
Polymorphism in the Spotlight: Studying Its
Prevalence in Java and Smalltalk

Nevena Milojković, Andrea Caracciolo, Mircea Filip Lungu, Oscar Nierstrasz
Software Composition Group

University of Bern, Switzerland
{nevena,caracciolo,lungu,oscar}@iam.unibe.ch

David Röthlisberger
School of Informatics and Telecommunications

Universidad Diego Portales, Chile
davidroe@mail.udp.cl

Romain Robbes
PLEIAD Laboratory

DCC, University of Chile, Chile
rrobbes@dcc.uchile.cl

Abstract—Subtype polymorphism is a cornerstone of object-

oriented programming. By hiding variability in behavior be-

hind a uniform interface, polymorphism decouples clients from

providers and thus enables genericity, modularity and extensi-

bility. At the same time, however, it scatters the implementation

of the behavior over multiple classes thus potentially hampering

program comprehension.

The extent to which polymorphism is used in real programs

and the impact of polymorphism on program comprehension are

not very well understood. We report on a preliminary study of

the prevalence of polymorphism in several hundred open source

software systems written in Smalltalk, one of the oldest object-

oriented programming languages, and in Java, one of the most

widespread ones.

Although a large portion of the call sites in these systems

are polymorphic, a majority have a small number of potential

candidates. Smalltalk uses polymorphism to a much greater

extent than Java. We discuss how these findings can be used

as input for more detailed studies in program comprehension

and for better developer support in the IDE.

Index Terms—object-oriented programming, polymorphism,

programming languages, programming environments

I. INTRODUCTION

Polymorphism in programming languages, as opposed to
monomorphism, refers to the ability of a variable to be bound
to entities of multiple types. In object-oriented languages,
subtype polymorphism means that the messages1 that can be
sent to an object are determined by its presumed type (or
class), while at run time that object may actually be an instance
of some subtype (or subclass).

1In Smalltalk terminology, to invoke a service of an object, one “sends it a
message”. A message consists of a “selector” (the name of the message)
and the arguments. The receiver is then free to decide which “method”
to use to respond to that message. This draws an important distinction
between “messages” (services offered) and “methods” (implementations of
those services)

AttributeFigure

+basicDisplayBox
(origin:Point,
corner:Point)

RectangleFigure+basicDisplayBox
(origin:Point,
corner:Point)

PolygonFigure

+basicDisplayBox
(origin:Point,
corner:Point)

TextAreaFigure

+basicDisplayBox
(origin:Point,
corner:Point)

HTMLTextAreaFigurePolygonFigureGeometric
Adapter

DiamondFigure

DiamondFigureGeometric
Adapter

+ basicDisplayBox(origin:
Point, corner: Point)
+ displayBox(origin:
Point, corner: Point)

AbstractFigure

basicDisplayBox(origin:
Point, corner: Point)

<<interface>>
Figure

Fig. 1: Sample class hierarchy from JHotDraw, with multiple imple-
mentations of the operation basicDisplayBox(Point, Point).

Subtype polymorphism is fundamental to object-oriented
design, allowing developers to write extensible software sys-
tems, regardless of whether the target language is statically or
dynamically typed.

Since a class can either implement a method itself or
inherit it from a superclass, the implementations of a particular
message can be scattered throughout the hierarchy. This can
impact program comprehension [8], [10].

Consider the classes in Figure 1 from JHotDraw2, a Java
framework for editing structured graphics. The class diagram

2JHotDraw is a reimplementation by Eric Gamma of HotDraw, originally
developed by John Brant in VisualWorks Smalltalk.

*Preprint

shows a subset of the JHotDraw Figure hierarchy3. A developer
is trying to understand source code of AbstractFigure, one of
the key classes of JHotDraw. The following snippet shows an
instance of the template method design pattern:

Listing 1: A polymorphic call site
public abstract class AbstractFigure

implements Figure {

//...

public void displayBox(Point origin,Point corner){

willChange();

basicDisplayBox(origin, corner);

changed();

}

//...

}

The receiver at the call site basicDisplayBox(Point, Point) is the
implicit variable this, which can be bound to any subtype of Ab-
stractFigure. Since any subtype of AbstractFigure can provide its
own implementation of basicDisplayBox(Point, Point), the method
that will be actually called is not statically determinable.

The developer could set a breakpoint in the code and
observe which of the multiple implementations are invoked
at run time, but this usually gives just a narrow selection of
all possible invocations. However, unless she sees all possible
invocations occurring at that particular place in source code,
she will not be able to fully understand the behavior of the ba-
sicDisplayBox message. Object-oriented systems highly depend
on polymorphism, which impacts software maintenance [18].

We call the number of possible methods that could po-
tentially be called at run time the cardinality of a call site.
With a slight abuse of terminology, we consider a call site
polymorphic if its cardinality is greater than 1, a selector
polymorphic if it is called at a polymorphic call site, and a
method polymorphic if it implements a polymorphic selector
(see section II).

The cardinality of the polymorphic call site willChange()
equals to just 2, while the cardinality of the call site basicDis-
playBox(origin, corner) is 18. A higher cardinality leads to more
behavior being scattered through the system, and this will
likely impact program understanding [8], [10], [12], [22].

To assess the criticality of polymorphism regarding program
comprehension, we investigate in this paper how prevalent its
use is in object-oriented software.

