
Declarative Meta Programming to Support Software Development:
Workshop Report

Tom Mens∗

Programming Technology Lab
Vrije Universiteit Brussel, Belgium

tom.mens@vub.ac.be

Roel Wuyts

Software Composition Group
University of Bern, Switzerland

roel.wuyts@iam.unibe.ch

Kris De Volder

Department of Computer Science
University of British Columbia, Canada

kdvolder@cs.ubc.ca

Kim Mens

Département d’Inǵenierie Informatique
Universit́e catholique de Louvain, Belgium

kim.mens@info.ucl.ac.be

Abstract

This paper reports on the results of the workshop onDeclarative
Meta Programming to Support Software Developmentin Edin-
burgh on September 23, 2002. It enumerates the presentations
made, classifies the contributions and lists the main results of the
discussions held at the workshop. As such it provides the context
for future workshops around this topic.

Keywords: meta programming, declarative languages, soft-
ware development

Introduction

The workshop onDeclarative Meta Programming to Support Soft-
ware Development(DMP 02) was co-located with the17th Inter-
national Conference on Automated Software Engineering(ASE
2002), and took place at the Heriot-Watt University in Edinburgh,
United Kingdom, on September 23, 2002. There were 13 partic-
ipants, most of which contributed with a position paper that was
reviewed and revised before the workshop. The participants orig-
inated from Belgium, Canada, France, Switzerland, Israel, United
Kingdom, and the USA.

The workshop focused on declarative meta programming
(DMP) techniques and tools to support software development.
Such techniques and tools aremeta programmingbecause they
reason about or manipulate program code at a meta level to auto-
mate some aspect of the software development process. The fact
that they aredeclarativemeans that they focus onwhat is being
done rather thanhow it is done.

The workshop had the following explicit goals:

• Get an overview of existing DMP approaches.

• Delineate for which software development activities DMP
could be used.

• Compare existing approaches (tools, techniques and for-
malisms) and identify commonalities and differences.

• Discuss advantages and shortcomings of DMP for supporting
software development.

∗Tom Mens is a postdoctoral fellow of the Fund for Scientific Research - Flan-
ders (Belgium).

Workshop presentations

The morning session was devoted to four long presentations of 20
minutes and four short presentations of 10 minutes, each followed
by 5 minutes of discussion. The long presentations were chosen
by the organisers because they offered different or novel perspec-
tives on the workshop topic, and because they had a higher poten-
tial for generating issues that would stimulate the discussions.

The papers and their authors were as follows, with the names of
the actual presenters during the workshop underlined. The papers
were collected in a technical report [WMDM02].

Long presentations:

LP1 Toacy Oliveira, Paulo Alencar, Donald Cowan (University of
Waterloo, Canada). Towards a declarative approach to frame-
work instantiation.

LP2 Yann-Gäel Gúeh́eneuc(École des Mines de Nantes, France).
Meta-modelling, logic programming, and explanation-based
constraint programming for pattern description and detec-
tion.

LP3 Tom Tourwe, Johan Brichau, Tom Mens (Vrije Universiteit
Brussel, Belgium). Using declarative metaprogramming to
detect possible refactorings.

LP4 Gopal Gupta (University of Texas, Dallas, USA). A
language-centric approach to software engineering: domain
specific languages meet software components.

Short presentations:

SP1 Tom Tourẃe, Tom Mens (Vrije Universiteit Brussel, Bel-
gium). A declarative meta-programming approach to frame-
work documentation.

SP2 H. Akehurst, Behzad Bordbar, P.J.Rodgers, N.T.G. Dalgliesh
(University of Kent, United Kingdom). Automatic normali-
sation via metamodeling.

SP3 Robert Filman, Klaus Havelund (NASA Ames Research
Center, California, USA). Realising aspects by transforming
for events.

SP4 Greg Michaelson(Heriot-Watt University, United King-
dom). SML prototypes from Z specifications.

1



SP5 Cordell Green(Kestrel Institute, USA). SpecWare: Auto-
matic formal specifications into hardware.

According to the workshop topic, the papers could be classified
according to two dimensions: the kind of DMP technique they use
(see Table 1) and the kind of support for software development
they provide (see Table 2).

Presentation DMP approach used
LP1 annotated UML, XML, XSLT
LP2 meta modelling, logic programming,

explanation-based constraint programming
LP3 logic meta programming
LP4 constraint logic programming, denotational

semantics
SP1 logic meta programming
SP2 OCL, graph rewriting
SP3 declarative language
SP4 translation scheme
SP5 theorem provers

Table 1: Declarative Meta Programming approach used

In Table 1 we observe that most of the presented declarative
meta programming approaches use some variant of logic meta
programming (LP2, LP3, LP4, SP1). Other approaches use more
trendy languages and standard technologies such as UML, OCL,
XMI, XML and XSLT (LP1, SP2).

