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Abstract

Data visualization is the process of representing data as pictures to
support reasoning about the underlying data. For the interpretation
to be as easy as possible, we need to be as close as possible to the
original data. As most visualization tools have an internal meta-
model, which is different from the one for the presented data, they
usually need to duplicate the original data to conform to their meta-
model. This leads to an increase in the resources needed, increase
which is not always justified. In this work we argue for the need
of having an engine that is as close as possible to the data and we
present our solution of moving the visualization tool to the data,
instead of moving the data to the visualization tool. Our solution
also emphasizes the necessity of reusing basic blocks to express
complex visualizations and allowing the programmer to script the
visualization using his preferred tools, rather than a third party for-
mat. As a validation of the expressiveness of our framework, we
show how we express several already published visualizations and
describe the pros and cons of the approach.

Keywords: software visualization, graph visualization, model
transformation

1 Introduction

Visualization is an established tool to reason about data. Given a
wanted visualization, we can typically find tools that take as input
a certain format and that provide the needed visualization [Panas
et al. 2005; Reiss 2001]. Typically, the visualization tools have an
internal model and they translate the data in such a way that it fits
their internal model.

The main advantage of this approach is that it can accommodate
data provided by third party tools. This works perfectly well when
it is enough to just generate the picture, or the animation without
further inspection of the data. However, one drawback of the ap-
proach is that, when a deep reasoning is required, we need to refer
back to the capabilities of the original tool that manipulates the ac-
tual data. A second drawback of the approach is that it actually
duplicates the required resources: the data is present both in the
original tool, and in the visualization tool. A third drawback is that
when a programmer needs to visualize his own data, he is forced
to leave his preferred environment and language and learn the lan-
guage of the import/export format.
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Several tools take a middle ground approach and choose to work
close with the data by either offering integration with other services
[Lanza and Ducasse 2005], or providing the services themselves
[M.-A. D. Storey and Michaud 2001]. However, when another type
of service is required, the integration is lost.

In this paper we propose a radically different approach: instead of
moving the data to be visualized to the tool, we argue for moving
the visualization tool to the data. Instead of providing a required
data format, we provide a simple interface through which the pro-
grammer can easily script, in a declarative fashion, the visualiza-
tion. This means that our solution works directly with the objects
in the data model.

The primary focus of our approach is to offer the programmer the
possibility of visualizing his data model while using his preferred
environment and tools. We provide a framework that puts all the
emphasis on providing the needed basic pieces and that places the
control in the hand of the programmer. The example below shows
the essence of our approach: a script that creates a view, adds nodes
representing some objects (in this case the classes in the model),
and adds the edges representing some other objects (in this case the
inheritance relationships in the model). The nodes and edges are
represented using shapes. The result of executing the script on a
given model is the tree shown below the script.

view := ViewRenderer new.
view nodes: model classes
        using: (Rectangle withBorder height: #NOM; width: #NOA).
view edges: model inheritances
        using: (Line from: #superclass to: #subclass).
view layout: TreeLayout new.
view open.

Mondrian, our framework, is written in Smalltalk, and this is why
the previous script is written in Smalltalk (see the Appendix for
details concerning the Smalltalk syntax). However, because we
wanted the model to be easily implemented in other languages too,
we strived to make it simple enough so it can be built on top of any
graphical framework.

Paper structure. In the next section we detail the challenges that a
visualization engine faces. Section 3 presents the framework from
a user’s point of view and then discusses the implementation. In
Section 4 we validate our model by showing that the implementa-
tion of already known visualizations is straight-forward when based
on the Mondrian framework. In Section 5 we show several charac-
teristics of the user interface prototype. We position our approach
with respect to the state of the art in Section 6, and we conclude in
Section 7. We present the Smalltalk syntax in the Appendix.



2 Challenges for an information visualiza-
tion engine

Reiss postulates two reasons for the slowness of the software de-
veloper community in adopting software visualization tools [Reiss
2001]. The first is the lack of flexibility: the tools which are de-
signed for a specific purpose can not support the user when he needs
a slightly (or sometimes even drastically) different visualization on
the data related to the task at hand. The second reason is the diffi-
culty of preparing and converting the data to the format understood
by the visualization tool.