Figure 2-a shows the extent of polymorphism in JHotDraw.
This visualization, generated by Softwarenaut [14], shows the
main package of the system as a treemap, where the area
devoted to each class is proportional to its number of lines
of code.

The colors indicate presence or absence of polymorphism:
• red: classes that define polymorphic methods
• yellow: classes that contain polymorphic call sites
• orange: classes with both polymorphic methods and

polymorphic call sites
Figure 2-a illustrates that polymorphism is almost om-

nipresent. The same can be observed in HotDraw, its Smalltalk

3The complete hierarchy under AbstractFigure contains 35 classes.

(a) JHotDraw (Java) (b) HotDraw (Smalltalk)

Fig. 2: Polymorphism is endemic in both Java (a) and Smalltalk (b)
versions of the main package of the HotDraw framework

implementation (Figure 2-b). We do not know how poly-
morphism is being used idiomatically in these projects (for
example, whether most usages occur in the context of template
methods) nor do we know how much polymorphism impacts
comprehension in practice for common development tasks.

Before considering any of these questions, however, we
focus in this paper on the more specific questions regard-
ing the prevalence of polymorphism in practice. To our
knowledge, there is no large-scale study on the prevalence
of polymorphism in open source software. We therefore set
out to investigate the actual use of polymorphism in open
source development by studying two large corpora of open
source software systems, and by posing the following research
questions:

RQ1) How prevalent are polymorphic methods in object-
oriented systems?

RQ2) How common are polymorphic call sites?
RQ3) What is the distribution of the cardinality of poly-

morphic call sites?
For the purpose of this study we consider only static infor-

mation, that is, we do not consider how much polymorphism
actually occurs at run time. Although this will only give us an
upper bound on the actual polymorphism present, we argue
that this provides a good estimate of the challenges faced by
a programmer reading the source code.

Answering the first question will reveal how much poly-
morphism is present in object-oriented software. Addressing
the second and third questions will disclose how scattered
polymorphic code is, and hence help us to assess the potential
challenge it poses for program comprehension.

As a result of this study, we obtain a better understanding of
the phenomenon of polymorphism and its practical relevance.
Results obtained suggest a followup study into idiomatic usage
of polymorphism and its impact on program comprehension
in practice.

Structure of the Paper. We start by defining our ter-
minology (Section II). Next we introduce our experimental
methodology and the analysis infrastructure (Section III). In
Section IV we report on the findings regarding the prevalence
of polymorphism in practice. In Section V we discuss the
implications our results entail and propose a series of questions

to pursue in a followup study. We then describe potential
threats to the validity (Section VI). We discuss the related
work in the field (Section VII) before concluding in Section
VIII.

II. TERMINOLOGY

In this section we make precise the notion of subtype poly-
morphism as we measure it on both statically and dynamically-
typed languages. To this end, we introduce a simple set-
theoretic model in Figure 4 summarized by the UML diagram
in Figure 3.

Call Site

Selector

Method

1
1

1…*

Class

0…*

1

Interface
0…*

Type0…1

superclass
0…*

implements

is selected by

defined in

1

has receiver

has
selector

defined in

1

defines
selectors

1…*

Fig. 3: The core model in UML. The entities Interface and Type are
relevant for Java, but not Smalltalk.

A. Core model

Given all source code of a system, C is the set of all classes,
I is the set of all interfaces, T the set of all types, M the set
of all methods. S is the set of all selectors, i.e. method names
in Smalltalk (since we do not know the static type of method
parameters) and method signatures in Java. CS is the set of all
method call sites in the system.

sel : CS ! S (1)
defcs : CS ! M (2)
msg : M ! S (3)

defm : M ! C (4)

sup : C ! C (5)
rec : CS ! T (6)

impl : T ! P(I) (7)
selt : T ! P(S) (8)

Fig. 4: The core model.

Each method call site cs has a selector s = sel(cs) (1) and
is defined in a unique method m = defcs(cs) (2). We say
that the method m defines the call site cs and that method m
sends the message s. Each method m has a unique selector
s = msg(m) (3), and is defined in a unique class c = defm(m)
(4). Class c either has a unique superclass c0 = sup(c)(5) or
doesn’t have a superclass.4 We denote by c⇤ the“superclass-
chain” of the class c (9), and we consider sup0(c) = c. A set of
classes H ⇢ C is a hierarchy if every two classes c1, c2 2 H
have at least one common class in their “superclass-chains”,
the intersection of their “superclass-chains” is also contained
in H , and for every class c 2 H there is no ”gap” in its
“superclass-chain” within H (10).

c⇤ = sup⇤(c) (9)

(8c1, c2 2 H)((c⇤1 \ c⇤2 6= ;) ^ (c⇤1 \ c⇤2 ⇢ H)
^

(8c 2 H)(@k, n 2 N0)(n > k)(supn(c) 2 H ^ supk(c) /2 H))
(10)

In Java, for each call site cs the static type of the receiver
is t = rec(cs) (6). The type of the receiver can be either
an interface or a class. Each type t has a set of interfaces
it implements it = impl(t)5 (7), and a set of selectors it
defines st = selt(t) (8). This information is not available for
Smalltalk, and is not modeled.

