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Abstract

Metrics are essential in object-oriented software engineering for several reasons,
among which quality assessment and improvement of development team productiv-
ity. While the mathematical nature of metrics calls for clear definitions, frequently
there exist many contradicting definitions of the same metric depending on the im-
plementation language. We suggest to express and define metrics using a language-
independent metamodel based on graphs. This graph-based approach allows for an
unambiguous definition of generic object-oriented metrics and higher-order metrics.
We also report on some prototype tools that implement these ideas.

1 Introduction

Metrics are essential in several disciplines of software engineering. In forward
engineering they are used to measure software quality, to pinpoint anomalies
and to estimate cost and effort. In software reengineering, metrics are use-
ful for getting a basic understanding and providing higher level views of the
software, and for finding violations of good software design. In the context of
software evolution, metrics can identify stable and unstable parts of the soft-
ware, identify where refactorings should be applied [18] or have been applied
[7], and identify increases or decreases in the quality of software.

Many object-oriented metric suites have been proposed [BBI215], and
new metrics or variants of existing ones are invented every day. The many,
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partly contradicting, definitions of the metrics make it difficult to write general
metric tools, since they need to be updated every time we want to incorpo-
rate new metrics. To tackle this problem, we propose a language-independent
metrics framework based on a graph representation of the software. Since
the metrics are defined in a generic way, independent of the particularities
of the user-specified metamodel, they can be applied to any object-oriented
programming language.

This paper is structured as follows. In the next section we represent object-
oriented software in terms of graphs. Based on this underlying representation,
the subsequent section introduces a schema to define generic metrics and shows
how typical object-oriented metrics can be defined using that schema. We do
the same for a number of higher-order metrics. Next we discuss the current
limitations of the metrics framework, and present some related work. Finally,
we discuss tool support issues and conclude.

2 Representing Object-Oriented Software as Graphs

As an underlying software representation we use graphs, because they can cap-
ture the basic structure in a straightforward and generic way: nodes represent
software entities and edges represent relationships between those entities.

More precisely, we will use typed, directed and attributed multigraphs. The
use of multigraphs indicates that there can be more than one edge, possibly of
the same type, between two nodes. We use a type graph to specify the object-
oriented metamodel. Nodes can be nested in other nodes, which is indicated
by a contains edge type. We use directed graphs, implying that each edge has
exactly one source node and target node. We use attributed graphs to attach
any number of domain-specific properties to the nodes and edges, although in
this paper we only attach properties to nodes.

2.1 An Object-Oriented Metamodel
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Fig. 1. An object-oriented metamodel.

In order to apply the graph representation to a particular object-oriented
language, a metamodel needs to be provided that specifies the kind of software
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entities that are allowed and the relationships between them. For the sake of
readability, Figure[llshows a simplified subset of the metamodels that we used
during our experiments. For example, it does not contain information about
method parameters, and does not distinguish between read and write accesses.
However, it is important to note that the approach presented in this paper is
not specific to a particular metamodel. In fact, it is generally applicable to
any representation of the source code whose metamodel can be expressed as
a type graph that specifies the types of nodes and edges that are allowed and
how they are related.

In the remainder of this text, n; represents an arbitrary node type (such as
class, method or attribute), and £; represents an arbitrary edge type (such as
contains or accesses). As an abbreviation, we call a node of type 7; a n;-node,
and an edge of type ¢; an g;,-edge. For example, a system-node represents the
entire software system, and a call-node represents a method call or message
send. A contains-edge represents an aggregation or composition relationship,
directed from container to contained element. We will use the over-left-arrow
notation to denote edge types that are followed in the opposite direction. For
example, contains denotes a contains-edge that is followed from contained
element to container.

Since we use attributed graphs, we can attach specific properties to nodes.
For example, a class-node can have properties abstractness(abstract | concrete)
and wvisibility(private | protected | public). A method-node can have the
same properties as well as the following ones: scope(instance | class) and
defType(overrides | extends | defines). An attribute-node can have proper-
ties scope(instance | class) and visibility(private | protected | public).