In this work we propose an approach which solves the second prob-
lem by bringing the visualization closer to the data and not vice-
versa, and solves the first problem by providing an extremely mal-
leable visualization framework. Some of the factors that would be
needed to provide flexibility to the framework and to support the
proximity of the visualization to the data are:

The visualization engine should be domain independent. As on
the one hand we want to bring the visualization to the data,
and on the other hand we want to provide a framework, we
will need to make sure that the framework is general enough
to accommodate any data model.

Visualizations shoud be easily composed from simpler parts.
The user of the framework should be able to define basic
blocks that he can later for building more complex visualiza-
tions. One example is the way graph-layouting tools such as
GraphViz and aiSee [GRA ; AIS ] implement nested layouts:
once a layout is defined, it can be used to layout the internal
contents of a given node which is part of another graph which
has yet another layout.

The visualization should be definable at a fine grained level. In-
deed, it is important to detail the visualization at any level of
detail desired. For example, showing the details of a figure
by representing inside other figures based on the character-
istics of the represented object. From another perspective,
the framework should support instance based representation
as opposed to type based representation, as it is sometimes
desired to not show all the objects of the same type with the
same representation.

Object creation overhead should be kept to a minimum. Visualiza-
tion engines typically have an internal meta-model, usually a
graph-like one, in which they put the data and on which the
visualization is defined. However, when the objects of the
data model are already present, we do not need to duplicate
them, but the visualization should work directly with those
objects. This is important as it saves memory and time that is
otherwise spent in building the internal model.

The visualization description should be declarative. The descrip-
tion of the visualization should be declarative, as it should
only be a mapping between the data model and the visualiza-
tion model. The benefit of a declarative approach is that it
allows for generation of the descriptions from editors.

3 Scripting visualizations with Mondrian

In this section we show the usage of our framework by providing a
step-by-step example of how to handle the main parts of the visu-
alization, and we use the example to detail the internal structure of
the framework, emphasizing the different design decisions.

3.1 Painting a view with Mondrian

In this section we give a simple step-by-step example of how to
script visualizations using Mondrian. The example builds on a
small model of a source code with 38 classes. The task we pro-
pose is to provide a simple overview of the classes in the system
and of some of their relationships.

Creating a view. To make the things as easy as possible for the
programmer, we have designed Mondrian to work like a view the
programmer paints. The first thing we do is to create an empty
view:

view := ViewRenderer new.
view open.

Adding nodes. Suppose we can ask the model object for the
classes. We can add those classes to the visualization by creating a
node for each class. In the example below we represent each class
using a Rectangle with border:

view := ViewRenderer new.
view nodes: model classes using: Rectangle withBorder.
view open.

We directly support polymetric views on a Rectangle [Lanza and
Ducasse 2003]. For example, if we want to specify the width and
the height and the color, we need to set the different characteristics
of the object to be used by the Rectangle:

view := ViewRenderer new.
view nodes: model classes
        using: (Rectangle withBorder width: #NOA; height: #NOM; 
                                                       liniarColor: #LOC within: model classes).
view open.

NOA, NOM and LOC are methods in the object representing a class
and return the value of the corresponding metrics: NOA stands for
number of attributes, NOM stands for number of methods, and LOC
stands for number of lines of code.

Adding edges. To show how classes inherit from each other, we
can add an edge for each inheritance relationship. We use a similar
instruction as for the nodes. In our example, supposing that we can
ask the model for all the inheritance definitions between the classes
in the model, and that each inheritance is represented as an object,
the addition of the edges is illustrated in the example below:

view := ViewRenderer new.
view nodes: model classes
         using: (Rectangle withBorder width: #NOA; height: #NOM; 
                                                        liniarColor: #LOC within: model classes).
view edges: model inheritances
         using: (Line from: #superclass to: #subclass).
view open.



Like in the case of the nodes, when specifying the shape, we made
reference to methods that are defined in the inheritance object.
Thus, given an inheritance object, we will create an edge between
the node holding the superclass and the node holding the subclass.