Consider the example in Listing 1. For the call site cs =
basicDisplayBox(origin, corner), the selector (a Java signature)
is sel(cs) = basicDisplayBox(Point, Point), the receiver type is
rec(cs) = AbstractFigure, and the call site is defined in the
method defcs(cs) = displayBox(Point, Point).

We can now query the model to compute the metrics
necessary to answer our research questions, as summarized
in Figure 5.

Definition 1: A call site cs is polymorphic if there is more
than one method that can be invoked at cs at run time.

The way we determine this is slightly different in Smalltalk
and Java, since we lack static type information in Smalltalk. To
find all polymorphic call sites we first introduce the function
that maps a type t to its complete subhierarchy (11).

Consider the example in Figure 1. For t = RectangleFigure,
subhierarchy is subh(t) = {RectangleFigure,
DiamondFigure, DiamondFigureGeomtericAdapter}, while
for t = AttributeFigure, subh(t) = {AttributeFigure,
PolygonFigure, PolygonFigureGeometricAdapter, RectangleFigure,
DiamondFigure, DiamondFigureGeometricAdapter, TextAreaFigure,
HTMLTextAreaFigure}. We also introduce the function impl(t, s)
which yields the set of methods implementing the selector s
and defined in the subhierarchy of the type t (12).

In Smalltalk we do not know the type of the receiver at
compile-time, so we must investigate each polymorphic call
site based only on its selector. To do this, we use the function
undr(c, s) to determine whether the class c understands the

4sup is a partial function, since we consider only classes defined locally in
the corresponding project (i.e. ignoring classes from external frameworks or
the base system—e.g. class Object).

5To avoid the usage of another function, we say that an interface implements
another interface.

subh(t) =

8
<

:

(sup�1)⇤(t) [t, if t 2 C
{(sup�1)⇤(t0), t0 2 t⇤ \ C} [t⇤

where t⇤ = t [(impl�1)⇤(t), if t 2 I
(11)

impl(t, s) = {m 2 M |msg(m) = s ^
defm(m) 2 subh(t)} (12)

Smalltalk:

undr(c, s) = s 2 selt(c) _ undr(sup(c), s) (13)
intr(s) = {c 2 C|undr(c, s) ^ ¬undr(sup(c), s)} (14)
isp(cs) = (9c 2 intr(sel(cs)))s.t. (15)

(|impl(c, sel(cs))| > 1)

isp(s) = (9c 2 intr(s))s.t.(|impl(c, s)| > 1) (16)
Java:

ispt(cs) = |impl(t, sel(cs))| > 1 (17)
ispt(s) = (9t 2 T)s.t.(|impl(t, s)| > 1) (18)

Fig. 5: Computing polymorphic metrics

selector s, either because it defines the method m such that
msg(m) = s or one of the classes in its “superclass-chain”
does (13). We also use the function intr(s) to find all classes
“introducing” the selector s, i.e. defining a method m such that
msg(m) = s and not having the superclass which understands
it (14). We then say that the call site cs is polymorphic, written
isp(cs), if there exists a class c introducing the selector sel(cs)
and having at least one more method with the selector s in its
subhierarchy6 (15).

In Java, for each call site cs we know the compile-time
type of the receiver, t = rec(cs), so we need to define
the polymorphic call site with respect to t. We say that the
call site cs is polymorphic if there are at least two methods
implementing the selector sel(cs) and being defined in the
subhierarchy of the type t (17).

Definition 2: A selector s is polymorphic if it can be a
selector of a polymorphic call site. By extension, we consider
a polymorphic method to be a method that implements a
polymorphic selector.

Again, since in Smalltalk we don’t have the information
about the static type of the receiver, this means that the selector
s is polymorphic if there is at least one class c defining a
method m such that msg(m) = s and having at least one
class in its subhierarchy defining another method with the
same selector (16). In Java, we need to define the term of
polymorphic selector with respect to the possible type of the
receiver (18).

Consider the example in Listing 1. The selector s =
basicDisplayBox(Point, Point) is not polymorphic with respect to
the possible type of the receiver t = HTMLTextAreaFigure,
or with respect to DiamondFigure, but ispt(s) = true, when
t = TextAreaFigure, or when t = AbstractFigure.

6In Smalltalk we do not consider methods implementing the same selector,
but defined in classes without a common superclass already defining that
selector. Such methods are “duck-typed”.

III. EXPERIMENTAL SETUP

Our study covers 111 systems written in Java and 1,128
systems written in Smalltalk.

We chose Smalltalk for its reputation as a “pure” object-
oriented language (Smalltalk goes as far as implementing
conditionals as polymorphic methods in the Boolean class
hierarchy), and Java as a representative of a widely used, prag-
matic object-oriented language. We statically analyze these
systems to gather information about the usage of polymor-
phism and complexity it imposes to developers during program
understanding.

• For the Smalltalk part, we took a snapshot of all the 1,850
software projects stored in the SqueakSource repository
in early 2010. At that time SqueakSource contained
the majority of all projects implemented in the open-
source Smalltalk dialects Squeak and Pharo7 and hence
provided a representative set of Smalltalk projects from
both industry and academia.
We limit our analysis to projects containing more than
50 classes in order to exclude student projects and other
small and likely less relevant projects; out of the 1,850
projects, 1,128 projects meet this criterion.
These projects contain 125,825 classes and 1,637,228
methods in total.

