of the development
environment we need well-integrated and user-friendly
support tools in that environment.

One of the already developed tools is the ‘Structural
Find Application’, a sophisticated search engine. This
tool transparently uses logic queries to allow search-
ing for methods or classes in the Smalltalk image us-
ing complex search patterns. The user only needs
to fill in one or more simple selection fields and the
Find Application will automatically generate and in-
terpret the corresponding query for the user. For ex-
ample, the Find Application may be used to find all
classes that have a name matching some pattern, have
a method sending some specified message and imple-
ment a method with some name. The results of the
search are presented in a user-readable format.

A second interesting tool that has been implemented
on top of SOUL is the ‘To Do Application’. During im-
plementation of a program it logs all violations of cer-
tain programming patterns, conventions and heuristics
in a “to do” list. This list can be inspected later by the
programmer to fix (or ignore) the detected problems.

A third example (which is currently being devel-
oped) is a tool for visualizing and manipulating design
patterns. It supports the definition of design patterns,
generating code templates, searching for occurrences
of design patterns in the source code, checking consis-
tency of design pattern instances, evolution and trans-
formation of design patterns, detecting and resolving
conflicts and so on.

Tools like the above hide the details of the logic
meta-language from the programmer. However, they
do not prohibit a programmer to access the logic meta-
language. Instead of using the provided high-level
tools, a (power-)user can always use the query engine
directly to reason about the software. For example,
although the Find Application supports very powerful
search queries, it is restricted to some fixed set of se-
lection fields. By using the query engine directly, even
more powerful searches can be performed, because the
full SOUL syntax and all predefined predicates can be
used to construct a search query.

Also, a programmer can always add to the logic
repository his own specific rules to declare some pat-
tern. All available tools on top of the logic language

should be open enough so that they automatically pro-
vide support for these additional patterns as well.

6 Conclusion

We discussed the importance of using programming
patterns to support software development and mainte-
nance. Especially in a context of continuously evolving
software, large development teams and a high turn-
over rate, advanced tools to support the software de-
velopment process are crucial. Current-day software
development environments and tools, however, provide
little or no support to declare and use best practice
patterns, design patterns, design heuristics, bad smells
and refactoring patterns.

In this paper, we proposed declarative meta-
programming as a basis for building sophisticated de-
velopment tools that aid a programmer in his program-
ming tasks. We illustrated this by expressing different
kinds of programming patterns as rules in a DMP lan-
guage and by showing how these rules could be used to
search for occurrences of, to check, to detect violations
of and to enforce programming patterns and even to
generate code. DMP proved to be an ideal medium for
expressing and using such rules, because:

• it is declarative (hence intuitive and readable);

• the specific benefits of logic languages: multi-way
reasoning allows one and the same rule to be used
in many different ways; unification provides a pow-
erful pattern matching mechanism; backtracking
can find all possible solutions of a query;

• it is base-language independent : the rules that de-
scribe the patterns can, to a certain extent, also
be used for other object-oriented languages;

• it is customizable: user-defined rules can easily
be expressed. A programmer can declare and use
his own set of rules that support his particular
development and maintenance activities.

Finally, if we can rely on the fact that, in a given
piece of software, certain programming patterns are
consistently used throughout the code, we effectively
reach a higher level of abstraction of the code. This
makes it possible to reason about even more powerful
concepts, like architectural abstractions [5].

References

[1] K. Beck. Smalltalk Best Practice Patterns. Prentice
Hall PTR, 1997.

[2] M. Fowler. Refactoring: Improving the Design of Ex-
isting Programs. Addison-Wesley, 1999.

[3] S. Fraser, A. Cockburn, L. Brajkovich, J. Coplien,
L. Constantine, and D. West. OO anthropology: Cross-
ing the chasm (panel 3). In Proceedings of OOPSLA
1996 Conference, volume 31(10) of ACM SIGPLAN No-
tices, pages 286–291. ACM Press, October 1996.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns : Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[5] K. Mens. Automating Architectural Conformance
Checking by means of Logic Meta Programming. PhD
thesis, Department of Computer Science, Vrije Univer-
siteit Brussel, Belgium, October 2000.

[6] A. J. Riel. Object-Oriented Design Heuristics. Addison-
Wesley, April 1996.

[7] W. Teitelman. Automated programmering: The pro-
grammer’s assistant. In D. R. Barstow, H. E. Shrobe,
and E. Sandewall, editors, Interactive Programming En-
vironments, pages 232–239. McGraw-Hill, 1984.

[8] R. Wuyts. Declarative reasoning about the structure of
object-oriented systems. In Proceedings of TOOLS USA
1998, pages 112–124. IEEE Computer Society Press,
1998.

[9] R. Wuyts. A Logic Meta-Programming Approach to
Support Co-Evolution of Object-Oriented Design and
Implementation. PhD thesis, Department of Computer
Science, Vrije Universiteit Brussel, Belgium, January
2001.