Layouting. To make the above graph understandable, we layout the
nodes in a tree. By default, the nodes are arranged in a horizontal
line. If another arrangement is desired, the programmer needs only
to specify another supported layout. For example:

view := ViewRenderer new.
view nodes: model classes
        using: (Rectangle withBorder width: #NOA; height: #NOM; 
                                                        liniarColor: #LOC within: model classes).
view edges: model inheritances
         using: (Line from: #superclass to: #subclass).
view layout: TreeLayout new.
view open.

Nesting. To obtain more details for the classes, we would like to
see which are the methods inside. To nest we specify for each node
the view that goes inside. Supposing that we can ask each class in
the model about its methods, we can add those methods to the class
by specifying the view for each class:

view := ViewRenderer new.
view nodes: model classes
         using: (Rectangle withBorder liniarColor: #LOC within: model classes).
         forEach: [:eachClass |
                view nodes: eachClass methods using: Rectangle withBorder.
                view layout: CheckerboardLayout new.
         ]. 
view edges: model inheritances
         using: (Line from: #superclass to: #subclass).
view layout: TreeLayout new.
view open.

In the example, we use a Smalltalk construct which represents a
closure, or a lamba. In our example, we use [:eachClass | ... ]. This
is equivalent to (lamba(eachClass)(...)). In Java, the closure can be
modeled by using a Command pattern together with an anonymous
class. A similar problem was solved in the SWT1 framework of
Eclipse, where the user interface needs to accommodate any type
of objects using duck typing2. We use the closure to depict the
nesting level: the code from inside the closure depicts the graph for
each class.

1http://www.eclipse.org/swt/
2http://www.coconut-palm-software.com/the visual editor/?p=25

Adding inter-edges. The edges are created by specifying the from
and the to objects. Because we can have the objects at various levels
of nesting, it is important to specify the location from where the
lookup of the objects should start. For example, if we want to add
invocations as edges between the methods, and if we suppose that
we can ask the model object about those invocations we can add
them like we added inheritances:

view := ViewRenderer new.
view nodes: model classes
         using: (Rectangle withBorder liniarColor: #LOC within: model classes).
         forEach: [:eachClass |
                view nodes: eachClass methods using: Rectangle withBorder.
                view layout: CheckerboardLayout new].
view edges: model invocations
         using (Line from: #invokedBy: to: #invoked).
view edges: model inheritances
        using: (Line from: #superclass to: #subclass).
view layout: TreeLayout new.
view open.

We defined the invocation edges in the outer graph, and as a result
we obtained the edges between methods defined in different classes.
However, if we want to restrict the edges only to the scope of one
class, all we have to do is to move the instruction at the right nesting
level:

view := ViewRenderer new.
view nodes: model classes
         using: (Rectangle withBorder liniarColor: #LOC within: model classes).
         forEach: [:eachClass |
                view nodes: eachClass methods using: Rectangle withBorder.
                view layout: CheckerboardLayout new
                view edges: model invocations
                         using (Line from: #invokedBy to: #invoked)].
view edges: model inheritances
        using: (Line from: #superclass to: #subclass).
view layout: TreeLayout new.
view open.

Decorating shapes. By default, the sense of the edges is shown
by the convention that edges leave from the bottom-right of the
node and end on the top-left of the node [Lanza and Ducasse 2003].
However, when the user wants to specify an arrow at the end of the
line, he can use decorations. We introduce the notion of decorations
to allow the programmer compose the overall visual representation
out of basic shapes. For example, when we want to show the arrows
on the inheritances all we have to do is to decorate the Line with an
Arrow:



view := ViewRenderer new.
view nodes: model classes
         using: (Rectangle withBorder liniarColor: #LOC within: model classes).
         forEach: [:eachClass |
                view nodes: eachClass methods using: Rectangle withBorder.
                view layout: CheckerboardLayout new
                view edges: model invocations
                         using (Line from: #invokedBy to: #invoked)].
view edges: model inheritances
        using: ((Line from: #superclass to: #subclass) 
                    decoratedWith: Arrow new).
view layout: TreeLayout new.
view open.

Decorations can be applied to any figure. In fact, Rectangle with-
Border is implemented as Rectangle new decoratedWith: Border
new.