Based on the semantics of the used metamodel, additional constraints have
to be specified between the node types and the edge types. For example:

» A method-node with property defType(overrides) (resp. defType(extends))
must be the source of an overrides-edge (resp. exrtends-edge).

* A method-node with property defType(defines) cannot be the source of any
overrides-edge or ertends-edge.

* Querrides-edges and ertends-edges between method-nodes are only allowed
if there is an inherits-edge between the class-nodes that contain these
method-nodes.

In the remainder of the paper, we will assume to be working with a concrete
graph G that satisfies the type graph of Figure [, i.e., it is a valid instance of
the metamodel. The node set of G will be called N and its edge set E. For
any given edge e € E we use source(e) to retrieve its source node, target(e)
for the target node, and type(e) for the edge type. For any given node n € N
we use type(n) to retrieve the node type, and property(n,p) to get the value
for a specific property p.
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3 Representing Object-Oriented Metrics

In this section we present our graph-based schema for generic metrics. We
then combine this schema with the object-oriented metamodel of Figure [ to
express typical object-oriented metrics in terms of the generic ones.

3.1 Generic Metrics

Based on our idea of representing software as graphs we can define three
generic metrics (NodeCount, EdgeCount and PathLength). Starting
from these generic metrics a large number of object-oriented metrics can be
defined in a general, flexible and extensible way, as we will show in the next
subsection. In the remainder of this paper we use the acronyms NC, EC and
PL to denote these generic metrics.

The generic node count metric NC(id, 1,12, ®) computes the number of
no-nodes that satisfy predicate ® and that are contained in 1;-node id. The
predicate ® : N — Boolean provides a filter when counting the number of
nodes. It is an optional argument. If it is not provided we use the predicate
that always returns true, which means that all nodes are counted. # stands
for “number of”.

Definition 3.1 (NodeCount) Let n € N and type(n) = n;.
Nc(na N, 12, (I)) = #{m €N | type(m) =12 A q)(m)/\
Jde € E : source(e) = n,target(e) = m, type(e) = contains}

Example 3.2 NC(c, class, method) = the number of methods of a class ¢;
NC(m,method, calls) = the number of method calls within a method m.

The NC metric has two useful refinements.

The first refinement, NC;(n,n,n2,€, ¥), computes the number of 7;-nodes
that have (resp. have not) outgoig e-edges, and that are contained in 7;-
node n. WV indicates whether adjacency of e-edges is required or prohibited.
Formally, ¥ is represented by a logic quantifier 3 or 3.

The second refinement, NCy(n,ny,n9,11), computes the number of 7;-nodes
satisfying property II and contained in n;-node n. II specifies which property
needs to be fulfilled for the nodes that are being counted.

Definition 3.3 (NodeCount Refinements)
Ncl(na N, M2, &, \Ij) =

NC(n,m,nz, ®) where ®(m) = Ve € E : type(e) = ¢ A source(e) =m
NC?(na N1, N2, H) =

NC(n,m,nz, ®) where ®(m) = property(m,II)

Example 3.4 NC(c, class, method, overrides,d) = the number of methods
in a class ¢ that override a method in one of its superclasses;
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NCsy(c, class, method, abstractness(abstract)) = the number of abstract meth-
ods of the class c.

We can also define a generic metric EC for counting edges. EC(n,n,¢,0, ®)
computes the number of s-edges starting in n-node n. The optional predicate
® : F — Boolean provides a filter when counting the number of edges. 6
designates whether multiple occurrences of edges between the same two nodes
are counted once or more than once. For example, a method can perform
multiple accesses to the same attribute, but sometimes we are only interested
in the existence of such an access, while sometimes we need to know the exact
number of accesses. In the former case we use # = single, in the latter case
we use = multiple.