Presentation Kind of development support
LP1 framework documentation
LP2 design patterns
LP3 design patterns, refactoring
LP4 domain-specific languages
SP1 framework instantiation and evolution
SP2 database normalisation
SP3 aspect-oriented programming
SP4 program translation
SP5 code generation from formal specifications

Table 2: Kind of software development support

As can be seen from Table 2, the bulk of the presented ap-
proaches uses declarative meta programming to provide support
for developingobject-orientedsoftware applications (LP1, LP2,
LP3, SP1, SP3). This support includes: documentation, instantia-
tion and evolution of object-oriented application frameworks; de-
scription, detection, generation and conformance checking of de-
sign pattern instances; object-oriented refactoring; aspect-oriented
programming.

Workshop discussions

In order to stimulate discussions, some general important ques-
tions were posed to the participants during the workshop:

Q1 What are the main advantages of DMP over other ap-
proaches?

The following benefits were mentioned by the participants:

• Portability andplatform independence. For example, if
we express domain-specific languages with DMP, they
can be automatically translated to any target platform.

• Declarative programs provide anexecutable form of
documentation. Executable, since they are programs;
documentation, since the declarative notation is easy to
read and understand.

• Concisenessand complexity reduction. Declarative
programs are often significantly smaller and less com-
plex than non-declarative programs. Cordell Green
mentioned an experimentally validated factor 2 to 5 re-
duction of program dependencies.

• Error reduction. This is a direct consequence of com-
plexity reduction. Cordell Green cited an experimen-
tally validated error reduction of a factor 2 to 20.

Q2 What are the potential shortcomings of DMP?

• Performanceandefficiencyissues were coined as a po-
tential disadvantage of DMP, but most of the partici-
pants agreed that this was a non-issue. With the cur-
rent state-of-the-art in compiler technology, very effi-
cient logic languages can be implemented.

• Declarative meta programming involves ahigh degree
of sophistication. It requires a deep understanding of
language semantics. This is even more the case with
hybrid DMP, for example when a declarative meta lan-
guage is used on top of an object-oriented base lan-
guage. In that case, complex issues such as language
symbiosis come into play. As a result, DMP is not
suited for the average programmer, and it will never
find widespread use. This resulted in the third question
to be discussed:

Q3 How can DMP achieve more widespread acceptance as a
mechanism for supporting software development?

• Lack of standard technologieswas suggested as a rea-
son why declarative languages have not found wide
adoption for software development support. This can
be resolved relatively easy by putting an XML-syntax
on top of the declarative language, at the expense of
losing the more concise and readable notation.

• A second aspect that strongly affect acceptance of DMP
is thequality and usability of the supported tools. Two
powerful and promising tools for DMP were presented
at the end of the day, and are discussed later in this
paper.

Q4 For which kinds of support for software development is DMP
well-suited/unsuited?

This final question was only discussed very briefly due to
time constraints.Parse tree manipulationwas proposed as

2



something for which DMP is particularly well suited. Indeed,
many of the presented approaches used or proposed some
kind of parse tree manipulation for generating, transforming
or reasoning about code.

Tool demonstrations

Upon explicit request by the workshop participants, a special tool
demonstration session was scheduled at the end of the day, where
two sophisticated DMP tools for reasoning about object-oriented
programs (one for Smalltalk and one for Java) were demonstrated.

The first tool,Soul[MMW02] was presented by Johan Brichau.
It is a Prolog-like logic meta programming language built on top
of, and tightly integrated with, a Smalltalk object-oriented soft-
ware development environment. It enables support for design pat-
terns, coding conventions, programming styles, refactoring, and
software metrics.

The second demonstration was made by Yann-Gaël Gúeh́eneuc
and showed thePatternsboxtool (that allows to select and instan-
tiate patterns) and thePtiDej tool (that does program architecture
visualization and patterns detection). These tools allow to specify
(patterns), and then use these specifications to generate code or
check the specification against Java source code. One of the very
nice features is that it employs a constraint system that gives feed-
back on how well the patterns match the code. Hence the pattern
serves more as a fuzzy definition that can yield partial matches,
and it explains these results.

Acknowledgements

This workshop was supported by theScientific Research Network
on Foundations of Software Evolution[ESF02].

References

[ESF02] Fund for Scientific Research - Flanders (Belgium).Sci-
entific Research Network on Foundations of Software Evolu-
tion.
http://prog.vub.ac.be/FFSE [1 Oct 2002]

[GDJ02] Yann-Gäel Gúeh́eneuc, Ŕemi Douence and Narendra Jussien.
No Java without Caffeine: A tool for dynamic analysis of Java pro-
grams. InProc. Int’l Conf. Automated Software Engineering, pages
117-126, Edinburgh, United Kingdom, September 2002. IEEE Com-
puter Society Press.

[MMW02] Kim Mens, Isabel Michiels, Roel Wuyts. Supporting Soft-
ware Development through Declaratively Codified Programming Pat-
terns.Journal on Expert Systems with Applications, December 2002.
Elsevier Publications.

[WMDM02] Roel Wuyts, Tom Mens, Kris De Volder and Kim Mens.
Proc. of theWorkshop on Declarative Meta-Programming to Support
Software Development. Technical Report VUB-PROG-TR-??-2002,
Programming Technology Lab, Vrije Universiteit Brussel, 2002.
http://www.cs.ubc.ca/ kdvolder/Workshops/ASE2002/DMP/ [1 Oct
2002]

3