3.2 Mondrian internals

Overview. Figure 1 reveals the core structure of our framework.

Each Figure represents and holds an Object. The Figure, NodeFig-
ure and EdgeFigure are implemented directly on top of the graphi-
cal framework, but they hold no specific value for the visualization
(e.g., label or the size of the shape). The entire responsibility of
what gets drawn belongs to the Shape.

Figure

Layout

Object

NodeFigure EdgeFigure

1 *

1

*

1

*

...

Shape
decoratedWith:
displayFigure:on:

TreeLayoutTreemapLayout...

ViewRenderer
graphStack
nodes:using:
node:using:
nodes:using:forEach:
node:using:forIt:
edges:using:
edge:using:
layout:
open

Rectangle
width:
height:
color:
liniarColor:within:

Line
color:
width:

1

*

Figure 1: The internal model of Mondrian.

As we want to accommodate any Object, we cannot tie the imple-

mentation to a particular interface. That is why, the Figure talks to
the Object through the Shape which acts like a translator between
the visualization model and the data model. We can have several
shapes (e.g., Rectangle, Line), and depending on the Shape we can
specify how to compute a certain visual characteristic via a closure.
For example, to a Rectangle we can specify how to compute the
width, height and color. As mentioned in the previous section, in
Smalltalk, closures are first class objects that can be passed around
and get executed with a specified context. Closures can be simu-
lated in Java using anonymous classes that implement a command.
A similar problem was addressed and solved in SWT.

The Shape is just a specification of how the Figure should be dis-
played on a canvas (via displayFigure:on:). The Shape holds no
state, and thus it is possible to share a Shape between several nodes
or edges. For example, the instruction view nodes: model classes
using: Rectangle withBorder will create one NodeFigure for each
class, but all those figures will share and be displayed according to
the specification in Rectangle withBorder.

The Figure is implemented directly on top of the graphical frame-
work. One goal of our framework was to create as less objects as
possible for the visualization. The assumption is that the graph-
ical framework creates an object for each visual figure, and we
wanted to reuse that to model the graph. Our particular implementa-
tion was accomplished on top of the Smalltalk Hotdraw framework
[Brant 1995]. We claim that such an implementation is not tied
to Smalltalk: on the one hand Hotdraw is implemented in Java 3

too, on the other hand, the specific implementation is minimal. The
three classes have 354 lines of code.

Each Figure is a graph and holds several NodeFigures and Edges-
Figures. Furthermore, the Figure also knows the Layout to be ap-
plied on its children. The specific Layouts are implemented in sub-
classes of the Layout.

ViewRenderer. To make the script easy to write, we have designed
the ViewRenderer to hide the internal details of the model. The
intent of the ViewRenderer was to provide a script which is concise
and which looks similar with a dedicated format, while still being
an executable program4.

In Figure 1 we show the main protocol of the ViewRenderer:

• two methods dealing with adding nodes – There are two meth-
ods for adding several nodes, and two for adding one node.

• two methods dealing with adding nodes with nested graphs –
Again, we can add nodes specifying for each what goes in-
side, or we can add just one node specifying for it what goes
inside.

• two methods dealing with adding edges – Like in the case of
the nodes, we can add one or several edges.

• one method for specifying the layout – This method simply
takes an instance of a Layout.

• one method for spawning the view

A particular implementation that dramatically increased the read-
ability is the graphStack implemented internally. This is useful for
expressing nested graphs. For example in the example below:

view nodes: model classes using: Rectangle withBorder forEach: [:eachClass 
   view nodes: eachClass methods using: Rectangle withBorder
   view layout: CheckerboardLayout new.
].

3http://www.jhotdraw.org/
4The design of the ViewRenderer was inspired by the HtmlRenderer

from Seaside [Ducasse et al. 2004]



we refer to the same variable view, both from the outer context
and from the inner context. Internally, the implementation of
view:using:forEach: puts the current graph (represented by a fig-
ure) on the stack and whenever view is called from within the nested
context, the commands are attributed to the current graph. In this
way the programmer feels like he is all the time creating the same
view and by indenting correspondingly with the nesting levels, the
script reads as the format of a GraphViz-like tool.