Definition 3.5 (EdgeCount) Let n € N and type(n) = n.
EC(n,n,e, multiple, ®) := #FanOut(n) where

FanOut(n) = {e € E | source(e) = n A type(e) = e A ®(e)}.
EC(n,n,e,single,®) := #{(n,m) | Je € FanOut(n) : source(e) = n A
target(e) = m}

Example 3.6 EC(c,class,inheritance, single) = the number of immediate
children of a class ¢; EC(a, attribute, &ccesses, multiple) = the number of
times an attribute a is directly accessed by any method in the system. To
calculate the number of times a is locally accessed by methods belonging to
its containing class, we have to specify an extra predicate ® that captures this
constraint:
EC(a, attribute, iccesses, multiple, ®) where ®(e) =

dec € N : type(c) = classA

Jde; € E : source(e;) = ¢ A target(e;) = target(e) A type(e;) = contains

Jdey € E : source(es) = ¢ A target(es) = a A type(es) = contains

The last generic metric, PL (PathLength), deals with chains of edges of
the same type. PL(n,n,e,\, ®) computes the length of a chain of c-edges
starting in n-node n. A\ denotes whether we have to calculate the minimal,
mazimal or average length if there is more than one edge chain originating
from the node. ® : E — Boolean is an optional predicate that provides an
extra filter over the allowed kind of edges when calculating the path length.

Example 3.7 PL(c,class,inheritance, maximal) = the depth level of the
class ¢ within the inheritance hierarchy. This metric computes the length of
the longest path in the inheritance tree from the root class to class c. It also
works if multiple inheritance is used.

4 This is the reason why we need multigraphs: in the source code there can be more than
one access edge from the same method-node to the same attribute-node.
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3.2 Object-Oriented Software Metrics

We will now show how the generic metrics of the previous section can be
used to generate a metrics suite for the object-oriented metamodel specified
in Figure[I. We categorize the metrics according to their scope: system, class,
method or attribute.

First we list some concrete system metrics and show how they can be

defined in terms of our generic metrics schema.

#classes in the system s = NC(s, system, class)

#leaf classes in the system s = NC| (s, system, class, inheritance, f)

#abstract classes in the system s =
NCy(s, system, class, abstractness(abstract))

Next we express some typical class metrics in terms of the generic metrics.

#immediate ancestors in class ¢ = EC/(c, class, inheritance, single)
#methods in ¢ (a.k.a. NM [15]) = NC'(e, class, method)
#immediate descendants in ¢ (a.k.a. Number Of Children [5]) =
EC(c, class, W, single)

#public methods in ¢ (a.k.a. PM [15]) =
NCsy(c, class, method, visibility(public))

#methods that override methods in the superclasses of class ¢ =
NC (¢, class, method, overrides, 3)

#instance variables in class ¢ (a.k.a. NIV [15]) =
NC'(e, class, attribute, scope(instance))

#attributes of a class that are being accessed =
NC(c, class, attribute, accesses, 3)

depth of class ¢ in the inheritance tree (a.k.a. DIT [5] or HNL [15]) =
PL(c,class, inheritance, maximal).

Below we express some method metrics in terms of the generic metrics.

#statements in method m (a.k.a. NOS [15]) = NC(m, method, statement)
#message sends in method m (a.k.a. MSG [15]) = NC(m, method, calls)

#attribute accesses performed by method m =
EC(m, method, accesses, multiple)

different number of attributes being accessed by method m =
EC(m, method, accesses, single)

Finally we express some attribute metrics in a generic way.

#times attribute a is directly accessed = EC(a, attribute, &iccesses, multiple)

#methods (in the entire software system) accessing attribute a =
EC(a, attribute, ticcesses, single)
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3.8 Transitive Edges

Sometimes we need to take the transitive closure of edges of a certain type
into account in order to calculate a particular metric. Therefore, we introduce
the 4+ notation to denote transitive edges, i.e., chains of edges of the same
type. This straightforward extension of our formalism allows us to define a
number of new interesting metrics, such as:

 #ancestors of a class (a.k.a. NOA [5]) = EC(c, class, inheritance™, single)

« #number of descendants of a class (a.k.a. NOAC [f]) =

+

EC(c, class,inheritance™, single)

4 Higher-Order Metrics

In this section we define some higher order metrics that allow us to capture
some more object-oriented metrics in a generic way.