• For Java we selected 111 open-source projects from
the Qualitas Corpus — a curated collection of software
systems representing widely known open-source Java
software systems and libraries [19]. Although we suspect
so, we cannot guarantee that the selection is representa-
tive for well-engineered and maintained open source Java
software.
The corpus consists of over 130,000 classes and
1,086,000 methods.
For the Java corpus, we use the Pangea analysis infras-
tructure [4] which enables us to easily deploy our analysis
on an entire Qualitas corpus.

A. Data processing
Each project is parsed in order to extract the relevant

metrics. We employed Ecco and Monticello as parsers for the
Smalltalk corpus [17], and VerveineJ and Moose for the Java
corpus [9]. The data processing consisted of two steps:

1) Method analysis. To measure how polymorphism is
used we traverse the body of every class in the system,
each class c having a list of methods def�1

m (c) it imple-
ments. We keep track of the set of methods implemented
in the project, as well as of the set of all methods that
are either overridden or are overriding, and the set of
their selectors. These are polymorphic selectors. We then
calculate the metrics related to polymorphism, such as
which methods in a system are involved in polymorphic
call sites.

2) Call site analysis. In the second step, we traverse the
body of each method, detecting all call sites within the
method body. We then collect all call sites cs for which
isp(cs) = true.

7www.pharo-project.org

methods classes hierarchies projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Smalltalk

methods classes hierarchies projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Java

methods classes hierarchies projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Smalltalk

methods classes hierarchies projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Java

methods classes hierarchies projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Smalltalk

methods classes hierarchies projects
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Java

methods classes hierarchies projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Smalltalk

methods classes hierarchies projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Java

Defining Polymorphic Selectors

Fig. 6: Distribution of the proportions of methods, classes and hierarchies defining polymorphic selectors, in (a) Smalltalk, (b) Java

B. Data analysis
We are primarily concerned with the distribution of the

metrics over the corpus, and, as a secondary concern, whether
they are distributed similarly in Smalltalk and in Java. To this
aim, we use boxplots to summarize the distribution of the
metrics in the studied systems. When possible, we analyze
varying degrees of aggregation (e.g. methods, classes and
hierarchies) in order to evaluate how the results hold at
each level of granularity, and to avoid ecological fallacies.
Ecological fallacies can occur when one studies the data at
the wrong abstraction level [16].

We use statistical tests when we deem them necessary
(e.g. to compare the distribution of a metric over both
Smalltalk and Java projects); most distributions we encounter
depart from normality, so we use the Mann-Whitney U-test,
which is non-parametric. As a measure for the non-parametric
effect size, we use the A12 effect size statistics of Vargha and
Delaney, instead of Cohen’s d [21]; this effect size metric has
for example been advocated by Arcuri and Briand in the case
of comparing randomized algorithms [1]. A12 works on two
samples, A and B; it indicates the probability that a random
element taken from A is larger than a random element taken
from B. An A12 of 0.5 is a null effect size, and values nearer
to 0 or 1 indicate a larger effect size (with a random element
taken from A being smaller than a random element taken from
B, respectively larger). The R library we use to compute the
effect size also gives us an equivalent Cohen’s d, which we
report as it is easier to interpret; commonly accepted thresholds
for d are 0.2 for a small effect size, 0.4 for a medium effect
size, and 0.8 for a large effect size.

IV. EXPERIMENTAL RESULTS

In this section we discuss in turn the research questions that
we proposed in Section 1.

For both Smalltalk and Java 99% of the inspected projects
define polymorphic methods and polymorphic call sites.

A. Implementing polymorphism
Figure 6 shows the proportion of methods that are poten-

tially involved in a polymorphic call site (i.e. methods whose
selectors are polymorphic) for both Smalltalk (left) and Java
(right). This information is then aggregated to the level of
classes, and hierarchies.

Figure 6 shows that, for Smalltalk, in median:
1) At least one out of four methods (31%) in the project

implements a polymorphic selector.
2) 63% of all classes in the project implement at least one

of those methods
3) Almost all class hierarchies (97%) in the project

include at least one polymorphic selector
Figure 6 shows that for Java the numbers are lower but

they still reveal that polymorphic method implementations are
in median:

1) At least one out of five methods (24%) in the project
implements a polymorphic selector

2) Almost half (44%) of the classes in the project imple-
ment at least one of those methods

3) More than three quarters (76%) of all class hier-

archies in the project include at least one polymorphic
selector

call sites methods classes projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Smalltalk

call sites methods classes projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Java

call sites methods classes projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Smalltalk

call sites methods classes projects
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

(b) Java

Proportion of Polymorphic Call Sites

(a) Smalltalk (b) Java

Fig. 7: Distribution of the proportion of polymorphic call sites, as well as methods and classes having them, in (a) Smalltalk, (b) Java

Based on this data, we can now answer our Research
Question 1 by stating that:

In a majority of projects in both Smalltalk and Java
more than a quarter of the methods are implementations
of polymorphic selectors.