Reusing Scripts. To fully support the programmer, we want to
allow him to place his views in methods, and then reuse them. For
this we can pass the view as a parameter to a method that builds the
visualization on the view. For example, the previous example script
in the previous section can be implemented like:

view := ViewRenderer new.
view nodes: model classes using: Rectangle withBorder
    forEach: [:eachClass | eachClass viewMethodsIn: view]
...
view open

ModelClass>>viewMethodsIn: view
  view nodes: self methods using: Rectangle withBorder
  view layout: CheckerboardLayout new.

We implemented viewMethodsIn: to show on a view the methods
from the ModelClass, and call it from within the graph inside a
class node. This example shows how we can put the visualization
near the data it represents and then reuse it in a larger context.

4 Case studies

To validate our model, we have implemented several already pub-
lished visualizations. Each case study presented here exercises an-
other part of the framework. Together with each resulting visu-
alization we attach the code we used to generate it. The scripts
presented are complete, except for the implementation of the data
model. In our case, we assume we have a model object from which
we can obtain the different other objects needed for the visualiza-
tion (e.g., classes, methods). The actual implementation makes use
of the Moose reengineering environment [Nierstrasz et al. 2005] for
getting access to the model data, but the framework can work with
any model.

System Complexity View. In the example from Section 3 we show
how we build polymetric views - graph views which map metrics
on the characteristics of the nodes and edges [Lanza and Ducasse
2003]. One important polymetric view is the System Complexity
View, which shows the class hierarchy. On the top part of Figure 3
we show the System Complexity View applied on ArgoUML (1405
classes) and then stretched to fit the page. Because the hierarchy is
too wide, when stretched, the view becomes difficult to grasp.

However, when using a screen, we would like to have an overview
of the system that uses the entire screen surface. That is why we
designed a view we call Screen Filling System Complexity. In the
bottom part of Figure 3 we show the same data as in the top part,
but this time we put each hierarchy in a node and then arranged the
hierarchies in a FlowLayout to fill the screen surface. Besides the
hierarchies, we have also grouped the lonely classes in a box to save
more space.

We also show the code required for the two views, to stress the
fact that we only use simple layouts to produce a radically different
visualization.

Class Blueprint. Class Blueprint is another polymetric view dis-
playing the internals of the class [Ducasse and Lanza 2005]. It splits
the class into five layers: the initialization methods, the public in-
terface methods, the internal implementation methods, the accessor
methods and the attributes. The script below shows the straight
forward implementation in Mondrian: we create an overall node
for the class and inside of it we create five nodes each containing
the five layers; the layers are arranged in a HorizontalLineLayout,
while the nodes inside a layer are arranged in a VerticalLineLayout;
moreover, we add the edges for invocations (blue) and for accesses
(cyan).

view := ViewRenderer new.
view node: class 
        using: (Rectangle new decoratedWith: (Label text: #name)
        forIt: [

   view node: class initMethods using: Rectangle withBorder forIt: [
      view nodes: class initMethods using: Shape forMethod.
      view layout: VerticalLineLayout new].

   view node: class interfaceMethods using: Rectangle withBorder forIt: [
      view nodes: class interfaceMethods using: Shape forMethod.
      view layout: VerticalLineLayout new].

   view node: class implementationMethods using: Rectangle withBorder forIt: [
      view nodes: class implementationMethods using: Shape forMethod.
      view layout: VerticalLineLayout new].

   view node: class accessorMethods using: Rectangle withBorder forIt: [
      view nodes: class accessorMethods using: Shape forMethod.
      view layout: VerticalLineLayout new].

   view node: class attributes using: Rectangle withBorder forIt: [
      view nodes: class attributes using: Shape forAttribute.
      view layout: VerticalLineLayout new].

   view edges: class invocations using: (Line from: #invokedBy to: #invoked 
                                                                       color: #blue).
   view edges: class accesses using: (Line from: #accessedBy to: #accessed 
                                                                    color: #cyan).

].
view open.

Figure 2: Example of a class blueprint.

Most often, the representation of a certain type of data can be reused
in different contexts. In the above script, the shapes defining how
methods and attributes should look like were factored out into:
Shape forMethod, and Shape forAttribute.