4.1 Ratio Metrics

For the node count metric NC' we can define a relative counterpart that returns
a value between 0 and 1, i.e., a ratio (or a percentage if multiplied by 100).
In this way we can generate a whole range of new object-oriented metrics.

Definition 4.1 (Node Count Ratio)

Ratio(NC(n,ny,m2, ®)) := %

This relative metric has two obvious refinements that correspond to the
absolute counterparts NC; and NCy, respectively. Ratio(NCy(n,ny,n2,, ¥))
computes the ratio of 7,-nodes contained in a n;-node n for which e-edges are
required /prohibited. Ratio(NCy(n,n1,n9,11)) computes the ratio of n,-nodes
contained in a 7;-node n for which property II is satisfied.

Definition 4.2 (Ratio Refinements)

Ratio(Nol(n, M, N2, €, ‘I’)) = %

. NCs(n,m,m2,11
Ratzo(NC’Q(n, ., 12, H)) = %
Here are some concrete examples of how to use the ratio metric.

» Ratio of abstract classes in the system s =
Ratio(NCy (s, system, class, abstractness(abstract)))

e Ratio of leaf classes in the system s =
Ratio(NC\ (s, system, class, inheritance, 1))

» Method visibility factor (ratio of public methods) of class ¢ =
Ratio(NCy(c, class, method, visibility (public)))
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Attribute visibility factor (ratio of public attributes) of class ¢ =
Ratio(NCy(c, class, attribute, visibility (public)))

As an alternative, [3] defines the method hiding factor as the ratio of non-

public methods of a class, and the attribute hiding factor as the ratio of non-
public attributes of a class.

4.2 Promoted metrics

When there is a containment relationship between entities, one can express
so-called promoted metrics, i.e., metrics defined by making use of summation
or average. Sum(n,n,nq, ) computes the sum of the metric p(m) for all
ne-nodes m contained in 7;-node n, while Average(n,ny,nq, 1) computes the
average over this metric.

Definition 4.3 (Promoted Metrics)
Sum(na s M2, :U’) = ZmeM M(m)a where

M = {m € N | type(m) = n2A
Jde € F : type(e) = contains A source(e) = n A target(e) = m}
Sum(nanlan%ﬂ)

Average(n, i, na, p) 1= #M

These promoted metrics allow us to express more object-oriented metrics.

For example, we can promote the following method-level and attribute-level
metrics to class level:

Total number of method calls of all the methods of class ¢ =
Sum(e, class, method, NMC') where NMC(m) = NC(m, method, calls)

Total number of statements of all the methods of class ¢ =
Sum(e, class, method, NOS) where NOS(m) = NC(m, method, statement)

Average method size in class ¢ (a.ka. AMS [15]) =
Average(c, class, method, LOC)

Similarly we can promote class-level metrics to system level:

Total number of methods in the system s =
Sum(s, system, class, NOM) where NOM (¢) = NC(c, class, method)

Average number of methods per class in the system s =
Average(s, system, class, NOM)

Total lines of code in the system s =
Sum(s, system, class, C LOC') where CLOC(¢) = Sum(c, class, method, LOC)

5 Discussion and Related Work

This section discusses the current limitations of our approach and presents an
overview of related work.

Other metrics. While our framework captures a wide range of object-

oriented software metrics, there are still many specialised metrics that cannot
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be defined in a generic way. Another problem is that, for some metrics, there
is still no consensus about what is the best alternative. This is the reason
why we did not consider coupling metrics (such as CBO [5], CF [3], NCR [15],
RFC [3]) and cohesion metrics (such as LCOM [a14], CR [1], CAMC [2]).
Some research to define cohesion metrics in a more generic way has already
been carried out. The LCOM metric (lack of cohesion in methods) of [14]
is defined in terms of graphs in [13] as the number of connected components
of a graph. This makes it a generic metric that coincides with the original
definition if the graph nodes represent methods, and the graph edges represent
attribute accesses. One can also define a generic cohesion measure based on
the fact that the similarity between two entities relates to the collection of
their shared properties [4]. Let, for any entity x, p(x) be the set of considered
properties for a specific situation. For example, if = is a class, p(x) could be
the set of all superclasses, the set of all abstract methods, the set of all public
attributes, and so on. Then the generic distance metric dist(x,y) supports
the measurement of cohesion: parts with low distance are considered cohesive
(with respect to the considered properties), while parts with higher distances
are less cohesive.