Since there seems to be a difference between Smalltalk and
Java we also compare the corresponding aggregation levels
between the two languages. We obtain p < 10�5 in all
cases for the Mann-Whitney test. A12 for methods is 0.62
(a randomly chosen Smalltalk project has a 62% probability
of having a higher ratio of polymorphic methods than a
randomly chosen Java project), translating to a Cohen’s d of
0.44 (medium effect size). For classes, A12 = 0.76, and d =
0.91 (large effect size); for hierarchies, A12 = 0.79, and d =
0.82 (large effect size).

Based on this statistical analysis we conclude that:

Methods implementing polymorphic selectors are sta-
tistically more prevalent in the Smalltalk Corpus than
in the Java corpus, especially at the class and hierarchy
aggregation level.

B. Using polymorphism
In Figure 7 we present the proportion of all call sites that

are polymorphic as well as the proportion of all methods, and
classes defining at least one polymorphic call site (on the left
for Smalltalk, on the right for Java).

For Smalltalk, Figure 7 shows that in median:
• A quarter of all the call sites in the project (24%)

are considered to be polymorphic call sites within the
algorithm we have implemented

• A third of the methods in a project (32%) contain a call
site considered to be a polymorphic

• Three quarters of the classes in a project (78%) contain
a polymorphic call site.

For Java, Figure 7 shows that in median:
• 16% of all call sites in a project cannot be resolved at

compile time using the analysis we have explained in the
Terminology section

• 12% of all methods in a project include a call site which
is considered not capable of being resolved at compile
time

• 30% of classes in a project have at least one polymorphic
call site

Surprisingly, in Java, the proportions of methods defining
a polymorphic call site is lower than the proportion of poly-
morphic call sites; we hypothesize that polymorphic call sites
cluster in methods, although this would have to be verified in
future studies.

We can now answer the research question with:

Cardinality of the polymorphic call sites

(a) Smalltalk (b) Java

Fig. 8: The cardinality of the polymorphic call sites in the Smalltalk and the Java corpus, respectively

For a majority of the projects, more than one in ten
(for Java) and one in five (for Smalltalk) of the call sites
in a system are considered to be polymorphic.

This means that the situation in the example in the intro-
duction is frequently encountered by developers working in
both languages.

It is visually intuitive that the percentage of call sites which
are polymorphic is much higher in Smalltalk than in Java. To
verify this we do a Mann-Whitney test. This holds at the level
of call sites, methods, and classes (p < 10�8 in all cases for
the Mann-Whitney test). A12 for call sites is 0.65 in favor of
Smalltalk (equivalent Cohen’s d of 0.52, medium effect size);
for methods, we have A12 = 0.83 and d = 1.37 (large effect
size); for classes, A12 = 0.87, and d = 1.62 (large effect size).

We thus conclude that, statistically speaking:

The usage of polymorphism is significantly more preva-
lent in the Smalltalk corpus than in the Java corpus.

This second observation means that tools to support pro-
gram understanding in the presence of polymorphism are even
more important in the Smalltalk context than in the Java
context.

C. Understanding Polymorphism
The cardinality of a polymorphic call site is defined as the

size of the set defined earlier as impl(t, sel(cs)) (12).
The distribution of the cardinality of the polymorphic call

sites in Smalltalk is presented in Figure 8. We observe that:
• More than 75% of the polymorphic call sites have cardi-

nality two or three.
• Most of the call sites (90%) that cannot be resolved at

compile time using the implemented analysis have strictly
less than 6 candidates.

Figure 8 shows the results of running a similar analysis for
Java. Based on the analysis of 71K polymorphic call sites in
the corpus, we observe that:

• There are fewer call sites with two candidates than with
three candidates.

• More than 50% of the call sites have a cardinality of two
or three

• More than 75% of the polymorphic call sites have cardi-
nality less than seven

• Most of the call sites (90%) have less than 12 candidates
In some cases, we see call sites with a very large cardinality.

Table I presents several of the extreme cases we investigated.
In all the cases we have more than 100 potential implementa-
tions being called at a call site. We can observe some design
patterns that are responsible for this, including Visitor (for
jruby) and Command (for ant).

Several of the polymorphic sites with large cardinalities
(e.g. the ones in Table I) also happen to occur a significant
number of times. This probably is the result of a given call
site occurring in multiple places in a given project.

TABLE I: The largest cardinalities in the Java corpus

System Method Name Cardinality
weka-3.7.5 RevisionHandler.getRevision() 545
spring-3.0.5 InitializingBean.afterPropertiesSet() 216
ant-1.8.2 Task.execute() 201
weka-3.7.5 CapabilitiesHandler.getCapabilities() 167
jruby-1.5.2 Node.interpret(Ruby,ThreadContext,...) 148

To finally answer the research question, we conclude:

In both the languages a strong majority (75%) of the
polymorphic call sites have a cardinality of up to six and a
vast majority (90%) have a cardinality of less than twelve.
Corner cases can have hundreds of candidates.

V. IMPLICATIONS AND FUTURE DIRECTIONS

The study presented above only considers the prevalence
of polymorphism in open source software. As such, it is only
a first step. In this section we consider a series of further
research questions that the results of the study open up.

Project Usage Patterns
First, and foremost, the numbers show that polymorphism is

a widely used concept in the case of the two studied languages.
There are however, several exceptions. Notably, in the case of
RQ1 we have seen also strong outliers — systems in which
only 10% of the classes define polymorphic selectors. These
results raise the question whether the degree of polymorphism
present might depend on the type of system (e.g. infrastructure
vs application code), the application domain, or perhaps even
programmer experience.