From another perspective, we notice that the script is more complex
then the one representing the System Complexity View, but this is
due to the fact that the visualization itself is more complex.



view = ViewRenderer new.
model rootClasses do: [:each |
   view node: each subclassHierarchy forIt: [:rootClass |
        view nodes: rootClass subclassHierarchy
                 using: (Rectangle withBorder width: #NOA; height: #NOM; 
                                                                liniarColor: #LOC within: model classes).
        view edges: model inheritances using: (Line from: #superclass to: #subclass).
      view layout: TreeLayout new.
   ].
].
view node: model lonelyClasses forIt: [
   view nodes: model lonelyClasses
           using: (Rectangle withBorder width: #NOA; height: #NOM; 
                                                          liniarColor: #LOC within: model classes).
   view layout: CheckerboardLayout new.
].
view layout: (FlowLayout withMaxWidth: 800).
view open.

view := ViewRenderer new.
view nodes: model classes
        using: (Rectangle withBorder width: #NOA; height: #NOM; liniarColor: #LOC within: model classes).
view edges: model inheritances using: (Line from: #superclass to: #subclass).
view layout: TreeLayout new.
view open.

System Complexity

Screen Filling System Complexity

Figure 3: When the hierarchy is too wide, the classic System Complexity gets too small when stretched to fit in one screen. Screen Filling
System Complexity puts each hierarchy in a box and arranges the boxes to make use of the vertical space.



Spectographs. Figure 4 shows an example of spectographs [Wu
et al. 2004] applied on the files in the CVS repository of JBoss
sources (2094 files). The Figure shows each file on a line and col-
ors a dot on that line with red when a commit affects the corre-
sponding, yellow if the commit was nearby and green otherwise.
The actual script traverses the CVS files in the model and for each
month decides the color of the dot. The dots are arranged via a
ScatterplotLayout.

view := Mondrian.ViewRenderer new.
yPos := 5.
model files do: [:file | | xPos greenOk yellowOk|
    greenOk := false.
    yellowOk := false.
    xPos := 5.
    model months do: [:month |
        (file hasCommitIn: month) ifTrue: [
            view node: file using: (Rectangle x: xPos y: yPos
                                                                 color: #red). 
            greenOk := false.
            yellowOk := true.
        ].
        ifFalse: [
            greenOk ifTrue: [
                view node: file using: (Rectangle x: xPos y: yPos
                                                                    color: #green)].
            yellowOk ifTrue: [
                view node: file using: (Rectangle x: xPos y: yPos
                                                                     color: #yellow).
                yellowOk := false.
                greenOk := true.
            ]
        ].
        xPos := xPos + 5.
    ].
    yPos := yPos + 1.
].
view layout: Mondrian.ScatterplotLayout new.
view open.

Figure 4: Example of a spectograph.

One striking characteristic of the presented script is that it is not
as readable as the previous ones. First of all, the code is longer
than in the rest of the examples presented in this paper, even though
the visualization appears to be simple. When taking a second look
we noticed that the view description is hampered by the actual al-
gorithm of traversing the data model in a way that is not directly
supported by the model.

We have encountered such a situation several times while exper-
imenting, and every time the script was too long and difficult to
grasp, we have come to the conclusion that the data model should
be updated. Once we applied the enhancement, the code became
much more readable. In our example, a lot of lines of code are
dedicated to the computation of the color for a specified pixel (i.e.,
red, green, yellow). If this information would have been provided
by the data model directly, the script would have been much more
compact.

This example also emphasizes the focus of our framework: there
is an object behind every representation. While this can be suited
for graph like visualizations, for this particular one, it generates
a significant overhead in object creation: every month of a file is
represented by an object figure. Definitely, the spectograph can
be implemented in a much more concise way using either a more
intelligent figure for a line, or by just creating one single figure for
the entire view. However, the example does show that it is possible
to prototype even such a visualization using our framework.