(@) nply) |
| p(z) Up(y) |

Subtypes. For reasons of simplicity, we did not provide subtype relation-
ships in our metamodel. However, most metamodelling approaches (such as
UML [11] and FAMIX [§]) make use of subtypes. For example, in UML, class
and interface are both subtypes of classifier, and method and attribute are
both (indirect) subtypes of feature. By exploiting this subtype information we
can define another generic metric (assume that 7, is a subtype of Nguper):

— NC(Zda 1, nsub)
NC(id, 1, Nsuper)

With this generic metric we can calculate the method-to-attribute ratio in a
class ¢ as SubtypeRatio(c, class, method, feature), and the class-to-interface
ratio in a Java system as SubtypeRatio(c, system, class, classifier).

Edge properties. In this paper we only attached properties to nodes. In
many cases, it is also useful to attach properties to edges. For example, we
can make a distinction between accesses-edges based on whether they read or
write the attribute’s value. For a contains-edge we can distinguish between
aggregation and composition depending on whether or not the contained
element can be shared between different containers. For inheritance-edges we
can distinguish between specialisation and inter face inheritance depending
on how the parent class is reused in the subclass. Using these extra properties
defined on edge types, we can refine the generic metric EC to take edge
properties into account, in a similar way as we have refined the generic metric

NC to NCs.
Generic metamodel. [I7] uses a generic metamodel to define metrics

9
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that abstract away from the particular metamodel elements. Because of this,
the generic metrics are automatically available for all the metamodels (such
as UML [11] or FAMIX [g]) that are mapped to the generic metamodel.

6 Tool Support

Clearly, a metrics tool should not be used as a stand-alone tool, but should be
integrated in a (meta-) CASE tool or be part of the development environment.
To illustrate this, we have integrated two research prototypes of our metrics
framework in existing software engineering tools.

Our first prototype was integrated in Moose [8], a reverse engineering
framework, implemented in Visual Works Smalltalk that comes with a language-
independent metamodel FAMIX. It supports import from C++, Java, Smalltalk
and Ada source code. We implemented more than 30 language-independent
metrics based on the metamodel information only. We integrated these met-
rics into CodeCrawler [6], a powerful software visualisation tool defined on
top of Moose. An obvious benefit we experienced was the fact that we were
able to perform metric measurements on the case studies independently from
their size, implementation language and general condition (reengineering case
studies find themselves seldom in a coherent and ordered manner).

A second prototype of our generic metrics approach was specified in SOUL
[20/16], a logic metaprogramming language built on top of — and tightly inte-
grated with — the VisualWorks Smalltalk programming environment. SOUL
offers a wide scale of logic rules to reason about the underlying object-oriented
base language. We extended SOUL to express the generic metrics as a collec-
tion of logic rules. This could be done in a language-independent way, since
SOUL provides support for Smalltalk as well as Java through the SOULJava
extension [I0]. The generic metrics are also applicable to language-specific
features, such as Java interfaces.

7 Conclusion

We use type graphs as a metamodel to define a set of generic metrics that
allow us to express a large number of object-oriented metrics in a general,
flexible and extensible way. The metrics that can be expressed using our
framework have definitions that are unambiguous, simple and language in-
dependent. They are unambiguous, as their definition relies on the accurate
formalism of graphs. They are simple, as their computation is mainly achieved
using graph traversal techniques.

Furthermore, the framework allows us to automate measurement tools to
a large extent by relying on the metamodel information to generate language-
independent metrics suites. The main advantage is that we do not have to
rewrite a tool each time a new metric (or a variant of an existing one) is
introduced, or when new language features are included. The approach also
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allows us to experiment to find out which metrics are most appropriate in a
particular situation.
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