Polymorphism Usage Idioms
Since the results of the RQ1 show that at least one in five

methods is polymorphic in the studied corpora, one may ask
to what end is polymorphism used? Are most cases of poly-
morphism instances of the Template Method design pattern?
To what extent can usages of polymorphism be classified as
supporting particular idioms or design patterns? Can certain
usages be considered as “best practice” and others as “code
smells”?

Impact on Program Understanding
Given that the presence of polymorphic call sites is so

high, based on the results of RQ2, it would be important
to discover to what extent polymorphic call sites pose a
problem for program understanding. These results also bring
up the question of how polymorphism influences the quality
of the source code, e.g. whether it is more understandable for
developers to use type checking or polymorphism.

With the cardinality of a polymorphic call site measure
(RQ3) we tried to estimate the complexity of understanding a
given polymorphic call site. However, the cardinality is a pre-
liminary measure. For example, often the methods that could
be invoked at a given call site will also contain polymorphic

call sites in their turn. A user would have to follow such a
polymorphic call chain to fully understand the software.

A better proxy for the difficulty of understanding a poly-
morphic call site would take into account also a tree-like
structure of polymorphic call chains. Such a metric would
be the equivalent of cyclomatic complexity computed on the
call graph induced by the compound polymorphic calls. In
preliminary studies we observed some extreme polymorphic
call chains that span dozens of methods.

Polymorphic call chains could be combined with other
measures to eventually quantify the impact of polymorphism
on comprehension. Eventually, empirical studies would have
to validate such metrics.

Duck Typing
One particular type of polymorphism is cross-hierarchy

polymorphism, also known as duck typing. This kind of
language feature is usually encountered in dynamically typed
programming languages, but can be simulated also in statically
typed languages with the use of interfaces. It would be
interesting to know how much of this polymorphism is due
to duck typing. Moreover, it would be important to quantify
the impact of duck typing on program understanding. We
expect duck typing to actually have a more drastic impact
on comprehension.

Static and dynamic detection: What is the Ground Truth?
In this paper we used the CHA algorithm (Class Hierarchy

Analysis) [7] for Java and a modified version for Smalltalk to
calculate the candidates for the call sites. We have encountered
cases where there are more than 100 method candidates for a
polymorphic call site. With more advanced techniques of static
analysis, like the RTA algorithm (Rapid Type Analysis) [2], it
might be possible to get more precise results. While CHA finds
the possible method candidates at the call site based only on
the declared type of the receiver, RTA takes into account the
set of all classes instantiated thus far.

Even with the most advanced static analysis, there will
be cases where a call site cannot be resolved statically. The
downside of static analyses are the false positives (potential
polymorphism might not occur in practice), while dynamic
analyses suffer from false negatives (some polymorphic calls
may be missed in any given run). This leads us to the question
of the best technique to detect polymorphic call sites: what
is the ground truth, and which technique yields the best
approximation?

How To Improve Program Comprehension Tools?
Given the prevalence of polymorphism in the two corpora

we studied, we propose the need for dedicated tool support
in the context of program comprehension in the presence of
polymorphism. Based on the results of this study, we can
propose several needs of IDEs for program comprehension
in the presence of polymorphism.

• The outcome of RQ1 is that at least one in five methods
implements a polymorphic selector. When displaying a

given method, it would be useful for developers to know
which other methods implement the same selector in the
class hierarchy of the selected method.

• The results of RQ2 state that at least one in five call
sites is polymorphic. Developers should be aware of this,
since code reading is one of the most time-consuming
activities [3]. A developer trying to understand a given
polymorphic call site should be able to easily access the
source code of all possible method candidates.

• The conclusion of RQ3 is that 75% of polymorphic call
sites have at most six possible method candidates. Tools
specialized in displaying up to seven method implemen-
tations would be useful in the majority of the cases. For
the remaining cases, a scalable tool would have to be
designed.

One challenge here is to make such tools always-available,
since polymorphism is omnipresent, yet not too intrusive at
the same time.

VI. THREATS TO VALIDITY

Construct Validity. The best way to detect polymorphic
methods would have been to use a combination of both static
and dynamic analysis. This threatens the validity of our study
since we are unable to know whether polymorphic methods
are parts of “hot spots” in the source code, or whether they
are actually never executed. However, our goal was to look at
the problem from the perspective of the IDE where only static
information is normally available.

One other threat to the validity of our results is the static
analysis algorithms we have used. It could be that more ad-
vanced analysis would provide more precise results. However,
present IDEs do not typically offer advanced analyses.

One final threat to construct validity concern possible impre-
cisions in detecting polymorphic methods, due to cross-class
polymorphism (i.e. duck typing) in Smalltalk.

Internal Validity. We consider only user-defined polymor-
phism, and not polymorphism defined in libraries being em-
ployed by the analyzed projects, nor the usage of these
polymorphic library methods. Moreover, we consider poly-
morphism only within the boundaries of a system, without
taking into consideration library classes being extended in
the subject systems, thus there might be more user-defined
polymorphic methods whose superclass implementations are
outside of project boundaries.