Scatterplot. Our model can be used for general information visu-
alization as well. In Figure 5 we show how we build a scatterplot

showing classes of Ant (500 classes) according to two metrics like
in the polymetric views [Lanza and Ducasse 2003].

view := ViewRenderer new.
view shape: Rectangle new.
view decorateShapeWith: HorizontalCoordinate new.
view decorateShapeWith: VerticalCoordinate new.
view node: model classes forIt: [
    view nodes: model classes
            using: (Rectangle withGrayBorder x: (each #averageLOC; y: #NOM;
                                                           liniarColor: #TCC within: model classes).
    view layout: ScatterplotLayout new.
].
view open.

Figure 5: Example of a scatterplot.

The example shows how the decorations can be used in a way that
bares information: the node surrounding the scatterplot is a rectan-
gle decorated with coordinate lines (i.e.,HorizontalCoordinate and
VerticalCoordinate) created by the projection of the nodes inside
on the x and y [Tufte 2001]. Using decorations, the programmer can
use basic parts to create more complex representations. As with the
layouts, a library of decorations is needed.

5 Mondrian prototype

In this section we briefly sketch some characteristics of the proto-
type implementation of the Mondrian user interface.

As mentioned before, the Shape is just a specification of how the
data model should be transformed to the visualization model. This
approach allowed us to create editors that handle the mapping based
on knowing the meta-model of the data.

For example, in Figure 5 we show a screenshot of such an editor
that makes use of the a priori knowledge of the structure of the data
model and for a given selected figure, generates an editor that asks
for each representation shape the different visualization character-
istics.

The view presents the hierarchy of Mondrian classes and the editor
is built on top of the Moose environment [Ducasse et al. 2005]. The
screenshot shows a selected class and the editor allows us to map
metrics that Moose can compute on classes to the Rectangle and
to the Border that represent the selected class. By changing the
metrics in the editor we change the Shape object.



Figure 6: Mondrian editor based on the Moose meta-model.

In Section 2 we claimed that the visualization specification should
be instance based. For example, in Figure 5 we show the same
visualization as in the previous one, only now the ViewRenderer is
shown using a Class Blueprint. With such a mechanism in place, we
could implement a dynamic tool that allows for semantic zooming:
each time we move the mouse over an object, we represent it with
more details by specifying a different representation only for that
particular object.

Figure 7: Mondrian showing instance based visualization.

6 Related Work

The importance of software visualization as a comprehension aid
for reverse engineering and problem detection can be inferred from

the large number of tools and techniques that have been developed
for this purpose: Seesoft [Eick et al. 1992], Rigi [Müller 1986;
Müller and Klashinsky 1988] and SHriMP [Storey and Müller
1995; M.-A. D. Storey and Michaud 2001], CodeCrawler [Lanza
2003; Lanza and Ducasse 2005], etc. In this paper we have shown
how our visualization framework can be used to implement visual-
izations provided by some of these tools.

One peculiarity of these tools is that they implement a finite set of
specific visualizations. However, the very nature program optimiza-
tion, problem detection and program understanding implies that the
user might not know a priori what exactly is he looking for, and
therefore, what visualizations to use. In these cases, the possibility
of easily generating new visualizations is valuable to him.

This is the reason why some tools provide more freedom to the
user in defining his own visualizations. One of the first such tools
is CodeCrawler [Lanza 2003; Lanza and Ducasse 2005] which is
a tool that provides visualizations of combined metrics and struc-
tural information. The tool offers the user the possibility of online
configuring the parameters of the visualization.

Another tool which emphasizes the importance of user customiza-
tion is Vizz3D[Panas et al. 2005]. The difference between this and
the preceding one is that Vizz3D provides more general visualiza-
tions while CodeCrawler is focused on metric-based visualizations.

The difference between our framework and CodeCrawler and
Vizz3D is the target audience. While CodeCrawler and Vizz3D are
aimed at less sophisticated end users who are satisfied to configure
their visualizations via a user interface, Mondrian is aimed at the
programer who needs the full power and flexibility of a program-
ming language.

From this point of view, a tool which is more similar in intentions
to ours is G See [Favre 2001]. G See provides a simple interface
for data discovery and visualization services such as layouts and
integration with external tools.