External Validity. Since our study features only open-source
projects, we cannot generalize our findings to industrial
projects. For the Smalltalk corpus, we only considered projects
that are found in the SqueakSource repository. Although
SqueakSource was at that time the de facto standard source
code repository for Squeak and Pharo developers, we cannot
be sure of how much the results generalize to Smalltalk code
outside of SqueakSource, such as Smalltalk code produced by
VisualWorks developers. We only take into account Smalltalk
projects with more than 50 classes to filter out projects that

might be toy or experimental projects. We believe such filter-
ing increases the representativeness of our results, however,
it might also impose a threat. Similarly, our corpus of Java
systems contains only open-source code, and was built based
on the availability of systems. As such, we cannot make
strong claims about its representativeness. It does however
contain popular applications, such as ArgoUML, components
of Apache, FindBugs, etc.

The two sub-corpora exhibit different characteristics: No-
tably, polymorphism is much more prevalent in Smalltalk—a
“pure OO” language—than in Java. Extending the study to
other OO languages may yield other insights.

VII. RELATED WORK

Tempero et al. conducted an empirical study of method
overriding — a concept closely related to polymorphism — in
a corpus of 100 open source Java systems [19]. They employed
various metrics, such as the number of overriding methods,
the number of inherited methods, and the number of classes
with replaced implementations; they did not use method-level
metrics as we do in our study. Their study showed that most
sub-classes override at least one method and many classes only
declare overriding methods.

In other work, Tempero et al. analyzed the use of inheri-
tance in Java, on a corpus of 97 systems [20]. To this aim,
they defined and extracted a suite of structured metrics for
quantifying inheritance. Different from previous studies, their
work showed a high use of inheritance, variation in the use
of inheritance between interfaces and classes, and a different
use of inheritance when applied to external libraries. In short,
Tempero et al.’s study indicated that a high use of inheritance
is a characteristic of accepted Java programming practice.
While in their work the aim was the study of inheritance
in general, in this paper we focus on the investigation of
polymorphic methods in the context of inheritance hierarchies.

Several researchers have investigated the relationship be-
tween code maintainability and the depth of inheritance. Daly
et al. [6] found that a system with three levels of inheritance
was easier to maintain than a corresponding system with no
inheritance; on the other hand, a system with five levels was
found to take longer to modify than the one with zero or
three levels of inheritance. Cartwright et al. and Harrison et al.
replicated Daly et al.’s study, obtaining contradictory results:
Cartwright et al. found inheritance to have a positive effect
on maintenance time [5], whereas the study of Harrison et
al. revealed that a system with zero inheritance was easier to
modify than the equivalent systems with three or five levels
of inheritance [13].

Grechanik et al. were among the first to perform an empiri-
cal study using a large body of source code [11]: They analyze
common source code patterns in a large-scale open source
code repository, composed of 2,080 Java projects randomly
selected from Sourceforge. Their investigation provided a
number of interesting and surprising findings, such as that
most methods have one or zero arguments, few methods are
overridden, most inheritance hierarchies are flat (i.e. depth of
one), and almost half of the classes are not inherited from any

classes. Our study resembles that of Grechanik et al. in terms
of project corpus size and methodology followed; the main
difference is that we focus on the prevalence of polymorphism,
with a number of dedicated metrics, whereas Grechanik et al.
answer 32 different research questions covering many aspects
of OO programming, ranging from number of static classes to
number of exceptions per method.

Parnin et al. studied the adoption of Java Generics, a form
of parametric polymorphism [15]. They found that developers
adopted it in the new code they wrote (after the release of
Java 1.5, when generics were added), but that adoption was
often driven by a single ”champion”. Also, the old code was
not often converted to use generics. Our study differs from
theirs as we analyze regular polymorphism only, as parametric
polymorphism is more concerned with type safety. In addition,
Smalltalk does not support parametric polymorphism.

VIII. CONCLUSIONS

We performed an empirical study of polymorphism on two
corpora of open source systems written in Smalltalk and Java,
respectively. We found that in both languages, polymorphism
is frequently used: nearly all projects we analyzed take advan-
tage of polymorphism by implementing polymorphic selectors
and by invoking such selectors.

In both languages a strong majority of the polymorphic call
sites have a cardinality of up to six and a vast majority have a
cardinality of less than twelve. This means that any difficulty
in code understanding associated with such polymorphic call
sites occurs frequently.

We learned that in Java, half of the polymorphic call sites
have a cardinality of two or three, and three quarters have a
cardinality of less than seven. We consequently argue that tool
support to improve program understanding in the presence of
polymorphism could start by tackling these simpler cases.

Smalltalk uses polymorphism to a much greater extent;
more than 60% of all classes implement a polymorphic se-
lector in Smalltalk projects, while around 40% do the same in
Java projects (for methods: 31% in Smalltalk compared to 24%
in Java). Since one fifth of all method call sites in Smalltalk
projects are polymorphic, and one third of all methods are
implementations of a polymorphic selector, solving the prob-
lems associated with understanding polymorphic call sites is
of higher priority for Smalltalk than for Java.

Acknowledgments
We gratefully acknowledge the financial support of the

Swiss National Science Foundation for the project “Agile
Software Assessment” (SNSF project No. 200020-144126/1,
Jan 1, 2013 - Dec. 30, 2015). D. Röthlisberger is partially
funded by FONDECYT Project 1140068. We also gratefully
acknowledge the financial support of the Swiss Group for
Object-Oriented Systems and Environments (CHOOSE) and
the European Smalltalk User Group (ESUG).

REFERENCES

[1] A. Arcuri and L. C. Briand. A practical guide for using statistical tests to
assess randomized algorithms in software engineering. In Proceedings
of the 33rd International Conference on Software Engineering, (ICSE
2011), pages 1–10, 2011.

[2] D. F. Bacon and P. F. Sweeney. Fast static analysis of C++ virtual
function calls. SIGPLAN Not., 31(10):324–341, Oct. 1996.

[3] B. Boehm and V. R. Basili. Software defect reduction top 10 list.
Computer, 34(1):135–137, Jan. 2001.

[4] A. Caracciolo, A. Chis, B. Spasojević, and M. Lungu. Pangea: A
workbench for statically analyzing multi-language software corpora.
In Source Code Analysis and Manipulation (SCAM), 2014 IEEE 14th
International Working Conference on, pages 71–76. IEEE, Sept. 2014.

[5] M. Cartwright. An empirical view of inheritance. Information Software
Technology, 40(14):795–799, 1998.

[6] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood. Evaluating
inheritance depth on the maintainability of object-oriented software.
Empirical Software Engineering, 1:109–132, 1996.

[7] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In W. Olthoff, editor,
Proceedings ECOOP ’95, volume 952 of LNCS, pages 77–101, Aarhus,
Denmark, Aug. 1995. Springer-Verlag.

[8] S. Demeyer, S. Ducasse, K. Mens, A. Trifu, and R. Vasa. Report of
the ECOOP’03 workshop on object-oriented reengineering. In Object-
Oriented Technology (ECOOP’03 Workshop Reader), LNCS, pages 72–
85. Springer-Verlag, 2003.

[9] S. Ducasse, T. Gı̂rba, and O. Nierstrasz. Moose: an agile reengineering
environment. In Proceedings of ESEC/FSE 2005, pages 99–102, Sept.
2005. Tool demo.

[10] A. Dunsmore, M. Roper, and M. Wood. Object-oriented inspection in the
face of delocalisation. In Proceedings of ICSE ’00 (22nd International
Conference on Software Engineering), pages 467–476. ACM Press,
2000.

[11] M. Grechanik, C. McMillan, L. DeFerrari, M. Comi, S. Crespi,
D. Poshyvanyk, C. Fu, Q. Xie, and C. Ghezzi. An empirical investigation
into a large-scale Java open source code repository. In Proceedings of
ESEM 2010, pages 11:1–11:10. ACM, 2010.

[12] A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge. Recovering
behavioral design models from execution traces. In Proceedings IEEE
European Conference on Software Maintenance and Reengineering
(CSMR 2005), pages 112–121, Los Alamitos CA, 2005. IEEE Computer
Society Press.

[13] R. Harrison, S. Counsell, and R. Nithi. Experimental assessment of the
effect of inheritance on the maintainability of object-oriented systems.
Journal of System and Software, 52:173–179, June 2000.

[14] M. Lungu, M. Lanza, and O. Nierstrasz. Evolutionary and collaborative
software architecture recovery with Softwarenaut. Science of Computer
Programming, 79(0):204 – 223, 2014.

[15] C. Parnin, C. Bird, and E. R. Murphy-Hill. Java generics adoption: how
new features are introduced, championed, or ignored. In MSR 2011:
Proceedings of the 8th International Working Conference on Mining
Software Repositories, pages 3–12, 2011.

[16] D. Posnett, V. Filkov, and P. Devanbu. Ecological inference in empirical
software engineering. In Proceedings of the 26th ACM/IEEE Inter-
national Conference on Automated Software Engineering (ASE 2011),
pages 362–371, 2011.

[17] R. Robbes, M. Lungu, and D. Roethlisberger. How do developers react
to API deprecation? The case of a Smalltalk ecosystem. In Proceedings
of the 20th International Symposium on the Foundations of Software
Engineering (FSE’12), pages 56:1 – 56:11, 2012.

[18] D. Röthlisberger, M. Härry, A. Villazón, D. Ansaloni, W. Binder,
O. Nierstrasz, and P. Moret. Augmenting static source views in
IDEs with dynamic metrics. In Proceedings of the 25th International
Conference on Software Maintenance (ICSM 2009), pages 253–262, Los
Alamitos, CA, USA, 2009. IEEE Computer Society.

[19] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble. The Qualitas Corpus: A curated collection of Java code
for empirical studies. In Software Engineering Conference (APSEC),
2010 17th Asia Pacific, pages 336 –345, Dec. 2010.

[20] E. Tempero, J. Noble, and H. Melton. How do Java programs use
inheritance? An empirical study of inheritance in Java software. In
Proceedings of the 22nd European conference on Object-Oriented
Programming (ECOOP 2008), pages 667–691. Springer-Verlag, 2008.

[21] A. Vargha and H. D. Delaney. A critique and improvement of the CL
common language effect size statistics of McGraw and Wong. Journal
of Educational and Behavioral Statistics, 25(2):101–132, 2000.

[22] N. Wilde and R. Huitt. Maintenance support for object-oriented pro-
grams. IEEE Transactions on Software Engineering, SE-18(12):1038–

1044, Dec. 1992.