EVolve [Wang et al. 2003] is a tool and a framework for visualizing
information derived from the run-time execution of a system. While
the framework provides a rich set of visualizations and can be ex-
tended with new sources of visualization, it lacks the possibility of
aggregating the various visualizations.

BLOOM [Reiss 2001] is another tool which tries to provide a flex-
ible and extensible visualization environment. The difference be-
tween our tool and BLOOM is the granularity level: while bloom
can be extended by dynamically loading separately compiled visu-
alization components, in our case we provide code-level composi-
tion and extensibility facilities.

Another class of tools which are similar to ours are the more general
graph visualization tools [GRA ; AIS ]. Both provide the possibil-
ity of scripting visualizations and having nested graphs. However,
because they are totally separated from the model, the possibility
of interacting with the model is inexistent. Moreover, as we have
shown, our tool is aimed at representing more than nested graphs.

7 Conclusions

We have presented a visualization framework that is aimed at pro-
viding the programmer with the necessary abstractions and tools
for quickly drafting new visualizations by easily combining sim-
pler ones. As a validation of our approach, we have presented the
natural way in which several well-known visualizations can be ex-
pressed using our framework.



At this stage, the Mondrian framework is not intended to be a re-
placement for an existing end-user tool. An end-user tool has to
provide interaction facilities, predefined and meaningful combina-
tions of visualizations, coupled perspectives, and might also pro-
vide data collection besides the data visualization services, etc.. In-
stead, the primary focus of Mondrian is providing researchers the
possibility to build the visualizations representing their models by
using their preferred tools and environment.

We have developed the framework in parallel with experimenting
with it, and we are continuously evolving it. The assumption of
the approach is that the data model exists already. During our ex-
periments, the most important lesson learnt is that the visualization
description can be straight-forward when the model does provide
the right information, and when it does not, it is often the case that
conceptual enhancements of the data model are needed.

In essence, Mondrian is a meta-model of the different visualiza-
tions presented, and the scripts are in fact transformations of the
data model into the visualization model. One particular part we put
much emphasis on is the declarative manner of the scripts. This is
an important part, as in the future we intend to create generic user
interfaces to generate such scripts.
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configuration of software visualization with Vizz3D. In Proceed-
ings of ACM Symposium on Software Visualization (SOFTVIS
2005), 173–182.

REISS, S. P. 2001. An overview of bloom. In PASTE ’01: Proceed-
ings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Pro-
gram analysis for software tools and engineering, ACM Press,
New York, NY, USA, 2–5.
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A APPENDIX: Smalltalk Syntax in a Nut-
shell

In Smalltalk everything is an object and all the computation is done
through objects sending messages to other objects. There are only
four types of expressions: literals, variables, messages and blocks.

Messages. Smalltalk is based entirely on sending messages to ob-
jects. In response to every message, some object is returned (often,
the returned object is the one to which the message was sent). There
are three types of messages in Smalltalk:

1. Unary messages, which have no parameters
Example: model classes (sends the classes message to the
model object).



2. Bynary messages, which usually are used for arithmetical op-
erations
Example: 2 + 3 (sends the message + with parameter 3 to
the 2 object.

3. Keyword messages, which use keywords to organize partame-
ters
Example: myArray at: 1 put: 5 (sends the at:put: message
to myArray with the parameters 1 and 5).

The precedence of the operations is unary, bynary and keywords.

Statements. Every statement can be one of two types:

1. A message send (e.g.,model classes.).

2. An assignment (e.g.,greenOK := false.).

Blocks. The Smalltalk blocks are the counterparts of the LISP clo-
sures. They are also objects and represent a sequence of statements,
separated by periods, delimited by brackets. A block specifies a
computation that is deferred until the block is evaluated. The local
variables inside a block are defined between vertical bars.

Example: [:param| |x| param doSomething] (a block defined with
one parameter, param, and one local variable x which is not used).

Control Structures. The Boolean objects have the method
ifTrue:ifFalse:, which can be used to build selection. Thus, instead
of having language constructs for if then else, there are just plain
messages sent to a Boolean object. For example:

(total = 0)
ifTrue: [...]
ifFalse: [...]

(if total equals 0 the first block is evaluated, else the second is eval-
uated)


